PRDM9: meiosis and recombination: Difference between revisions

From genomewiki
Jump to navigationJump to search
 
(207 intermediate revisions by one other user not shown)
Line 1: Line 1:
'''See also:''' [[PRDM11:_giant_missing_exon|All about PRDM11]]
'''Updates''': To help readers locate fixes, additions and other news as the article grows longer, significant
additions will be noted here in reverse chronological order linked into their spot in the article.
04 Feb 11: improved cow and sheep assemblies have [[#Curated_reference_sequences|six PRDM7/9 genes and a functional chrX copy with 21 zinc fingers]].
15 Dec 11: wake up folks: that gene in dog and mice is '''PRDM7''' [[#Correct gene tree for PRDM7 and its spin-off PRDM9s|not PRDM9]]
11 Dec 11: added a whole [[PRDM11:_giant_missing_exon|new page on PRDM11]] -- the closest match in non-mammalian amniotes to the PR(SET) methylation domain of PRDM7/9
30 Oct 11: added 6 new fragmentary Carnivora PRDM7 sequences that -- like dog -- have inactive terminal exons.
12 Sep 11: started [[#Origin_of_Species_and_all_that|new section]] on origin of species, sex chromosome co-evolution etc.
11 Sep 11: re-edited first 20 pages for glitches, redundancy and inconsistencies.
09 Sep 11: added sections on [[#Marsupials_and_platypus:_the_mystery_of_exon_5|chained meiosis]] in platypus and [[#Comparative_genomics_of_placental_mammals|non-PAR PRDM9 gene conversion]] sites on human chrY.
07 Sep 11: transversional [[#Sequence_analysis_of_human_variation|second block]] of human PRDM9 recognizes hotspots.
31 Aug 11: the first 523 amino acids of primate PRDM9 are not evolving at an [[#Rate_of_proximal_PRDM9_evolution_in_primates|anomalous rate]].
28 Aug 11: [[#Comparative_genomics_in_placental_mammals|partial distal pseudogenization]] of PRDM7 in some catarrhines.
22 Aug 11: re-wrote section proving [[#Comparative_genomics:_sequence_availability|mouse PRDM9 is really PRDM7]]; re-analyzed [[#Comparative genomics in placental mammals|historic species barrier]] paper.
22 Aug 11: improved [[#Introduction|mouse PAR region]] depiction and updated [[#Comparative genomics: sequence availability|expression data]] -- retinal transcripts suggest a multi-functional protein.
19 Aug 11: showed odd TGEKL cap region of first human repeat was already present in Denisova and pygmy.
18 Aug 11: fixed timing of the primate PRDM7 duplication creating PRDM9 relative to marmoset, tarsier, lemurs and tree shrew.
== Introduction ==
== Introduction ==


PRDM9 is a gene on human chromosome 5 with a very peculiar history. Its primary function -- after many false starts -- has only recently become clear: scanning the genome with its terminal zinc finger array to locate and mark recombination hotspots with its histone methylase where its transcription factor domain can direct additional proteins to initiate the double stranded breaks needed for meiosis. Some level of recombination between homologous chromosomes is essential to proper alignment and separation into daughter cells as well as for bringing favorable alleles onto the same haplotype for adaptive evolution.
PRDM9 is a gene on human chromosome 5 with a very peculiar history. Its primary function -- after many false starts -- has only recently become clear: scanning the genome with its terminal zinc finger array to locate and mark recombination hotspots with its histone methylase where its transcription factor binding domain can direct additional proteins to initiate the double stranded breaks needed for meiosis. Some level of recombination between homologous chromosomes is essential to proper alignment and separation into daughter cells as well as for bringing favorable alleles onto the same haplotype for adaptive evolution.


This reaches criticality in placental mammal sex chromosomes which are limited in homologous alignability to a short pseudoautosomal region (PAR). Here in male meiosis, a recognizable sequence site must be found for the double stranded break with only tens of kilobases available in mouse, the most favorable [http://www.ncbi.nlm.nih.gov/pubmed/21460839,21330546 experimental situation]. Here it must be noted that two large gaps remain in PAR in the most recent mouse assembly used (July 07) telomeric to the single known PAR hotspot (a situation not improved in the [http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=10090 July 2011 release 37.2]).
This reaches criticality in placental mammal sex chromosomes which are limited in homologous alignability to short pseudoautosomal regions (PAR). Here in male meiosis, a recognizable sequence site must be found for the double stranded break with only tens of kilobases available in mouse, the most favorable [http://www.ncbi.nlm.nih.gov/pubmed/21460839,21330546 experimental situation]. However two large gaps remain in the most recent mouse assembly used (July 07) telomeric to the single known PAR hotspot (a situation not improved in the [http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=10090 July 2011 release 37.2]) nor fixed by [http://www.pnas.org/content/108/4/1513.full Illumina reads]. This region  likely consists entirely of sequence categorized as simple repeats, meaning that as one hotspot is erased by gene conversion, similar ones remain available in the region, mitigating the need for adaptation in PRDM7/9.


[[Image:PrdmPAR.gif]]
[[Image:PrdmPAR.gif]]


Such a mission-critical protein is typically highly conserved. However this is not the case here at all. Indeed, it proves exceedingly difficult to find a comprehensive set of PRDM9 orthologs even in the 39 sequenced placental mammalian genomes available on 15 July 2011, with immense confusion in the literature over paralogs, lost copies, pseudogenes, and similar composite domain proteins having only very distant homology. PRDM9 and its parent gene PRDM7 do not have a full-length orthologous counterpart in monotremes, birds, lizards, amphibians or earlier diverging vertebrates --  though similar domain combinations have arisen independently in the past.  
Humans are [http://genome.cshlp.org/content/18/12/1884.full unique] in having a second PAR of size 330 kb on distal Xq which contains five genes, [http://genome.cshlp.org/content/13/2/281.full acquired recently] by chrY via LINE-mediated illegitimate recombination. Shrinkage of the larger PAR1 (currently 2.7 Mb, 24 genes) since lemur divergence (a process at much longer time scales driven by [http://gbe.oxfordjournals.org/content/1/56.full strata-creating inversions]), reduces the potential number of recombination initiation sites and may correlate with autosomal duplication of PRDM7 around this same time.
 
Gene conversion also occurs unexpectedly in human at various [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706966/ hotspots] between the PARs, notably in the PRKY, [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833382/ VCX/Y], TGIF2LX/Y and IR1 and P1 regions -- as well as [https://lra.le.ac.uk/bitstream/2381/9310/1/2011bowdengrphd.pdf intra-chromosomally] in the palindromic section of chrY. The PRKY site contains a [http://www.ncbi.nlm.nih.gov/pubmed/19165926 canonical PRDM9 recognition site], CCCCCCCTTCCCTC. If recombination intermediates resolve as translocation rather than gene conversion, infertile [http://www.omim.org/entry/278850 46,XX males] and [http://www.omim.org/entry/233420?search=233420&highlight=233420 46,XY females] result.
 
A protein central to an ancient essential process is usually highly conserved. However this is not the case here at all. Indeed, it proves exceedingly difficult to find a comprehensive set of PRDM9 orthologs even in the 39 sequenced placental mammalian genomes available on 10 Sept 2011, with immense and continuing confusion in the literature caused by independent segmental gene duplications, partial and full pseudogenizations and mix-ups with other composite domain proteins -- all compounded by outright sequencing error in the long terminal zinc finger repeat array.
 
Although meoitic recombination is a universal feature of eukaryotes, surprisingly the underlying mechanism for it is not. As shown below, the PRDM9 scenario is not directly applicable even to other major placental mammal clades. And neither PRDM9 nor its parent gene PRDM7 have a full-length orthologous counterpart in monotremes, birds, lizards, amphibians or earlier diverging vertebrates. While similar domain combinations have arisen before in other narrow bilateran clades, no evidence connects them to meiosis. Drosophila in particular uses very different gene products; meiosis there does not involve zinc finger proteins.
 
This puzzling history did not arise from ab initio sequence innovation in post-Cambrian deuterostomes because PRDM7 (the parent of primate PRMD9) arose instead from chimerization events in the mammalian stem involving SSX1, PRDM11 and a ZNF that together provided the six structural domains of the current protein. The parental gene histories are themselves complex, involving still earlier gene duplications and internal tandem repeat expansions -- patterns with numerous precedents in the overall metazoan proteome evolutionary context. Zinc finger proteins are a [http://www.ncbi.nlm.nih.gov/pubmed/21738707 greatly expanded, often chimeric family] within the mammalian lineage whose history may never be fully unravelled.
 
Rapid evolution of the terminal region of PRDM7/9 occurs at the amino acid level, both in the number of zinc fingers and -- within a given finger -- in the four non-adjacent residues primarily responsible for recognizing a specific dna trinucleotide. This variability is not coincidental to the role in meiosis -- that process tends to destroy its recombination hotspots by biased gene conversion. Since recombination is essential, new hotspots must emerge. The race is then on for PRDM7 or its spun-off PRDM9s to rapidly evolve and define new histone markup sites.
 
The consequent mutational pattern is quite distinct from those of closely related zinc finger proteins. It may result from error-prone replication slippage in the repeat region but why that mechanism would concentrate non-synonomous change at certain residue positions remains '''unexplained''', along with [http://www.pnas.org/content/108/30/12378.long fine structure details] in meiotic data, transcription in non-meiotic retina and the functions of the conserved zinc knuckle and early zinc finger domains.
 
This rapid evolution can cause breeding incompatibility between populations in the F1 generation (meiosis arrest for lack of cross-overs, notably between chrX and chrY) and thus be central to the process of speciation. However PRDM7/9 cannot provide a universal explanation of either speciation or Haldane's rule even within placentals because the hotspot-defining genes are not in straightforward correspondence.
 
In effect, initiation of meiotic recombination is rapidly evolving -- and taking speciation and Haldane's rule along with it: each major clade of placentals has evolved a different hotspot recognition system, taking its most extreme form in pecoran ruminants with six PRDM7/9 genes (whose individual roles are not understood but could be quickly worked out in cattle). These differences within placentals follows upon the very different structure and gene content of sex chromosomes between monotremes, marsupials and placentals which in turn are quite different from those of birds, lizards and the amniote ancestor.
 
Syntenic relationships can help resolve gene duplication events during mammalian evolution. Here the chromosomal gene order TUBB3+ AFG3L1+ GAS8+ has stably existed since the stem amniote some 310 million years ago, with PRDM7- qTer added in placental mammals after marsupial divergence and maintained there since over billions of years of observable branch length time. PRDM9 however is found in many syntenic contexts, depending on timing and positioning of the segmental duplications giving rise to these secondary copies.
 
From the perspective of evolutionary genomics, PRDM7 is the fundamental gene, not the disparate collection of genes lumped under PRDM9 (even as those have taken over in primate meiois). At different times in different placental clades, PRDM7 spun off segmental duplications of itself to other sites in other chromosomes, probably because of a susceptible location at the extreme q arm of an autosomal chromosome. Because PRDM7 has stayed at its site adjacent to GAS8, it is possible to say unambiguously which of two initially identical copies was the parent gene. Due to this history, the 'PRDM9' genes do not form their own subtree within the overall two-gene tree under phylogenetic algorithms but instead associate more closely with their parental PRDM7 parent.
 
These paralogous copies -- despite all being called PRDM9 -- are not usefully considered orthologous outside their species clade of origin. Orthology requires (by long-standing definition) vertical descent from a common gene '''in the last common ancestor''' of two species. Here primate PRDM9 are descended from a common gene (namely the recent duplicate of PRDM7 in the stem primate ancestor) but 'PRDM9' in afrotheres, pecoran ruminants, rabbits etc arose from  different duplications at different times during placental mammal evolution from a rapidly evolving PRDM7 parental gene in those lineages and so -- despite the name -- are not vertically descended from a common primate PRDM9 in their last common ancestor (though all the genes here descend from a single stem placental PRDM7 gene).
 
In tandem duplications, the parental copy cannot be distinguished but here the second copy was never on an equal syntenic footing. In a small segmental duplication, not all of the upstream regulatory features (which can be a megabase or more away from transcription start) are necessarily carried over. The second copy may be differently expressed from the get-go despite encoding an identical protein.
 
In mammals, PRDM7 has segmentally duplicated numerous times, in each case to a different site on a different chromosome. While PRDM7 has a moderately long history, primate PRDM9 has none of its own prior to its creation in stem catarrhine. For clarity, the various PRDM7 duplications can be denoted PRDMPpri, PRDM9pec, and PRDM9afr.
 
Such gene duplicates are [http://ai.stanford.edu/~serafim/CS374_2006/papers/Sonhammer_TIGs_2002.pdf sometimes called] in-paralogs within a species and co-orthologs across species. However these terms do not reflect the mechanism of duplication and are topologically unstable (depend on the species range included in the gene tree unlike the terms ortholog, paralog and homolog) and have gained limited traction. Synteny creates an asymmetry here because only the parental gene assuredly has all upstream and downstream effectors.
 
Composite-domain proteins such as PRDM7/9 give rise to a whole new level of terminological muddle as each domain may have its own complex evolutionary history of earlier duplication, shuffling partners, and functional drift. It is very difficult to capture these histories within gene nomenclature.
 
=== Comparative genomics of placental mammals ===
 
Within Euarchonta, a small segmental duplication encompassing PRDM7 took place in a stem catarrhine primate. The duplicated gene, designated PRDM9 by the human gene nomenclature committee, resides within an altogether new syntenic context -- a cadherin gene complex on an unrelated autosomal chromosome. PRDM9 initially shared meiotic functionality with PRDM7 even as it diverged in amino acid sequence and descended through speciation events into contemporary old world monkeys and great apes. PRDM7 still persists at its original ancestral location (qTer and adjacent to GAS8) but as an overt full-length pseudogene in some lineages (rhesus, gibbon) but not so clearly in others (orangutan). Gene duplication followed by lineage-specific reallocation of functionality is an exceedingly common scenario within metazoan evolution. The timing of gene duplication here means only catarrhine primates have a PRDM9 gene.
 
Human PRDM7, despite its 3 frameshifts in exon 9 and 10, may still retain N-terminal functions (those not requiring dna recognition by the zinc finger array). PRDM7 is sometimes treated as a conventional gene with splice 'isoforms' despite an internal direct tandem repeat of 88 nucleotides in exon 9 of the human reference sequence that throws off the reading frame and subsequent splice donor to exon 10, which itself has a frameshift (GGGG to GGG) in the second of its three zinc fingers. This is not an anomaly of the reference genome as it is shared across the 1000 Genome Project. The C-terminal pseudogenization of human PRDM7 [http://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks predated divergence] of denisovan, bushman and neanderthal and postdated analogous events in other primates.
 
Translation into an incorrect reading frame cannot plausibly yield a stable fold, much less zinc fingers that recognize a nucleotide meiotic sequence. Nothing is known about the fate of in vivo transcripts or mature PRDM7 protein but the likeliest scenarios are nonsense-mediated decay or proteolytic trimming of unfolded C-terminal rubbish. Partial pseudogenization is an option for a protein like PRDM7 with multiple quasi-independent domains. Transcripts and alternative splices -- being artifact-rich processes in vertebrates -- do not provide a reliable guide to any stably folded mature protein that may ultimately be produced.
 
Initially PRDM7 must have shared its role in meiosis with PRDM9 (the sequences and near-upstream regulatory regions being identical), but later PRDM9 took over this role entirely in most primate clades as only it retained the zinc finger array. PRDM7 either retained non-meiotic roles (implied by numerous transcripts in non-meiotic tissue) or acquired other functionality not involving the terminal zinc finger array (but in some species losing all function).  


This history does not imply post-Cambrian ab initio sequence innovation because PRDM7 (the parent of primate PRMD9) is a straightforward chimera established during the theran ancestral stem of two conventional proteins with long  evolutionary histories, a SSX1-like gene and a knuckle PRDM zinc finger array. The two parental gene histories are complex in different ways -- tandem whole gene array and variable zinc finger domain-- patterns uncommon but hardly unprecedented in the overall metazoan proteome evolutionary context. Zinc finger proteins in particular are a [http://www.ncbi.nlm.nih.gov/pubmed/21738707 much expanded, often chimeric family] in the mammalian lineage.
Chimp and gorilla have also lost functionality in the last exon. However the mechanisms of loss -- stop codon in chimp vs exon 10 frameshifts in gorilla -- differ from human. Orangutan PRDM7 may still be functional whereas gibbon is riddled with early stop codons implying total loss. Since pseudogenization is a fairly rapid process, it could not have begun at the time of segmental duplication in stem catarrhine. Instead PRDM7 co-existed with PRDM9 for tens of millions of years, only in the last few million years losing distal functionality independently in various great ape lineages.  


Rapid evolution of the terminal region of PRDM7/9 occurs at the amino acid level, especially in the number of functioning zinc fingers and within a given finger in the four residues responsible for recognizing a specific dna trinucleotide. This is not coincidental to the role in meiosis: the process tends to destroy its recombination hotspots by biased gene conversion. Since recombination is essential, new hotspots must emerge. The race is then on for PRDM7 or its spun-off PRDM9s to rapidly evolve and define new histone markup sites.
Loss of terminal array function took place fairly late in each great ape lineage by independent mutational mechanisms rather than by a shared disabling mutation in a common ancestor. Residual function may or may not be the same in those great apes that have retained the proximal portion of the gene. Partial pseudogenization is structurally acceptable in chimeric domain proteins if domains fold independently and do not significantly interact.


This rapid evolution could cause breeding incompatibility between populations in the F1 generation (meiosis arrest for lack of cross-overs, notably between chrX and chrY) and thus be central to the process of speciation. However the evolution of the hotspot-defining gene takes very different forms in different mammalian lineages. In effect each major clade of placentals is evolving a qualitatively different mating system, taking its most extreme form in pecoran ruminants with 6 PRDM9 genes. This differentiation follows upon the very different structure and gene content of sex chromosomes between monotremes, marsupials and placentals which in turn are much different from those of the amniote ancestor.
This scenario is strongly supported by alignment of manually curated primate PRDM7/9 sequences up to but not including the final array. If PRDM7 had been inactivated early after duplication, it would have accrued a large number of non-synonymous changes by now, changes oblivious to the conservation status of individual residues in the early domains. The alignment [[#Rate_of_proximal_PRDM9_evolution_in_primates|below]] shows preferential retention of conserved residues, as well as PRDM7 and PRDM9 clustering into distinct gene sub-trees as expected from the time of duplication. Gene conversion can keep duplicated genes synchronized for a time but that mechanism is not applicable over such a time span for non-tandem genes on unrelated chromosomes.


Syntenic relationships can help resolve gene duplication events during mammalian evolution. Here the chromosomal gene order TUBB3+ AFG3L1+ GAS8+ has stably existed since the stem amniote some 310 million years ago, with the arrangement TUBB3+ AFG3L1+ GAS8+ PRDM7- qTer arising in placental mammals prior to Afrothere divergence (ie, between 102-125 myr ago) and maintained there since over billions of years of observable branch length. PRDM9 however is found in many syntentic contexts, depending on clade and the various segmental duplications giving rise to these secondary copies.
Earlier diverging primates such as new world monkeys and lemurs have a single PRMR7 gene adjacent to GAS8. Although a PRDM9 duplicate could occur within an genome assembly gap, a large multi-exon gap is implausible in multiple assemblies with respectable Sanger trace read coverage, especially given the pedestrian chromosomal location of catarrhine PRDM9. The tarsier situation however is syntenically unclear -- the gene occurs in five separate contigs, mostly single reads. Tree shrew also has unsatisfactory coverage (six exons spread out over two contigs and 3 unassembled traces, a string of Ns in the terminal zinc finger domain, and undeterminable synteny). These scattered contigs could conceivably represent two or more separate genes.


From the perspective of comparative genomics, PRDM7 is the fundamental gene, not the disparate collection of genes lumped under PRDM9. At different times in different placental clades, PRDM7 spun off segmental duplications of itself to other sites in other chromosomes, probably because of its susceptible location at the extreme q arm of an autosomal chromosome. Because PRDM7 has stayed at its site adjacent to GAS8, it is possible to say unambiguously which of two initially identical copies is the parent gene. Because of this history, the 'PRDM9' genes do not form a distinct subtree within the overall two-gene tree under phylogenetic algorithms but instead associate more closely with their parental PRDM7 parent.
[[Image:PRconfusedSyn.jpg|left]]
<br clear=all>


These paralogous copies -- despite all being called PRDM9 -- are not usefully considered orthologous outside their species clade of origin. Orthology requires (by long-standing definition) vertical descent from a common gene '''in the last common ancestor''' of two species. Here primate PRDM9 are descended from a common gene (namely the recent duplicate of PRDM7 in the stem preceding speciation) but 'PRDM9' in other clades arose from  different duplications at different times from a evolving parental gene during placental mammal evolution and so are not vertically descended from a common PRDM9 in their last common ancestor (though all the genes here descend from a single stem euarchontogliral PRDM7).  
Within Rodentia, the single mouse PRDM7/9 gene lies in a region of confused synteny (relative to human) attributable to chromosomal rearrangements in the rodent clade. The browser screenshot above shows an unrelated region of human chr5 -- not the part that bears human PRDM9 -- as right-syntenic neighbor to mouse PRDM7. The left-syntenic human chr6 segment does not carry human PRDM7 (human chr16). The mouse gene thus has no informative neighbors (not even flanking debris) from GAS8 or cadherins. Similarly the mouse orthologs of GAS8 and cadherins do not contain PRDM7/9 debris.  


In tandem duplications, a parental gene cannot be distinguished but here the two copies were never on an equal footing. PRDM7 can represent both parental and descendent with PRDM9 as derived offspring. PRDM7 has a long history but primate PRDM9 has none of its own prior to its creation in stem catarrhine. As PRDM numbers 1-16 are already used up, the PRDM9 arising in primates, pecoran ruminants and afrotheres might distinguished as PRDMPpri, PRDM9pec, and PRDM9afr.
The rat gene occurs in the same syntenic context as mouse but other rodent genomes (including the new hamster assembly) are too incomplete for synteny to be assessed. Thus the genetic rearrangement taking PRDM7 from its location facing GAS8 to its current position in rodents cannot be accurately timed relative to rodent divergences. The rabbit assembly of Apr 2009 is still quite garbled in the PRDM7-related region and also contains a spurious assembly stutter duplication. The syntenic location is unlike mouse/rat or any other mammal and again there is no debris at the relevant locations in other species. The other lagomorph assembly (pika) is missing its first and last exon so provides no syntenic information.  


Such copies are [http://ai.stanford.edu/~serafim/CS374_2006/papers/Sonhammer_TIGs_2002.pdf sometimes called] in-paralogs within a species and co-orthologs across species. However these terms are topologically unstable (depend on the species range included in the gene tree) unlike the terms ortholog, paralog and homolog which are well-defined.
Thus the history of chromosomal rearrangements of PRDM7-like genes in Glires requires better assemblies in more species before gene rearrangements, gains and losses can be understood. It would be  [http://www.pnas.org/content/108/4/1513.full more useful] to finish genomes already begun rather than generate thousands of additional fragmentary assemblies as in the 10k vertebrate genome project.


Composite domain proteins such as PRDM7 give rise to whole new levels of terminological muddle as each domain has a long, complex and separate history of duplication and shuffling. There may be no solution really other than to point at labelled gene tree.
Conceivably, ancestral euarchontoglire PRDM7 duplicated twice to its current locations in rodents and lagomorphs from the ancestral location adjacent to GAS8 with the parental gene later lost twice. However even in this non-parsimonious scenario, the mouse gene cannot legitimately be called PRDM9 because it is still not a strict ortholog of primate PRDM9. A simpler scenario envisions two lineage-specific chromosomal rearrangements of PRDM7 with no gene gain or loss, consistent with Laurasiathere outgroup data indicating a single copy of PRDM7 at euarchontoglire divergence.


=== Comparative genomics in placental mammals ===
Since human PRDM9 arose in early primates as a gene duplication of a much older PRDM7, it was not present at the time of mouse/human divergence (Euarchontoglires). Hence the mouse gene cannot correspond to it. The mouse gene is best taken as a straightforward ortholog of primate PRDM7. Mouse has a great many chromosomal rearrangements relative to ancestral Euarchontoglires, so a translocation here of PRDM7 is unremarkable. The mouse gene is still called PRDM9 in the scientific literature despite the Jan 2002mouse assembly establishing its lack of synteny to the catarrhine-specific gene!


In euarchontoglires, a segmental duplication of PRDM7 occurred in a stem catarrhine primate and descended through speciation events to contemporary old world monkeys and great apes. This second copy (PRDM9) relocated to and stayed within a cadherin gene complex on a different chromosome. PRDM7 persisted at its original ancestral location but became an overt pseudogene in some lineages (rhesus, gibbon, gorilla, chimp and human) but not so clearly in others (orangutan). Earlier diverging primates such as lemurs, tarsier and new world monkeys have a single PRMR7 gene adjacent to GAS8. Tree shrew has unsatisfactory coverage in this region (six exons spread out over two contigs and 3 unassembled traces, a string of Ns in the terminal zinc finger domain, and undetermined synteny).
The PRDM7 protein is evolving conservatively in murid rodents though rather rapidly in the amino acids contacting the hotspot dna motif. There are substantial differences between common strains of lab mouse and unsurprisingly these cannot always interbreed (shown below in first six lines as genome strain C57BL/6J, WSB/EiJ, MOLF/EiJ, PWD/PhJ, CAST/EiJ, and C57BL10.F). Note mouse strains vary considerably in the number of zinc finger repeats -- 11 in CAST/EiJ, 12 in the reference genome strain C57BL/6J, 13 in C3H/HeJ and 14 in strain PWD/Ph -- and so in their dna-contacting residues.


Although an obvious pseudogene, human PRDM7 is sometimes treated as a functional gene with 'isoforms'. However exon 9 of the reference sequence hg18 contains an internal direct tandem repeat of 88 nucleotides that throws off the reading frame and subsequent splice to exon 10, which itself has a frameshift (GGGG to GGG) in the second of its three zinc fingers. The protein is incorrectly described at NCBI, SwissProt and UCSC -- zinc fingers translated into the wrong reading frame cannot possibly form a stable fold, much less recognize a nucleotide sequence. Given the common comparative genomics context of duplication followed by subsequent pseudogenization (of either parent or duplicate), this feature is unquestionably a pseudogene whether it is still transcribed or not. Pseudogenization likely predated divergence of bushman and neanderthal and apparently independently of those events in other primates.
The species barrier between B6 and C3H mouse strains is said [http://www.sciencemag.org/content/323/5912/373.full entirely attributable] to a single difference in the number of zinc finger repeats (loss of repeat 10 in B6). As the extra repeat in C3H intercalates a new set of dna-contacting residues, its array recognizes a dna sequence with a 3 bp insertion relative to the recognition sequence of B6 (ie the barrier does not arise from repeat number variation per se). However it has not been established why a mouse heterozygous for separately meiotically functional PRDM7 genes cannot carry out meiosis.


Rodents and lagomorphs have  no counterpart to PRDM9, though the situation is confused by later chromosomal rearrangements (no affirming homolog or even debris adjacent to GAS8 or cadherin). The mouse gene is then orthologous to primate PRDM7, not PRDM9. The rat gene occurs in the same syntenic context as mouse; other rodent genomes are too incomplete for synteny to be assessed. Rabbit has two apparent PRDM7, called here PRDM7a and PRDM7b; neither copy is syntenic to mouse/rat or any other mammal. The pika genome is too incomplete to determine whether this duplication predated their divergence. Overall the data is consistent with a single PRDM7 locus in the last common ancestor of primate and rodent. It would be vastly more useful to complete genomes already begun than to embark on incomplete sequencing of an additional 10k vertebrate genomes.
While the species barrier result implicates distal zinc fingers in meiotic recombination, no meiosis occurs in retina, the primary source of (unsought) mouse PRDM7 transcripts at GenBank. Mouse PRDM7 may be [http://en.wikipedia.org/wiki/Protein_moonlighting multi-functional], with a distinct role regulating gene expression in retina (in the manner of conventional ZNF genes). The proximal block of zinc fingers could be used there for dna recognition, giving rise to dual (or overlapping) selection on the array.  


When murid rodents are aligned, it is quite clear that PRDM7 is evolving quite orderly overall but rather rapidly in the amino acids contacting the hotspot dna motif. There are substantial differences between common strains of lab mouse and unsurprisingly these cannot always interbreed (shown below in first six lines as genome strain C57BL/6J, WSB/EiJ, MOLF/EiJ, PWD/PhJ, CAST/EiJ, and C57BL10.F):
While consistent with meiosis site recognition requiring less than half of the array, a conflict arises because the mysterious mechanism generating mutational variation specifically at the dna-contacting residues for meiosis would be maladaptive for continuing recognition of fixed retinal gene regulatory targets (if any). Here it is imperative to understand what other genes are acting upstream to confine PRDM7 expression to testis and retina. If transcription in retina is specific to one of its many structural components, that could provide insight into its functionality there.


[[Image:MouseSpeciation.gif|left]]
<br clear=all>
  PRDM7_musMus1  SIERQCGQYFSDKSNVNEHQKTHTGEKPYVCRECGRGFTQNSHLIQHQRTHTGEKPYVCRECGRGFTQKSDLIKHQRTHTGEKPYVCRECGRGFTQKSDLIKHQRTHTGEKPYVCRECGRGFTQKSVLIKHQRTHTGEKPYVCRECGRGFTQKSVLIKHQRTHTGEKPYVCRECGRGFTAKSVLIQHQRTHTGEKPYVCRECGRGFTAKSNLIQHQRTHTGEKPYVCRECGRGFTAKSVLIQHQRTHTGEKP-YVCRECGRGFTAKSVLIQHQRTHTGEKPYVCRECGRGFTQKSNLIKHQRTHTGEKPYVCRECGWGFTQKSDLIQHQRTHTREKP--------------------------------------------------------
  PRDM7_musMus1  SIERQCGQYFSDKSNVNEHQKTHTGEKPYVCRECGRGFTQNSHLIQHQRTHTGEKPYVCRECGRGFTQKSDLIKHQRTHTGEKPYVCRECGRGFTQKSDLIKHQRTHTGEKPYVCRECGRGFTQKSVLIKHQRTHTGEKPYVCRECGRGFTQKSVLIKHQRTHTGEKPYVCRECGRGFTAKSVLIQHQRTHTGEKPYVCRECGRGFTAKSNLIQHQRTHTGEKPYVCRECGRGFTAKSVLIQHQRTHTGEKP-YVCRECGRGFTAKSVLIQHQRTHTGEKPYVCRECGRGFTQKSNLIKHQRTHTGEKPYVCRECGWGFTQKSDLIQHQRTHTREKP--------------------------------------------------------
  PRDM7_musMus2  ....................................................................................................................................................................................................................................................................................................A..V..Q.................R......N..K......G...YVCRECGWGFTQKSDLIQHQRTHTREK.............................
  PRDM7_musMus2  ....................................................................................................................................................................................................................................................................................................A..V..Q.................R......N..K......G...YVCRECGWGFTQKSDLIQHQRTHTREK.............................
Line 58: Line 121:
  PRDM7_ratNor    R.......C.......S...R........I........S.K.D..K......E....I......................E....I...........................I............D.........E....I............S..R...........I.....L...Q..N..R.L.........I.....L...R.................I.....Q.L.W..S...............I.........W..S.........V...--------------------------------------------------------........................................................
  PRDM7_ratNor    R.......C.......S...R........I........S.K.D..K......E....I......................E....I...........................I............D.........E....I............S..R...........I.....L...Q..N..R.L.........I.....L...R.................I.....Q.L.W..S...............I.........W..S.........V...--------------------------------------------------------........................................................


Laurasiatheres have a quite different history of gene duplication. Most species simply retain the ancestral condition of a single PRDM7 gene adjacent to GAS8. Vampire bat (but not brown bat) has an additional segmental duplication to a novel location that is today a pseudogene. Dog inexplicably has a PRDM7 pseudogene but no PRDM9 despite a rather complete assembly, even as other carnivores (cat, panda, ferret), insectivores, perissodactyls and early-diverging artiodactyls (alpaca, pig, dolphin) have a conventional single PRDM7 gene (though some of these have too few zinc fingers to recognize sufficiently long dna motifs to delimit hotspots).  
Laurasiatheres have a quite different history of gene duplication. Many clades simply retain the ancestral condition of a single PRDM7 gene adjacent to GAS8. Vampire bat (but not brown bat) has an additional segmental duplication to a novel location that is today a pseudogene. Insectivores, perissodactyls and early-diverging artiodactyls (alpaca, pig, dolphin) have a single PRDM7 gene in ancestral syntenic location (when determinable), though some genes have too few zinc fingers to define genome-specific hotspots in the manner of primates.
 
The dog reference genome inexplicably has a PRDM7 full-length pseudogene yet no PRDM9-like gene duplication despite a rather complete assembly, and possibly stable recombination hotspots according to a new [http://genome.cshlp.org/cgi/pmidlookup?view=long&pmid=22006216 low resolution study]. This is not an inbreeding artifact because five other species of canids share a frameshift within the early zinc finger of exon 7. Red fox (the outgroup) lacks this frameshift as well as a later shared frameshift in the third terminal zinc finger (thus timing them on the canid gene tree) but has an exon 7 frameshift of its own.
 
Here it should be stressed that partial pseudogenization can only be ruled out in chimeric domain proteins by sequencing the entire gene, not done here. However based on several early inactivating mutations in dog, these canid PRDM7 are unlikely to be even partially functional. Thus some other mechanism must suffice for initiation of meiotic recombination in canids. Recall PRDM9 in humans explains only 40% of the events so a second mechanism (not necessarily that of canids) seem operative there too.


Carnivores -- but not bats or horses -- have an intervening cadherin gene between GAS8 and PRDM7. This rare genomic event is not the ancestral state but is unfortunately too restricted in distribution to resolve the status of [[Pegasoferae%3F|Pegasoferae]]:
PRDM7 from gray fox, the ultimate canid outgroup, unfortunately has not been sequenced and may still be functional. The alignment of exon 7 in 31 Laurasiatheres below shows rather few substitutions relative to the outgroup, establishing that pseudogenization is relatively recent. Thus PRDM7 was likely lost in canids around 8 myr ago and so was presumably functional during the 40 myr since divergence.


geneSpp        id  chr          strand    start      stop  span
However it is not so clear that PRDM7 is functional (in the sense of marking up meiotic recombination sites with a terminal zinc finger array) in the next outgroup (mink + bear). The first two repeats in the three species available have lost key conserved repeat residues for zinc binding and may be dysfunctional. Panda has an additional 3 repeats but this is still not sufficient to provide a recognition system of sufficient specificity as seen in mouse and human (or for that matter cat or bat). The ends of the mink and ferret PRDM7 genes are not satisfactorily covered by contigs so the number of zinc fingers there cannot be determined.
PRDM7_ailMel  100%  GL193502        +-    628987    644235  15249
CAD1_homSap    73%  GL193502        +-    620344    624223  3880
GAS8_homSap    91%  GL193502        ++     594843    609901  15059
PRDM7_canFam  82%  chr5            ++  66560684  66567275  6592
CAD1_homSap    75%  chr5            ++  66571832  66581008  9177
GAS8_homSap    93%  chr5            +-  66587321  66604940  17620
PRDM7_felCat  100%  Un_ACBE01450414  +-      10493    13105  2613
CAD1_homSap    75%  Un_ACBE01450414  +-      3902      4280    379
PRDM7_equCab  100%  chr3            +-  36378853  36387224  8372
GAS8_homSap    93%  chr3            ++  36348528  36361906 13379


Pecoran ruminants (cow, sheep, muntjak) present a vastly more complicated situation. Cows -- even in the revised assembly -- have a PRDM7 pseudogene adjacent to GAS8 accompanied by 5 PRDM9 copies in other locations (all distinct from the primate cadherin secondary site). This is neither a recent development nor an artifact of domestication because a similar expansion is seen in provisional assemblies of sheep and muntjak (wild deer) but not dolphin, pig or vicuna, dating the expansion to stem pecoran ruminant. It is not clear which if any of these gene copies play a role in recombination -- the primate paradigm for meiotic markup is not immediately applicable to these species.  
Carnivores -- but not bats or horses -- have an intervening cadherin gene (CAD1) between GAS8 and PRDM7 which should not be confused with the weakly related cadherins (CAD10 and CAD12: 36% identity to CAD1) flanking primate PRDM9. This rare genomic event does not represent the ancestral state but is unfortunately too restricted in distribution to resolve the status of [[Pegasoferae%3F|Pegasoferae]].


[http://www.ncbi.nlm.nih.gov/pubmed/17322288 Atlantogenata] (Afrotheres + Xenarthra) have yet another history. Elephant (best of  five available assemblies) has three loci: an old PRDM7 pseudogene in GAS8 syntenic position, a seemingly functional PRDM9a with 12 terminal zinc fingers and novel syntenic location, and a fairly recent pseudogene PRDM9b. A dna assembly from fossil mammoth shows the same three genes with the same pseudogenization pattern. Although the sequences diverged separately after speciation, three identical inactivating mutations occur in both mammoth and elephant but not hyrax, thus dating gene loss relative to their speciation. This is shown for exon 9 below:
Given the well-established phylogeny of [http://www.nature.com/nature/journal/v438/n7069/full/nature04338.html canids] within [http://wsbs-msu.ru/res/DOC185/carnivora.pdf carnivores], the first indel in the alignment below (a deletion of 4 amino acids) is perplexing because it unifies mink with canids which do not share a common ancestor to the exclusion of other carnivores according to the species tree. The tree topology may be slightly wrong (despite overwhelming statistical support), with mink sistered to canids, not bears. An early mutation followed by lineage-sorting seems implausible as the heterozygous state would have had to persisted 6 myr until mink/bear divergence. Convergent evolution -- an independent deletion in mink of the same length at the same site (respectively an independent insertion in bear) -- seems equally implausible unless special predisposing local dna attributes exist. Sequencing error can be ruled out since two mink, bear and panda, and seven canids provide a consistency check. The second indel -- a single amino acid insertion (serine) in ancestral canid -- is fully consistent with the gene tree. Given that this portion of exon 7 seems under little selectional constrain, neither indel is likely to have functional significance.  


  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGR 1 PRDM9_conSeq  wildtype consensus reference
[[Image:CanidExon.jpg|left]]
  <font color = green>1 YVNCIQD*KEQNLVAFQYHRQIFHWTCCTIRPGCELLVWYGDNYSQELGIKWGSR<font color = red>*</font>KKELTSGT 1 PRDM9b_loxAfr gg bad acceptor, early stop codon,  internal stop codon</font>
<br clear=all>
Difference alignment of exon 7 relative to dog shows relatively few substitutions given the rapid overall rate of evolution of the inter-domain region:
PRDM7_canFam    EPNPEIHPCPSCSLAFSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTT----CEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
PRDM7_canLup    ................................................................................................................................................
PRDM7_canAur    ................................................................................................................................................
PRDM7_lycPic    ...................................................................S..........................................................................M.
PRDM7_canMes    ....................................Q...........................................................................................................
PRDM7_speVen    ....................................-................................................R..................................S.......................
PRDM7_vulVul    ......Y.......S........................I....Q....................C........................K.....................................................
PRDM7_neoVis    ..K.........T.............KC...........AG...Q.E.....E..H.........S...K.....V..S....LE......N....P.......G....Y..M.E..S.T.-......E.E...M....S.M..
PRDM7_musPut    ..K.........T..............R...........AG...Q.E.....E..H.........N...K....DV..S....LE.....KN....PI..E...G....Y....E....T.-......E.....M....S....
PRDM7_ailMel    ..K................................S.K.AS...QQE.....H...........H....K.....V.......L.............S......RSSTV...M.E......-......E.....M....SG...
PRDM7_felCat    ..Q.D..R.................V.CK.S..S..Q..A.K..Q.EN....D...........HS...K..C..V...SR..L...K...............MGSSRV...M.E.G..M.-.N..S.......M....S..V.
PRDM7_equCab    ..KL.....................V.R........GT.A.N.LQ.E..S..D......-....HS.K.K.HS..V...S...L.K......P....Y.P...MENFRMR.R.ME.K..I.-R.V.........LEMR.S.NV.
PRDM9_pteVam    ..K...............R......MKRS....S..G..A.K.LQS.E.H.ED.S......T..CS...K.E...V...S..MLERNG..K......K.P...MGSPRE..RMMEA...TS-..V...N...SSV...AS..V.
PRDM7_pteVam    ..K.A............G.......MKRS....S..G..A.K.LQS.E.H.ED.S...--.N..RS...K.E...V...S...LERN...K.F....K.P...MGSPREY.RMMEA...TS-..V...N...SSV...AS..VI
PRDM7_myoLuc    ..K..........V.....T.....GKR....E...GAPAGN.LQSEE.G.ER.......QTG.HG...K.E...V.G.S...L.R....GT...SFK.PNRHMGSSSER.R.RE....T.-.NV.HKN.....V..KRSKSVT
PRDM9a_bosTau  .SK.K....A...............VQ......T.L.P.A.DYLQ.E.....S.....R-Y...HSPS.KPE.R.V.D.PQ..L....LK.....S.YSPR..MGASGVH.R.TE.-..TS-..P.........M.A.VSG..K
PRDM9b_bosTau  .SK.K....A...............VQR.....T.L.P.A.D.LQ.E.....N.....R-Y...HSPS.KPE.RKA.D.PQ..L...KLK.....S.YSPR..VGRSGVH.R.TE.-..TS-............M.A.VSG..K
PRDM9d_bosTau  ..K.K.Y..A..C.S..........VQR.......L.P.IGD.LQ.E.....S.....R-Y...HSLS.KPE.R.P...PH..L.G..PK...T.S.Y.P...MGGSEVH.RMTE.-..TS-............MEA.VSG.V.
PRDM9e_bosTau  ..K.K.Y..A..C.S..........VQR.......L.P.IGD.LQ.E.....S..E..R-Y...HSLS.KPE.R.P...PH..L.G..LK...T.S.Y.P...MGGSEVH.RMTE.-..TS-............MEA.VSG.V.
PRDM9a_oviAri  ..K.K....A....S..........VQRS......L.P.P.D.LQ.E.....K.....R-Y...HSPS.KPE...P...PH..L.G..LK...T.S.YTP...MGGSEVH.KMTE.-..TS-......N.....MEA.VSG.V.
PRDM9b_oviAri  .LK.K....A...P..........YVQP.......L.P.A.D.LQ.E.....N..E..--Y...HSPS.KPE.CKA...PPW.L..MSV-...M.S.YSP...MRGSETHYRMTE.-..TS-.......I....M.T.VSG..K
PRDM9d_munMun  ..K.K....A....T..........IQCS..P.T.L.P.E.DLLQ.E.....N.....R-Y...HSPS.KPE.H.A.D.PQ..L....LK.....S.CSPR..MGGSGVH.RMTE.-..TS-.....G...T.LT.A.VSG.MK
PRDM9c_munMun  ..K.K....A...............IQRS....T.L.P.E.DLLQ.E.....N...--R-F...H.PS.---------.PQ..L....LK.....S.YSPR..MGGSGVH.LMTE.-..TS-H........T.LM.A.VSG.M.
PRDM9b_munMun  ..K.K....A...............IQRS....T.L.P.E.DLLQ.E.....S...--R-Y...HSPS.KPE...A.D.PQQ.L....LK.....S.YSPG..MGGSGVH.RMTE.-..TS-.........T.LT.A.VSG.M.
PRDM9a_munMun  ..K.K....A......T........IQRS..A.T.L.P.E.NLLQ.EH....S...--R-Y...HSLS.KPE...A.D.PQ..L....LK.....S.YSPG..MGGSGVH.RMKD.-..TS-.........T.LT.A.VSG.M.
PRDM9a_odoVir  ..K.K....A...............IQCS....TP..P.E.DLLQ.E.....N...R---Y...HSPS.KPE...A.D.PQ..L....LK.....S.YSPG..MGGSGVH.---------------------------------
PRDM7_turTru    D.K.K.Q..G..........I....V.CS....V...T.A.DRVQ.E.....Y..R...-Y...HS.SNKPEC..V...S...L.R..LG.......SSP...MGSSRAH.RMMEAG..T.-..V...A....LI.A.VS.VVK
PRDM7_susScr    ..K.K..............R.....V.RS....S...A.A.RGLQ.EG...DN.Q...P-YP..HS.DGTSES.DV..GS..FLERR.L.KT...S.YAPE..MRSSRVR.RMTE......-..V......T..TVA.ES----
PRDM7_lamPac    --E.K.YL.................VK..........TAAGR.LE.E.....N..E...-...QHS...KPE...A...S..FL.R..L....G...YSH...MGNSRVHDRMIE....T.-..V..K......TWA.VS.TVE
PRDM7_sorAra    ..K...Y...C......N.....R.V..S...L...GT.A.T.PKSVNF...D...W..HSDPDEP...KLENHKS.G.S.....RMG.K...T..PNLRSSKMGSSNKH.T.MDKINTG--..E..K..YRV.A.I..P....
PRDM7_echEur    ..K..............A....N..VK.S.......GT.T.KQPQVEN..LSN....K.-..NF.NQH.STES..AI.K....L.M.K.KT..NG..KLP.E.IGSSREH.KTKE..-.NSC..M.....SE.LV.L..S..V-
PRDM9_homSap    ..K.........C............V.R..S..NF.GP.A.KLLQ.EN....D...E..-YP..HSR..KT....I...S.L.N.RTW..E......S.P...MGSCRVGKR.ME..SRT.-..V..GN.....V...IS..AK
 
PRDM7_canFam VKYRGCGRGFNDRSHLSRHQRTHTGE<font color=blue>N</font>P YVCRECGRGFIHRTNLIIHQRTHTGEKP YVCRECG<font color=magenta>r</font>GFIQRSNLSIHQRTHTGEKP
PRDM7_canLup VKYRGCGRGFNDRSHLSRHQRTHTGE<font color=blue>N</font>P YVCRECGRGFIHRTNLIIHQRTHTGEKP YVCRECG<font color=magenta>r</font>GFIQRSNLSIHQRTHTGEKP
PRDM7_canAur VKYRGCGRGFNDRSHLSRHQRTHTGE<font color=blue>N</font>P YVCRECGRGFIHRTNLIIHQRTHTGEKP YVCRECGRGFTQRSTLNEHQRTHTEEKP
PRDM7_lycPic VKYRGCGRGFNDRSHLSRHQRTHTGE<font color=blue>N</font>P YVCRECGRGFTHRTNLIIHQRTHTGEKP YVCRECG<font color=magenta>r</font>GFIQRSNLSIHQRTHTGEKP
PRDM7_canMes VKYRGCGRGFNDRSHLSRHQRTHTGE<font color=blue>N</font>P YVCRECGRDFTHRTNLIIHQRTHTGEKP YVCRECG<font color=magenta>r</font>GFIQRSNLSIHQRTHTGEKP
PRDM7_speVen VKYRGCGRGFNDRSHLSRHQRTHTGE<font color=blue>N</font>P YVCREC<font color=magenta>g</font>RGFTHRTNLIIHQTTHTGEKP YVCRECG<font color=magenta>r</font>GFIQRSNLSIHQRTHTGEKP
PRDM7_vulVul VKYRGCGRGFNDRSHLSRHQRTHMGE<font color=blue>N</font>P YVCRECGRGFTHRTNLIIHQRTHTGEKP YVSWECGRSFTRRSNLITHQRTHTGEKP
PRDM7_neoVis VKYRG<font color=red>S</font>GQGFDDRSHLSRHQRTHKEEKP <font color=blue>S</font>V<font color=red>G</font>KE<font color=red>L</font>RREFIHKSVLVTHQRTHT<font color=red>E</font>ALP
PRDM7_musPut VKYRG<font color=red>S</font>GQGFDDRSHLSRHQRTHKEEKP <font color=blue>S</font>V<font color=red>G</font>KE<font color=red>P</font>RREFIHKSVLVTHQRTHTGEKP YVCRECGRGFTQRSHLIRHQR
PRDM7_ailMel VKYRGCGR<font color=red>D</font>FSDRSHQSGHQRRH<font color=red>-Q</font>KKP <font color=blue>S</font>VCKK<font color=red>V</font>KREFSHKSVLITHQRTHTGEKP YVCRECGRGFTQRSNLIRHQRTHTGEKP
PRDM7_felCat IKNRGC<font color=red>E</font>QGFNDRSHFSRHQRTHKEEKP <font color=blue>S</font>VCNE<font color=red>F</font>RRDFSHKSALITHQRTHTGEKP YVCRECGRGFTQRSNLFRHQRTHTGEKP
PRDM7_equCab VQYGGCGRGFNDRASLIKHQRTHTGEKP YVCRECEQGFTQKSSLIAHQRTHTGEKP YVCREC<font color=red>E</font>QGFSEKSHLIRHQRTHTGEKP
PRDM7_pteVam VKYGGC<font color=red>E</font>HGFDDGSHLIMHQRTHSGEKP FVCRECERGFSKKSNLITHQRTHSGEKP FVCREC<font color=red>E</font>RGFTRKSSLITHQRTHSGEKP
PRDM9_pteVam VKYGGCGHGFDDGSHFIRHQRTHSGEKP FVCRECERGFNEKSSLTMHQRTHSGEKP FVCREC<font color=red>E-</font>GFSVKSSLIRHQRTYSGEKP
PRDM7_myoLuc IKHGGCGQGFNDGSHIDTHQRTHSGEKP YICRECGGFTHKSDL IRHQRTHSQENP YVCRECGRGFRDRSTLITHQRTHSGEKP
 
  gene_genSpp  %id  chr          strand    start      stop  span
<font color=blue>PRDM7_canFam</font>  82%  chr5            ++  66560684  66567275  6592 <font color=blue>dog</font>
<font color=blue>CAD1</font>          75%  chr5            ++  66571832  66581008  9177
<font color=blue>GAS8</font>          93%  chr5            +-  66587321  66604940  17620
<font color=blue>PRDM7_ailMel</font>  100%  GL193502        +-    628987    644235  15249 <font color=blue>panda</font>
<font color=blue>CAD1</font>          73%  GL193502        +-    620344    624223  3880
<font color=blue>GAS8</font>          91%  GL193502        ++    594843    609901  15059
<font color=blue>PRDM7_felCat</font>  100%  Un_ACBE01450414  +-      10493    13105  2613 <font color=blue>cat</font>
<font color=blue>CAD1</font>          75%  Un_ACBE01450414  +-      3902      4280    379
<font color=blue>GAS8</font>       
<font color=red>PRDM7_equCab</font>  100%  chr3            +-  36378853  36387224  8372 <font color=red>horse</font>
<font color=red>GAS8</font>            93% chr3            ++  36348528  36361906  13379
<font color=red>PRDM7_pteVam</font>  100%  ABRP01250178    +-                            <font color=red>bat</font>
<font color=red>GAS8</font>                ABRP01250178    ++
<font color=red>PRDM7_myoLuc</font>  100%  AAPE02062260    +-                            <font color=red>bat</font> 
<font color=red>GAS8</font>                AAPE02062260    ++
 
Pecoran ruminants (cow, sheep, muntjak) present a vastly more complicated situation. Cows -- even in the revised assembly -- have a PRDM7 pseudogene adjacent to GAS8 accompanied by 5 PRDM9 copies in other locations (all distinct from the primate cadherin secondary site). This is neither a recent development nor an artifact of domestication because a similar expansion is seen in provisional assemblies of sheep and muntjak (wild deer) but not dolphin, pig or vicuna, dating the expansion to stem pecoran ruminant within artiodactyls. It is not clear which if any (or several acting in tandem) of these gene copies play a role in recombination -- the primate paradigm for meiotic markup is not immediately applicable to these species.
 
[http://www.ncbi.nlm.nih.gov/pubmed/17322288 Atlantogenata] (Afrotheres + Xenarthra) have yet another history. Elephant (best of the five available assemblies) has three loci: an old PRDM7 pseudogene in GAS8 syntenic position, a seemingly functional PRDM9a with 12 terminal zinc fingers and novel syntenic location, and a fairly recent pseudogene PRDM9b. Extinct mammoth shows the same three genes with the same pseudogenization pattern. Although the sequences diverged separately after speciation, three identical inactivating mutations occur in both mammoth and elephant but not hyrax, thus dating gene loss within afrothere speciation. This is shown for exon 9 below:
 
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGR 1 PRDM9_conSeq  wildtype consensus reference
  <font color = green>1 YVNCIQD*KEQNLVAFQYHRQIFHWTCCTIRPGCELLVWYGDNYSQELGIKWGSR<font color = red>*</font>KKELTSGT 1 PRDM9b_loxAfr gg bad acceptor, early stop codon,  internal stop codon</font>
  <font color = green>1 YVNCTRDKEEQNLVAFQYHRQIFYWTCHTIQPGCelLVWYGDNYGQELGIKWGSR<font color = red>*</font>KKELTSGT 1 PRDM9b_mamPri gg bad acceptor, two 1 bp deletions, internal stop codon</font>
  <font color = green>1 YVNCTRDKEEQNLVAFQYHRQIFYWTCHTIQPGCelLVWYGDNYGQELGIKWGSR<font color = red>*</font>KKELTSGT 1 PRDM9b_mamPri gg bad acceptor, two 1 bp deletions, internal stop codon</font>
  <font color = green>1 YVRRARDTEERNLVAFQYHRQIFYRTCCTVRPGCELLVWRGAEDSQALG    SRRTMELTSQK 1 PRDM9b_proCap pseudogene with 4aa deletion</font>
  <font color = green>1 YVRRARDTEERNLVAFQYHRQIFYRTCCTVRPGCELLVWRGAEDSQALG    SRRTMELTSQK 1 PRDM9b_proCap pseudogene with 4aa deletion</font>
Line 93: Line 227:
  <font color = blue>1 YVNCAWDDKEQNLVAFQYHRQIFYRTCRTIRPGCELLVWYGDEYGQELGIKWGSKWKKEFMTGT 1 PRDM7_dasNov  wildtype</font>
  <font color = blue>1 YVNCAWDDKEQNLVAFQYHRQIFYRTCRTIRPGCELLVWYGDEYGQELGIKWGSKWKKEFMTGT 1 PRDM7_dasNov  wildtype</font>


=== Marsupials and platypus: the mystery of exon 5 ===
=== Correct gene tree for PRDM7 and its spin-off PRDM9s ===
 
[[Image:PRDMLtree.gif|left]]
 
At left  is the gene tree summarizing the evolutionary relationships of the 80-odd PRDM7/PRDM9 homologs currently available from GenBank genome and targeted sequencing projects. Since the mammalian species tree is well-known, the gene tree can be clamped to it rather than derived ab initio (which won't work because some loci that must be included are pseudogenes in various states of degeneration.
 
The gene tree shows PRDM7 (the fundamental gene here) spinning off various copies of itself at various times in various lineages over the last 102 million years of placental mammal evolution. Each spin-off has been offset and given a slightly different nomenclature to remind us that the primate PRDM9 gene duplication (called PRDM7L9 in the figure) should branch off at old world monkey and bear no special relationship to unrelated spin-offs in artiodactyls and afrotheres. The genes without offsets are conventional orthologs in the GAS8 PRDM7 qTer syntenic position, which has been stable for several billion years of summed branch length geologic time.
 
These spin-offs had different subsequent histories. In some lineages, like primates, the spin-off PRDM9 took over from a pseudogenized parental gene PRDM7; in others, it became a pseudogene; in others, both genes seem to have persisted.
 
Note neither carnivores nor rodents ever had a gene duplication of PRDM7. These species do not now contain a counterpart to human PRDM9 and never did. There is no evidence whatsoever for surviving pseudogene debris between CDH12-CDH10 (the syntenic location of all primate PRDM9), despite the extreme sensitivity possible with localized tBlastn searching.


Tracking PRDM7 back to marsupials and beyond presents significant uncertainties. The three available marsupial assemblies are seriously incomplete, causing gene prediction problems when exons are spread over multiple small contigs, which further do not provide syntenic validation. Domain linker regions have weak amino acid conservation and so fail to give blast matches to placental queries, a problem exacerbated for short exons and pseudogenes (opossum). No expression data exist to bridge uncertain regions, meaning missing exons cannot be located nor exons in different contigs definitively connected. Because the domains here occur widely in other combinations in other proteins, a full length marsupial sequence is critical to testing whether the domain shuffle resulting in PRDM7 and PRDM9 was a placental innovation.
The fact that neither dog nor mouse has PRDM9 is not about naming conventions. It is about shifting functionality and shifting mechanisms for initiating meiotic recombination over evolutionary time. To discuss that intelligently, the genetic loci involved are best given names that are in themselves informative about gene evolutionary relationships, ie be compatible with their placement in the gene tree. That in a nutshell it is wrong to call the dog homolog PRDM9. In fact, it clusters by its synteny with the PRDM7s (including human) whereas the primate PRDM9s are off on their own subtree. (Put another way, if this is dog PRDM9, then where is dog PRDM7?)


The most favorable situation occurs in the Monodelphis domestica assembly. Here eight of the ten expected exons (1 and 5 are missing) are readily located in a single assembly region of length 33,449 bp with a single gap (estimated at 270 bp). It is not surprising that exon 1 cannot be located because it has no known domain or reason for fixed length and is diverging rapidly in placentals. However locating exon 5 is important for distinguishing between two adjacent small genes evolving into a single fused gene only in the placental branch versus a full length gene already present in the last common ancestor.  
Human gene names are set by definition by HUGO and used exclusively in scientific journals by international agreement, the idea being to create a stable terminology (human genome is complete) and to avoid endless lab-specific synonyms, use of greek letters, roman numerals, subscripts, superscripts, upper/lower case, hyphens etc unsuitable for the bioinformatic era.


Unless exon 5 lies within the assembly gap, it should be locatable in the 25,548 bp separating exon 4 and exon 6 (of which 8,263 bp remains after application of [http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker RepeatMasker]). However blastx against a panel of 54 exon 5 sequences from placental mammal fails to give any suggestion of match, despite plausibly adequate length (all placental exon 5 sequences have 52 amino acids).
HUGO attempts to give full length paralogs (above a certain percent identity) the same base name followed by consecutive numbering. This is not done consistenly as seen from PRDM* which is a pseudo-family of 16 genes with only a small PR(SET) domain in common (or PRNP/PRND which as full length homologs should have been PRNP1 and PRNP2). Pseudogenes are  sporadically named. Despite the many flaws in HUGO names, it is unlikely that they will ever be significantly revised from where they are now.  


Gene prediction tools such as GenScan, NScan, Ensembl and Gnomon give useless results because they neglect comparative genomics: a few exons are correctly predicted but are otherwise embedded in time-wasting rubbish. The poor reliability of these tools does not justify GenBank clutter (eg XM_001369137) for their predictions. The 46-species whole genome alignment at UCSC (starting with PRDM7/9 'ProteinFasta' link at the description page) is a better starting point.
However the international agreement does not provide for official names or acronyms for the corresponding proteins and here the Wild West usage still prevails in journals. Just attaching a p as in PRDM9p to the HUGO name would work but people who work only at the protein level don't cooperate. However there is increasing pressure to standardize to allow computer mining of the biomedical literature. PubMed could require abstracts to contian a tag that would allow Blast searches against them (ie get around nomenclature variation). So far that hasn't happened.


Here it should be noted that exon 5 has not diverged especially rapidly from the last common ancestor of placentals. Aligned to human, the full range of sequences has overall  identity of 69%. Exon 5 has a number of invariant and semi-invariant residues, only possible over this time span if maintained by selective pressure. Thus it has some function even though it contains no known Pfam domains and has no crystallographic structure match. Because exon 4 has a splice donor of phase 0 and exon 6 a splice acceptor of phase 2, exon 5 in marsupials must take the form 0 xxxxxxxx 1 to conserve reading frame. This rules out non-use of exon 5 in marsupials (alternative splicing) followed by mutational decay to unrecognizability.  
While human gene names are by definition correct, their underlying gene models are not. HUGO does not involve itself in gene curation but simply defers to a RefSeq at NCBI (which has no formal mechanism to correct errors). There are legitimate issues involving the significance, if any, of alternative splices and exon skipping and when something is a pseuogene. Thus human olfactory genes are difficult to sort out; in folate metabolism, a former DHRF pseudogene got upgraded to DHFL1 only in Oct 2011.


The opossum gene is peculiar in that 7 of the 8 exons available are quite conventional in sequence but the terminal zinc finger exon is completely broken up by frameshifts and stop codons and barely recognizable. The other exons return only PRDM7/9 as significant matches when back-blasted against the human genome establishing that they have not been confused with the many hundreds of partial homologs with KRAB, SSXRD, PR (SET) or C2H2 domains.
All of the above just applies to humans, no other vertebrates. Mouse has its own official gene nomenclature committee (based at Jackson Laboratories). Here lower case is used for orthologs of HUGO gene names when possible (eg Prdm7) which doesn't scale to the other 5400 mammals.


The Sarcophilus harrisii assembly is missing the same two exons but has a conventional terminal exon with an intact zinc finger region of seven repeats (with two distal frameshifts however). Here exons 2 occurs in contig AFEY01202902 and exons 3-4 in AFEY01156721 with 1,436 bp left over to host exon 5; exons 6-10 are found in a third contig AFEY01386448 with 8,331 bp available upstream for exon 5. It is not known whether these contigs would be adjacent in more complete assembly.The six exons comparable between tasmanian devil and opossum are 82% identical to each other as proteins and 67% identical to those of human, not indicative of anomalous or especially rapid evolution in the context of entire proteome rates.  
So how should genes be named in other vertebrates? Note humans have lost quite a few genes relative to other species (120 or more relative to last common ancestor with chicken, including whole subfamilies of opsins). So those genes cannot inherit names from HUGO human nomenclature unless it is ghosted forward to include lost genes.


The Macropus eugenii (wallaby) assembly is least complete, with no contig containing more than a single exon. Here exons 1, 4, 5 and 8 are missing altogether but the terminal zinc finger exon is intact with 7 C2H2 domains. It is worth noting that the exon 10 is so long and distinctive with its phase 2 reading frame and early zinc finger that there is no possibility of confusing it with those of homologs (HKR1, ZNF133, ZNF169, ZNF343, ZNF589 in human).
However in other mammals, simple 1:1 syntenic orthologs to human genes can be given the same name (eg dog or cat or panda PRDM7). This may covers 15,000 genes, a good start. For a segmental  translocative duplication to a different chromosome like the PRDM7 -> PRDM9 case, PRDM7 is the parent gene and human PRDM9 the secondary derived feature. The syntentic gene in old world monkeys can safely be called PRDM9 as well. PRDM9 never existed in Carnivora and was not lost. Use of PRDM9 there would require a strange and different type of ghosted nomenclature than for lost genes.


If marsupials had a markedly (or even totally) different exon 5 of form 0 xxxxxxxx 1, it should emerge from a tblastx comparison of the regions between exons 4-6. However no plausible candidate emerges.  This implies orthology despite the assembly gaps and missing exon 5, ie the last common ancestor to marsupials and placentals had a full length PRDM7-type gene.  It is uncertain whether these should be connected up into a single gene with the later exons -- the whole issue here is timing of the final gene shuffle.
So what to call the extra copies of PRDM7 in elephant? Recall they have an old PRDM7 pseudogene in GAS8 syntenic position, a fairly recent retroprocessed pseudogene, and a seemingly functional copy with 12 fingers which has nothing to do with the human PRDM9 syntenic location.  


The situation in platypus is curious. Only distal exons 6-10 can be reliably recognized in the current assembly, ie  KRAB, SSXRD and exon 5 are missing but the knuckle, PR and zinc finger domains are present with 3-4 repeat units. However the early zinc finger in the last exon is not present. Yet the best backblast to human is still PRDM7/9. These exons occur in two tandem copies on the same strand but differ significantly from each other and so do not represent mis-assembly duplications. The intervening area is gapless so the missing exons should be locatable if present.  
The name for this lineage-specific duplication in afrotheres should not confuse it with the unrelated lineage-specific duplication in primates (PRDM9) because these gene clades have no special relationship. Primate PRDM9 will branch out from the PRDM7 gene tree at primates, but the elephant copy from within afrothere PRDM7s .


However they are not. Upon blastx of the repeatmasked sequence against Genbank tetrapod sequences, no matches occur, other than three worthless platypus gene models
The nomenclature proposal here follows the HUGO template for the folate gene DHFR. That is, PRDM7 and numbered PRDM7L for Lineage-specific duplication. Here the primate PRDM9 would be PRDM7L9, elephant might be PRDM7L1, PRDM7L2, PRDM7L3, PRDM7L4 etc etc for the duplications in artiodactyls.
(XP_001507240, XP_001509482, XP_001509433) that predict earlier exons which however are wholly lacking in any support in any other species. Thus it appears that the gapless region does not contain any counterpart to exons 1-5 of theran mammals. Either this region has been lost in platypus or it is a stand-alone shorter distal version of PRDM7/9. The first identifiable exons begins with the expected phase 2 reading frame in both tandem copies and do not contain an in-frame methionine upstream prior to a stop codon. Hence there must be at least one earlier exon. However tblastx of the appropriate regions of repeatmasked marsupial and platypus again does not identify noteworthy peptide candidates.


Perhaps the corresponding ancestral region was shuffled together with a gene providing the proximal regions in the theran branch only, giving rise to the full length gene there. However tblastn queries of the platypus assembly, while locating numerous appropriate KRAB_A domains with the correct 0 xxxxxxxx 1 reading frame that backblast to other human proteins, do not find counterparts of the exon 1-5  region beyond exon 2. Hence there is no obvious donor for the proximal half of PRDM7/9.
The tree will need periodic revision as new mammalian genomes come in or as existing loci are re-interpreted. The Newick format that generates the tree is:


Given that the PRDM and zinc finger families are greatly expanded with extensive domain shuffling in mammals with difficulties already tracing back PRDM7/9 to marsupials and monotremes, it comes as no surprise that bird, lizard and frog genomes shed no further light on the evolution of this gene. The situation in non-placental mammals could theoretically be resolved by sequencing transcripts, but these are exceedingly rare for PRDM7/9 even in placentals and so will not emerge unless explicitly sought.
(((((((((((((PRDM7_homSap,PRDM7_panTro),PRDM7_gorGor),PRDM7_ponAbe),PRDM7_nomLeu),((PRDM7_macMul,PRDM7_macFas),PRDM7_papHam)),(((((._._.PRDM7L9_homSap,._._.PRDM7L9_panTro),._._.PRDM7L9_gorGor),._._.PRDM7L9_ponAbe),._._.PRDM7L9_nomLeu),((._._.PRDM7L9_macMul,._._.PRDM7L9_macFas),._._.PRDM7L9_papHam))),(PRDM7_calJac,PRDM7_saiBol)),PRDM7_tarSyr),(PRDM7_micMur,(PRDM7_otoGar,._._.PRDM7L8_otoGar))),PRDM7_tupBel),((((((PRDM7_musMus,PRDM7_ratNor),PRDM7_musMol),PRDM7_criGri),PRDM7_dipOrd),PRDM7_speTri),(PRDM7_oryCun,PRDM7_ochPri))),((((((((((((PRDM7_canFam,PRDM7_canLup),PRDM7_canAur),PRDM7_lycPic),PRDM7_canMes),PRDM7_speVen),PRDM7_vulVul),((PRDM7_neoVis,PRDM7_musPut),PRDM7_ailMel)),PRDM7_felCat),PRDM7_equCab),(PRDM7_myoLuc,(PRDM7_pteVam,._._.PRDM7L7_pteVam))),(((((((PRDM7_bosTau,._._.PRDM7L5_bosTau),PRDM7_oviAri),(PRDM7_munMun,PRDM7_odoVir)),((((._._.PRDM7L1_bosTau,._._.PRDM7L1_oviAri),._._.PRDM7L1_munMun),((._._.PRDM7L2_bosTau,._._.PRDM7L2_oviAri),._._.PRDM7L2_munMun)),(((._._.PRDM7L3_bosTau,._._.PRDM7L3_oviAri),._._.PRDM7L3_munMun),(._._.PRDM7L4_bosTau,._._.PRDM7L4_oviAri)))),PRDM7_turTru),PRDM7_susScr),PRDM7_lamPac)),(PRDM7_sorAra,PRDM7_echEur)))
,(((((((PRDM7_loxAfr,._._.PRDM7L2_loxAfr),PRDM7_proCap),(._._.PRDM7L1_loxAfr,._._.PRDM7L1_proCap)),PRDM7_echTel),(PRDM7_dasNov,PRDM7_choHof)),((PRDM7_macEug,PRDM7_monDom),PRDM7_sarHar)),PRDM7_ornAna));
<br clear=all>


  Conservation of exon 5 within placentals; invariant residues in <span style="color: #FF0000;">red</span>
  The genusSpecies acronyms are in alphabetic order below:
   
   
  PRDM9_homSap    GMPKASFSNE<span style="color: #FF0000;">S</span>S<span style="color: #FF0000;">LK</span>ELSRTANLLNASGSEQA<span style="color: #FF0000;">Q</span>KPVSPSGEASTSGQHSRL<span style="color: #FF0000;">K</span>L
ailMel Ailuropoda melanoleuca (panda)
  PRDM9_panTro    .......N.........GMP....T............P..............
bosTau Bos taurus (cattle)
  PRDM9_gorGor    .....................................P..............
calJac Callithrix jacchus (marmoset)
  PRDM9_ponAbe    .......N.........G.Q....T............P..........T..I
canAur Canis aureus (golden jackal)
canFam Canis familiaris (dog)
canLup Canis lupus (gray wolf)
canMes Canis mesomelas (black-backed jackal)
choHof Choloepus hoffmanni (sloth)
criGri Cricetulus griseus (hamster)
dasNov Dasypus novemcinctus (armadillo)
dipOrd Dipodomys ordii (kangaroo rat)
echEur Erinaceus europaeus (hedgehog)
echTel Echinops telfairi (tenrec)
equCab Equus caballus (horse)
felCat Felis catus (cat)
gorGor Gorilla gorilla (gorilla)
homSap Homo sapiens (human)
lamPac Lama pacos (llama) 
lycPic Lycaon pictus (painted dog)
macEug Macropus eugenii (wallaby)
macFas Macaca fascicularis (crab-eating
macFas Macaca fascicularis (crab-eating
macMul Macaca mulatta (rhesus) 
micMur Microcebus murinus (lemur)
monDom Monodelphis domestica (opossum)
munMun Muntiacus muntjak (muntjac)
musMol Mus molossinus (wild mouse)
musMus Mus musculus (mouse)
musPut Mustela putorius (ferret)
myoLuc Myotis lucifugus (bat)
neoVis Neovison vison (mink)
nomLeu Nomascus leucogenys (gibbon)
ochPri Ochotona princeps (pika)
odoVir Odocoileus virginianus (deer)
ornAna Ornithorhynchus anatinus (platypus)
oryCun Oryctolagus cuniculus (rabbit)
otoGar Otolemur garnettii (galago)
oviAri Ovis aries (sheep)
panTro Pan troglodytes (chimp)
papHam Papio hamadryas (baboon)
ponAbe Pongo abelii (Sumatran
pteVam Pteropus vampyrus (bat)
ratNor Rattus norvegicus (rat)
saiBol Saimiri boliviensis (squirrel monkey)
sarHar Sarcophilus harrisii (tasmanian devil)
sorAra Sorex araneus (shrew)
speTri Spermophilus tridecemlineatus (squirrel)
speVen Speothos venaticus (bush dog)
susScr Sus scrofa (pig)
tarSyr Tarsius syrichta (tarsier)
tupBel Tupaia belangeri (tree shrew)
turTru Tursiops truncatus (dolphin)
vulVul Vulpes vulpes (red fox)
 
=== Marsupials and platypus: the mystery of exon 5 ===
 
Tracking PRDM7 back to marsupials and beyond is problematic. The three available marsupial assemblies are seriously incomplete, causing gene prediction issues as exons are spottily represented and spread over multiple small contigs which cannot be tiled up into full-length genes, much less yield syntenic information. Because PRDM7/9 contain domains found in many other chimeric proteins, isolated exons cannot always be assigned correctly to their parent gene.
 
Further, some exons in PRDM7/9 have weak amino acid conservation and so fail to give definitive blast matches to placental queries, a problem exacerbated for short exons and decayed pseudogenes (opossum). No expression data exist to bridge uncertain regions, meaning missing diverged exons cannot be located. Because the domains here occur widely in other combinations in other proteins, a full length marsupial sequence is critical to testing whether the domain shuffle resulting in PRDM7 and PRDM9 was a placental innovation.
 
The most favorable situation occurs in the Monodelphis domestica assembly. Although exons 1 and 5 are missing, eight of the ten expected exons are readily located in a single assembly region of length 33,449 bp containing a single internal gap (estimated at 270 bp). It is not surprising that exon 1 cannot be located because it contains no known Pfam domain or reason for fixed length and diverges rapidly in placentals. However locating exon 5 is important for distinguishing between two adjacent small genes evolving into a single fused gene only in the placental branch versus a full length gene already present in the last common ancestor.
 
Unless exon 5 lies within the assembly gap, it should be locatable in the 25,548 bp separating exon 4 and exon 6 (of which 8,263 bp remains after application of [http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker RepeatMasker]). However blastx against a panel of 54 exon 5 sequences from placental mammals fails to give any suggestion of match in any species, despite plausibly adequate length (all placental exon 5 sequences have 52 amino acids).
 
Gene prediction tools such as GenScan, NScan, Ensembl and Gnomon give unsatisfactory results: a few exons are correctly predicted but are otherwise embedded in time-wasting rubbish. The poor reliability of these tools does not justify GenBank clutter (eg XM_001369137) providing their predictions. The 46-species whole genome alignment at UCSC (starting with PRDM7/9 'ProteinFasta' link at the description page) is a better starting point.
 
Here it should be noted that exon 5 has not diverged especially rapidly from the last common ancestor of placentals. Aligned to human, the full range of sequences has overall identity of 69%. Exon 5 has a number of invariant and semi-invariant residues, only possible over this time span if maintained by selective pressure. Thus it has some function even though it contains no known Pfam domains and has no crystallographic structure match.
 
Because exon 4 has a splice donor of phase 0 and exon 6 a splice acceptor of phase 2, the putative exon 5 in marsupials must take the form 0 xxx...xxx 1 to conserve reading frame. This rules out non-use of exon 5 in marsupials (alternative splicing) followed by mutational decay to unrecognizability. In the scenario of two adjacent genes not yet fused, the distal region would need a new exon containing the initial methionine and phase 1 splice donor because no iMet occurs in the extended reading frame of exon 6.
 
The opossum gene is peculiar in that 7 of the 8 exons available are quite conventional in sequence but the terminal zinc finger exon is completely broken up by frameshifts and stop codons and barely recognizable. It could not be used to initiate meiotic recombination, yet no substitute homolog is at hand. The other exons return only PRDM7/9 as significant matches when back-blasted against the human genome establishing that they have not been confused with the many hundreds of partial homologs with KRAB, SSXRD, PR (SET) or C2H2 domains. However human (and other placentals) could easily have lost even better blast matches since divergence from marsupials. Thus it remains unclear whether marsupials have a full length counterpart to placental PRDM7.
 
The Sarcophilus harrisii assembly is missing the same two exons but has a conventional terminal exon with an intact zinc finger region of seven repeats (with two distal frameshifts however). Here exons 2 occurs in contig AFEY01202902 and exons 3-4 in AFEY01156721 with 1,436 bp left over to host exon 5; exons 6-10 are found in a third contig AFEY01386448 with 8,331 bp available upstream for exon 5. It can't be established that these contigs are actually adjacent in the genome. The six exons comparable between tasmanian devil and opossum are 82% identical to each other as proteins and 67% identical to those of human, not indicative of anomalous or especially rapid evolution in the context of entire proteome rates.
 
The Macropus eugenii (wallaby) assembly is least complete, with no contig containing more than a single exon. Here exons 1, 4, 5 and 8 are missing altogether but the terminal zinc finger exon is intact with 7 C2H2 domains. It is worth noting that the exon 10 is so long and distinctive with its phase 2 reading frame and early zinc finger that there is no possibility of confusing it with the closest human homologs (HKR1, ZNF133, ZNF169, ZNF343, ZNF589). However, humans could have lost an even better homolog of this exon.
 
The gene adjacent to PRDM7 in mammals, GAS8, is an ideal probe, being single-copy and quite conserved in vertebrates. In the ancestral placental mammal, GAS8 and PRDM7 are convergently transcribed. Thus a marsupial contig containing the last exons of GAS8 might contain the last exon (or 3' UTR) of PRDM7. Even a partial exon or pseudogene remnant could be recognized with great sensitivity in such a contig. However none of the marsupial GAS8 contigs contain any information on PRDM7 or any other gene.
 
[[Image:PlatySxChr.gif]]
 
The situation in platypus and echidna is curious according to [http://www.ncbi.nlm.nih.gov/pubmed/21250543,19874722,19874721,19874720,19874719,19874718,19802707,19196046,18983263,18606124,18463302,18185981,18021405,17717721,17400006,17317965,16344965,15723783 18 recent articles]. Note first that the chain of ten X and Y chromosomes (which is unprecedented in mammals) segregates during meiosis into either an X chain or Y chain, requiring crossovers in the 9 paired pseudoautosomal regions. Homology of key genes is to chicken, not theran mammals whose sex chromosomes thus arose after divergence at 165 million years. As with meiosis initiation, sex chromosomes seem never to stop evolving.
 
It is not clear whether some form of PRDM7/9 is operative outside of placental mammal -- meiotic events have not been experimentally characterized to date in either marsupials or monotremes. Bird, alligator, and lizard (7 genomes) all lack candidate orthologs. Thus it is uncertain whether the massive restructuring of sex determination around this time correlates with the switchover to PRDM7/9 for meiotic recombination (in view of the sex chromosome recombination bottleneck) or is simply coincidental.
 
In terms of platypus PRDM7/9 candidate orthologs, only distal exons 6-10 can be reliably recognized in the current assembly, ie  KRAB, SSXRD and exon 5 are missing but the knuckle, PR and zinc finger domains are present with 3-4 repeat units. However the early zinc finger in the last exon is not present. Nonetheless, the best back-blast to human is still PRDM7/9. These exons occur in two tandem copies on the same strand but differ significantly from each other and so do not represent mis-assembly duplications. The intervening area is gapless so the missing exons should be locatable if present.
 
However they are not. Upon blastx of the repeatmasked sequence against Genbank tetrapod sequences, no matches occur, other than three worthless platypus gene models (XP_001507240, XP_001509482, XP_001509433) that predict earlier exons which however are wholly lacking in any support in any other species. Thus it appears that the gapless region does not contain any counterpart to exons 1-5 of theran mammals. Either this region has been lost in platypus or it is a stand-alone shorter distal version of PRDM7/9.
 
The first identifiable exons begins with the expected phase 2 reading frame in both tandem copies and do not contain an in-frame methionine upstream prior to a stop codon. Hence there must be at least one earlier exon. However tblastx of the appropriate regions of repeatmasked marsupial and platypus again does not identify noteworthy candidates.
 
Perhaps the corresponding ancestral region was shuffled together with a gene providing the proximal regions in the theran branch only, giving rise to the full length gene there. However tblastn queries of the platypus assembly, while locating numerous appropriate KRAB_A domains with the correct 0 xxx...xxx 1 reading frame that back-blast to other human proteins, do not find counterparts of the exon 1-5  region beyond exon 2. Hence there is no obvious donor for the proximal half of PRDM7/9.
 
Given that the PRDM and zinc finger families are greatly expanded with extensive domain shuffling in mammals with difficulties already tracing back PRDM7/9 to marsupials and monotremes, it comes as no surprise that bird, lizard and frog genomes shed no further light on the evolution of this gene. The situation in non-placental mammals could theoretically be resolved by sequencing transcripts, but these are exceedingly rare for PRDM7/9 even in placentals and so will not emerge unless explicitly sought.
 
Conservation of exon 5 within placentals; invariant residues in <span style="color: #FF0000;">red</span>
  PRDM9_homSap    GMPKASFSNE<span style="color: #FF0000;">S</span>S<span style="color: #FF0000;">LK</span>ELSRTANLLNASGSEQA<span style="color: #FF0000;">Q</span>KPVSPSGEASTSGQHSRL<span style="color: #FF0000;">K</span>L
  PRDM9_panTro    .......N.........GMP....T............P..............
  PRDM9_gorGor    .....................................P..............
  PRDM9_ponAbe    .......N.........G.Q....T............P..........T..I
  PRDM9_nomLeu    .................GA..................P..............
  PRDM9_nomLeu    .................GA..................P..............
  PRDM9_macMul    .......N.......V.GM.....T............P...R..........
  PRDM9_macMul    .......N.......V.GM.....T............P...R..........
Line 160: Line 401:
=== Comparative genomics: sequence availability ===
=== Comparative genomics: sequence availability ===


As of mid-July, 2011, some 62 PRDM7 and PRDM9 genes from 36 species can be recovered from placental mammal genome projects. The encoded proteins are compiled [http://genomewiki.ucsc.edu/index.php/Image:PRDM9refSeqs.pdf here] as tab-delimited pdf text that will paste cleanly into rows and columns of a spreadsheet such as excel, or below as exon-by-exon gene models in the [[Curated reference sequences]] section.  
As of Sept 2011, some 72 PRDM7 and PRDM9 genes from 45 species can be recovered from mammal genome projects. The encoded proteins are parsed into exons in the [[Curated reference sequences]] section. Due to gaps in coverage, full length gene models could not always be established.
 
There has been no gain or loss of introns -- all genes have the same identically phased ten exons. No retroprocessed (intronless) genes occur in any species despite transcription in germline tissues. However 83 of 710 expected exons could not be found for lack of coverage or (for marsupials and monotremes) possibly too much divergence.
 
In low coverage genomes, internal frameshifts and stop codons cannot easily be distinguished from sequence error even by consulting raw trace reads. However multiple disabling changes accompanied by an amino acid substitution pattern incongruent with conservation profile are strong evidence of pseudogenization, at least past the point of the first inactivating mutation. In chimeric proteins, the proximal region of the protein could continue to be functional.  


Of these 62 genes, 18 are pseudogenes in various states of degeneration. There has been no gain or loss of introns -- all genes have the same identically phased ten exons. No retroprocessed (intronless) genes occur despite transcription in germline tissues. However because mammalian assemblies all have gaps, 83 of 620 expected exons lack coverage or (with marsupials and monotremes) are too short or too diverged to be recognizable.  
Since typically only one individual of unspecified gender of a species is sequenced on just one of two relevant autosomal chromosomes, an aberrant gene could reflect a bad heterozygous allele, an atypical homozygous individual (who might have impaired meiosis), or a balanced polymorphism that advantageously reduces copy number. A population survey is necessary to distinguish between these possibilities and overall SNP variation. In some genes, the zinc finger array seems too short to have sufficient site specificity. However these are known to contract and expand in the two intensively studied species (mouse, human), so here too the sequence from a single individual can be misleading. Without this data, it can difficult to say whether a given PRDM7/9 locus is a pseudogene.


The table below shows the number of zinc fingers in the second column, phylogenetic clade in the third, and adjacent gene (synteny) in the fifth. The number and character of zinc fingers is quite variable in human populations and likely so in all mammals; the table provides that of the individual selected for reference genome project which may not be repesentative of the species.  
Supporting transcripts do not resolve the issue, first because pseudogene can continue being transcribed for millions of years after losing all functionality at the protein level and second because PRDM7 and PRDM9 are barely represented among the millions of mammalian transcripts at GenBank. That rarity might be explained by low levels of transcription in tissue types not widely used as experimental sources. However testis is frequently studied and one or more members of this gene family is essential for meiosis. This illustrates the futility of undirected transcript sequencing projects for determining the full coding potential of the genome. Global expression chips to date have not produced results here either.  


These zinc finger arrays have been corrected in low coverage genomes for common sequencing errors -- frameshifts and premature stop codons arising from nucleotide run length mis-calls (eg, ggggg read as gggg) -- though they could actually represent valid mutant alleles in the heterozygous state (assuming the gene essential for meiosis). Indeed, these errors seem far more common than in what is seen in housekeeping genes for the same genome.  
[[Image:MouseTranscripts.gif|left]]


Pseudgenes are sometimes obvious (large deletions, reading frame errors at multiple locations, stop codons in early exons, amino acid substitutions not corresponding to the conservation profile) but otherwise can be difficult to distinguish from assembly error or a bad allele of a usually intact gene in the population (possibly a balanced polymorphism that reduces copy number).  
The transcripts from mouse, rat and pig do not support the widely propagated concept that PRDM7/9 function solely in meiosis (which would limit them in effect to testis) as most transcripts arise elsewhere. In mouse, the PRDM7 role in meiosis has strong experimental support, yet many transcripts come from non-meiotic tissues. Human PRDM9 experimental transcripts mostly derive from a single unpublished 2011 project entitled "Exhaustive RT-PCR and sequencing of all novel TWINSCAN predictions in human" which unhelpfully pooled tissue from adrenal gland, bone marrow, brain, cerebellum, brain (whole), fetal brain, fetal liver, heart, kidney, liver, lung, placenta, prostate, salivary gland, skeletal muscle, thymus, thyroid, trachea, uterus, and spinal cord with testis.


A pseudogene can continue being transcribed for tens of millions of years after losing all functionality at the protein level. That is moot here because PRDM7 and PRDM9 are barely represented in the millions of mammalian transcripts at GenBank. That rarity might be explained by low levels of transcription in tissue types not widely used as mammalian mRNA sources. PRDM7/9 illustrate the futility of undirected transcript sequencing projects for determining the full coding potential of the genome. Global expression chips too have so far have produced no data.
<br clear=all>
Transcripts at GenBank on 22 August 2011 (est database):
<font color=blue>DB452778 PRDM9  homSap  testis
DB636359 PRDM9  homSap  testis
DB024448 PRDM9  homSap  testis
DB080053 PRDM9  homSap  testis
DT932634 PRDM9  homSap  pooled including testis
DT932633 PRDM9  homSap  pooled including testis
DV080525 PRDM9  homSap  pooled including testis
DV080526 PRDM9  homSap  pooled including testis
DV080328 PRDM9  homSap  pooled including testis
DV080173 PRDM9  homSap  pooled including testis
DV080174 PRDM9  homSap  pooled including testis
DV080327 PRDM9  homSap  pooled including testis
BU194881 PRDM9  homSap  melanotic melanoma
AL704902 PRDM9 homSap  not reported</font>
<font color=green>GU216230 PRDM7 musMus  testis
FJ212287 PRDM7  musMus  testis
HQ704390 PRDM7  musMus  testis?
HQ704391 PRDM7  musMus  testis?
CK032493 PRDM7  musMus  placenta
CJ235803 PRDM7  musMus  amnion
CN723438 PRDM7  musMus  4-cell embryo
BI737497 PRDM7  musMus  retina
BB642583 PRDM7  musMus  retina
BC012016 PRDM7  musMus  retina
BC023014 PRDM7  musMus  retina
BG288443 PRDM7  musMus  eye</font>
FM103467 PRDM7  ratNor  body fat
GO353654 PRDM7a bosTau  4-cell embryo
EF432551 PRDM7  bosGru  testis
BX673635 PRDM7  susScr  pooled including testis
CO991452 PRDM7  susScr  oviduct
EW469934 PRDM7  susScr  mucosal membrane


The transcripts from mouse, rat and pig do not support the widely propagated concept that PRDM7/9 function solely in meiosis (which would limit them in effect to testis) as almost all transcripts arose elsewhere. In mouse, PRDM7's role in meiosis has strong experimental support, yet all the transcripts come from non-meiotic tissues. Human PRDM9 experimental transcripts mostly derive from a single unpublished 2011 project entitled "Exhaustive RT-PCR and sequencing of all novel TWINSCAN predictions in human" which pooled tissue from adrenal gland, bone marrow, brain, cerebellum, brain (whole), fetal brain, fetal liver, heart, kidney, liver, lung, placenta, prostate, salivary gland, skeletal muscle, testis, thymus, thyroid, trachea, uterus, and spinal cord.
The table below shows the number of zinc fingers in the second column, phylogenetic clade in the third, and adjacent gene (synteny) in the fifth. The number and character of zinc fingers is quite variable in human populations and likely so in all mammals; the table provides that of the individual selected for reference genome project which may not be representative of the species.  


Transcripts at GenBank on 25 July 2011 (est database):
These zinc finger arrays have been corrected in low coverage genomes for common sequencing errors -- frameshifts and premature stop codons arising from nucleotide run length mis-calls (eg, ggggg read as gggg) -- though they could actually represent valid mutant alleles in the heterozygous state (assuming the gene essential for meiosis). Indeed, these errors seem far more common than in what is seen in housekeeping genes for the same genome.
DB452778 PRDM9  Homo    testis
DB636359 PRDM9  Homo    testis
DB024448 PRDM9  Homo    testis
DB080053 PRDM9  Homo    testis
DT932634 PRDM9  Homo    pooled including testis
DT932633 PRDM9  Homo    pooled including testis
DV080525 PRDM9  Homo    pooled including testis
DV080526 PRDM9  Homo    pooled including testis
DV080328 PRDM9  Homo    pooled including testis
DV080173 PRDM9  Homo    pooled including testis
DV080174 PRDM9  Homo    pooled including testis
DV080327 PRDM9  Homo    pooled including testis
BU194881 PRDM9  Homo    melanotic melanoma
AL704902 PRDM9  Homo    not reported
CK032493 PRDM7  Mus    placenta
CJ235803 PRDM7  Mus    amnion
CN723438 PRDM7  Mus    4-cell embryo
BI737497 PRDM7  Mus    retina
BB642583 PRDM7  Mus    retina
BG288443 PRDM7  Mus    eye
FM103467 PRDM7  Rattus  body fat
GO353654 PRDM7a Bos    4-cell embryo
BX673635 PRDM7  Sus    pooled including testis
CO991452 PRDM7  Sus    oviduct
CO991452 PRDM7  Sus    mucosal membrane
EW469934 PRDM7  Sus    mucosal membrane


The PRDM7 genes are all orthologous in the classical sense (as can be seen by adjacency to the unrelated gene GAS8) but various PRDM9 genes arose as different lineage-specific segmental duplications so are orthologous in a useful sense only when shared within a well-defined phylogenetic clade. There is currently no suitable nomenclature to distinguish these events (so they are all called PRDM9 here). In some species such as mouse, chromosomal rearrangements have scattered syntenic genes and orthology remains slightly uncertain but probably represents a simple descent from the single euarchontoglire PRDM7 gene.  
The PRDM7 genes are all orthologous in the classical sense (as can be seen by adjacency to the unrelated gene GAS8) but various PRDM9 genes arose as different lineage-specific segmental duplications so are orthologous within a delimited phylogenetic clade. There is currently no suitable nomenclature for different gene duplications in different clades of the same parental gene so they are just called PRDM9 here, with PRDM7 reserved to genes adjacent to GAS8. In some species such as mouse, chromosomal rearrangements have scattered syntenic relations and orthology remains slightly uncertain but the single gene in the genome probably represents simple descent from the single euarchontoglire PRDM7 gene.  


* <font color=blue>PRDM7</font>: genes with ancestral location GAS8 synteny
* <font color=blue>PRDM7</font>: genes with ancestral location GAS8 synteny
Line 225: Line 477:
  <font color=blue>  >PRDM7_tarSyr    -  prim  <font color = red>pseu</font>  gas8+  Tarsius      syrichta    (tarsier)      ABRT011082008</font>
  <font color=blue>  >PRDM7_tarSyr    -  prim  <font color = red>pseu</font>  gas8+  Tarsius      syrichta    (tarsier)      ABRT011082008</font>
  <font color=blue>  >PRDM7_micMur    8  prim  gene  gas8+  Microcebus  murinus      (lemur)        ABDC01433247</font>
  <font color=blue>  >PRDM7_micMur    8  prim  gene  gas8+  Microcebus  murinus      (lemur)        ABDC01433247</font>
  <font color=blue>  >PRDM7_otoGar   7 prim  gene  GAS8+  Otolemur    garnettii    (galago)        genome</font>
  <font color=blue>  >PRDM7a_otoGar  10  prim  gene  GAS8+  Otolemur    garnettii   (galago)        genome</font>
<font color=blue>  >PRDM7b_otoGar  8 prim  gene  GAS8+  Otolemur    garnettii    (galago)        genome</font>
  <font color=blue>  >PRDM7_tupBel    9  prim  gene  noDet  Tupaia      belangeri    (tree_shrew)    genome</font>
  <font color=blue>  >PRDM7_tupBel    9  prim  gene  noDet  Tupaia      belangeri    (tree_shrew)    genome</font>
<font color=green>  >PRDM9_oryCun    8  glir  gene  other  Oryctolagus  cuniculus    (rabbit)        genome</font>
  <font color=blue>  >PRDM7_oryCun    4  glir  gene  other  Oryctolagus  cuniculus    (rabbit)        genome</font>
  <font color=blue>  >PRDM7_oryCun    4  glir  gene  other  Oryctolagus  cuniculus    (rabbit)        genome</font>
  <font color=blue>  >PRDM7_ochPri    -  glir  gene  noDet  Ochotona    princeps    (pika)          AAYZ01312269</font>
  <font color=blue>  >PRDM7_ochPri    -  glir  gene  noDet  Ochotona    princeps    (pika)          AAYZ01312269</font>
Line 233: Line 485:
  <font color=blue>  >PRDM7_musMus  12  glir  gene  PDCD2  Mus          musculus    (mouse)        NM_144809</font>
  <font color=blue>  >PRDM7_musMus  12  glir  gene  PDCD2  Mus          musculus    (mouse)        NM_144809</font>
  <font color=blue>  >PRDM7_musMol  11  glir  gene  noDet  Mus          molossinus  (wild_mouse)    GU216230</font>
  <font color=blue>  >PRDM7_musMol  11  glir  gene  noDet  Mus          molossinus  (wild_mouse)    GU216230</font>
<font color=blue>  >PRDM7_criGri    3  glir  gene  noDet  Cricetulus  griseus      (hamster)      AFTD01086355</font>
  <font color=blue>  >PRDM7_dipOrd    -  glir  gene  noDet  Dipodomys    ordii        (kangaroo_rat)  genome</font>
  <font color=blue>  >PRDM7_dipOrd    -  glir  gene  noDet  Dipodomys    ordii        (kangaroo_rat)  genome</font>
  <font color=blue>  >PRDM7_speTri    -  glir  gene  noDet  Spermophil  tridecemlin  (squirrel)      AAQQ01308561</font>
  <font color=blue>  >PRDM7_speTri    -  glir  gene  noDet  Spermophil  tridecemlin  (squirrel)      AAQQ01308561</font>
Line 256: Line 509:
  <font color=blue>  >PRDM7_felCat  11  laur  gene  GAS8+  Felis        catus        (cat)          genome</font>
  <font color=blue>  >PRDM7_felCat  11  laur  gene  GAS8+  Felis        catus        (cat)          genome</font>
  <font color=blue>  >PRDM7_ailMel    6  laur  gene  GAS8+  Ailuropoda  melanoleuca  (panda)        GL193502</font>
  <font color=blue>  >PRDM7_ailMel    6  laur  gene  GAS8+  Ailuropoda  melanoleuca  (panda)        GL193502</font>
  <font color=blue>  >PRDM7_musPut    3  laur  gene  noDet  Mustela   putorius (ferret)         AEYP01035077</font>
  <font color=blue>  >PRDM7_musPut    3  laur  gene  noDet  Mustela     putorius     (ferret)       AEYP01035077</font>
<font color=blue>  >PRDM7_neoVis    2  laur  gene  noDet  Neovison    vison        (mink)          JF288183</font>
  <font color=green>  >PRDM9_pteVam  15  laur  <font color = red>pseu</font>  noDet  Pteropus    vampyrus    (bat)          ABRP01232219</font>
  <font color=green>  >PRDM9_pteVam  15  laur  <font color = red>pseu</font>  noDet  Pteropus    vampyrus    (bat)          ABRP01232219</font>
  <font color=blue>  >PRDM7_pteVam    7  laur  gene  GAS8+  Pteropus    vampyrus    (bat)          ABRP01250178</font>
  <font color=blue>  >PRDM7_pteVam    7  laur  gene  GAS8+  Pteropus    vampyrus    (bat)          ABRP01250178</font>
Line 271: Line 525:
  <font color=blue>  >PRDM7_choHof    2  xena  <font color = red>pseu</font>  noDet  Choloepus    hoffmanni    (sloth)        ABVD01893961</font>
  <font color=blue>  >PRDM7_choHof    2  xena  <font color = red>pseu</font>  noDet  Choloepus    hoffmanni    (sloth)        ABVD01893961</font>


=== Domain-level gene trees ===
=== Gene trees based on domains ===


[[Image:PRDMcompBio.jpg|left]]
[[Image:PRDMcompBio.jpg|left]]


PRDM9 is one of many human proteins sharing a set of common domains, as well as various multiplicities of the zinc finger domain C2H2. The diagram at left shows an effort at organizing these into phylogenetic tree according to [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797608/?tool=pubmed structural considerations] of the SET domain these proteins all share.
PRDM9 is a chimeric protein consisting of 6 domains and linker regions. These domains occur in various combinations in many other human proteins without however known variability in domain order. The evolutionary relationships between all these proteins is necessarily complex, but taking the PR(SET) histone methylase as common denominator, the [[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797608 gene tree] at left emerges after structural alignment considerations.


The traditional SET domain seems too small for an enzyme with distinctive substrates so [http://www.plosone.org/journals/journalNamePlaceholder/webapp/enhanced/pone.0008570/ flanking sequence] can be added consistent with observed amino acid conservation. Using S-adenosyl methionine as donor, PRDM9 places the third methyl group only on the fourth position lysine in mature histone H3 (which is actually position 5 prior to iMet removal: MART<font color =red>K</font>QTARK...), one of many such epigenetic methylases in the human genome. The histone recognized by such methylases correlates poorly with evolutionary grouping by SET domain (figure), suggesting gene duplications have diverged to other recognize other locations. SET domains without demonstrated methylation activity may still retain recognition capacity.
While informative, this is really just a domain tree. A different tree would result based on the KRAB domain because it involves a different (though overlapping) set of proteins which had a partially independent history of duplication and shuffling from the PR(SET) domain. That precludes a meaningful joint tree based on KRAB + PR(SET) for those proteins that have both.The SSXRD domain has quite limited distribution but is considered further below. The knuckle and early zinc finger domains are rather short for domain tree inference, leaving presence/absence as the main consideration.  


The upper left corner shows  variability in domain structure. While PRDM9 and PRDM7 share the same domains (an upstream KRAB domain is not shown), of PR-class homologs, PRDM11 shares only the SET domain despite nesting deep within the PRDM9 subtree. PRDM4 has both the SET and C2H2 domains, possibly sharing the early zinc finger in an exon beginning with a phase 2 splice acceptor (as shown in reference sequence section). Overall however, PRDM9 and PRDM7 have no full length homologs with matching exon structure. Even the SET domain is intronated differently within PR-class proteins, suggesting either ancient divergence. These incongruities may have arisen from domain shuffling, gain and loss.
A domain tree based on the terminal zinc finger array is problematic due to long independent histories of expansion and contraction. Here the main handle is the C2H2 classification (based not only on residues binding zinc but also their spacing). Main other types of zinc fingers occur in the human proteome. Some blur into C2H2 but others -- like the intertwined CCHC and HCCC in DRMT1 -- are structurally [http://www.ncbi.nlm.nih.gov/pubmed/10898790,8978051 quite distinct]. DRMT1 is the [http://www.nature.com/nature/journal/v461/n7261/full/nature08298.html sex-detemination gene in birds] and a [http://www.pnas.org/content/early/2010/07/02/1006243107.abstract major regulator of gene expression] in mammalian Sertoli and germ cells. It dramatically affects expression of mouse PRDM7 (called Prdm9) but apparently indirectly as the mouse gene lacks close-in upstream binding site according to genome browser [http://www.dmrt1.umn.edu/PNAS/index.php wig tracks].
The traditional PR(SET) domain seems too small for an enzyme with such distinctive substrates so [http://www.plosone.org/journals/journalNamePlaceholder/webapp/enhanced/pone.0008570/ flanking sequence] can be added consistent with observed amino acid conservation. Using S-adenosyl methionine as donor, PRDM9 places the third methyl group only on the fourth position lysine in mature histone H3 (which is actually position 5 prior to iMet removal: MART<font color =red>K</font>QTARK...), just one of this histone's [http://www.uniprot.org/uniprot/Q16695 27 modified residues]. There are many such epigenetic methylases in the human genome. PRDM9 has no applicable crystallographic structures, leaving undefined the residues involved in substrate binding and catalysis.


The human PRDM9 sequence below is annotated in color for domains relative to exon breaks. The protein can be best understood in terms of concatenated domains, not all of which may be present in antecedent and descendant homologs. The first two domains KRAB and SSXRD interact with transcription factors.  
The histone orthology class, methylation position and methylation extent of these methylases correlates poorly with evolutionary grouping by PR(SET) domain (figure), suggesting gene duplications can readily diverge in their properties. PR(SET) domains can even lose catalytic competence yet retain recognition capacity and recruitment of other proteins. However loss of constraints might lead to anomalously fast divergence and so to misplacement in the domain tree.


Each terminal zinc finger type C2H2 array -- so named for two cysteines and two histidines liganding to a structural zinc ion -- potentially recognizes a specific trinucleotide (more or less) and so a large concatenated array potentially recognizes quite specific binding sites along the genome, though tolerance of nucleotide variability and synergistic effects between adjacent units make it difficult to read out these sites precisely, despite immense efforts. However aberrant zinc fingers are common and not all contribute to dna binding specificity.
The upper left corner shows  variability in domain structure. While PRDM9 and PRDM7 share the same domains (an upstream KRAB domain is not shown), of PR-class homologs, PRDM11 shares only the PR(SET) domain despite nesting deep within the PRDM9 subtree. PRDM4 has both the PR(SET) and C2H2 domains, possibly sharing the early zinc finger in an exon beginning with a phase 2 splice acceptor (marked up with color in reference sequence collection). Overall however, PRDM9 and PRDM7 have no full length homologs with matching exon structure.  


[[Image:PRDM7dot.gif|left]]
Note PR(SET) domain is even intronated differently within PR-class proteins, suggesting ancient divergence from a common pattern since intron gain/loss is exceedingly rare in vertebrates. These incongruities may have arisen from domain shuffling, gain and loss. Intron phasing provides a very important constraint on domain shuffling because the downstream reading frame must be preserved.  


The concatenated C2H2 domains, conserved at the amino acid level so necessarily similar at the dna level, are apparently prone to replication slippage (or gene conversion with misalignment). This process can give rise to point mutations as well as leading to different distributions in human populations of both repeat number and repeat sequence. Taking the extremes, it is '''a wonder that humans can still interbreed''', yet there are no known instantiations of [http://en.wikipedia.org/wiki/Haldane%27s_rule Haldane's Rule].
Intronation patterns of PRDM9 domains fit the standard eukaryote pattern: domains evolved first, introns inserted later at random sites. Domain shuffling might be even more pervasive if domains corresponded cleanly with exon breaks and all introns were phase 0. However this is almost never the case, another instance of what is sometimes called 'unintelligent design'.


Many other unrelated genes with internal repeats (such as the [[Coding_indels:_PRNP#The_peculiar_prion_repeat_expansion_in_Felids|octapeptide region]] of the prion gene PRNP) are also affected by replication slippage. Such proteins regions are conveniently studied by mRNA [http://www.vivo.colostate.edu/molkit/dnadot/ dot plots].
The human PRDM9 sequence below is annotated in color for domains relative to exon breaks. The protein can be best understood in terms of  concatenated domains, not all of which may be present in antecedent and descendant homologs. The first two domains KRAB and SSXRD likely interact with transcription factors, though these have not been specifically characterized in meiosis.  


Both PRDM9 and PRDM7 contain a seldom-mentioned zinc finger early in the final exon, as annotated by SwissProt and readily found by the online domain tools such as [http://smart.embl-heidelberg.de/ SMART] regardless of species. This domain conserves the four critical residues needed for zinc binding (and so the associated fold) but lacks the terminal cap TGEKP which otherwise serves to lock down a C2H2 zinc finger after it has scanned along genomic dna to an appropriate trinucleotide. The function of this early domain and the following 112 highly variable residues are unknown -- no demonstrably homologous sequence occurs in other proteins with the possible exception of PRDM4 and PRDM10.
Each terminal zinc finger type C2H2 array potentially recognizes a specific trinucleotide and so a large concatenated array quite specific binding sites in the genome, though tolerance of nucleotide variability and overlapping interactions between adjacent units make it difficult to read out these sites precisely, despite immense efforts. However aberrant individual zinc fingers are common in arrays; not all contribute directly to dna binding specificity.


The main zinc finger array also resides in this long distinctive terminal exon of splicing phase 12 that has been shuffled together into various contexts during mammalian evolutionary time. For once, intron phase is not so informative because the preceding PR(SET) domain with its codon overhang of 1 bp can accept any shuffled domain with overhang of 2 bp and still maintain reading frame. Concepts such as paralogy and orthology need piecewise definitions in these composite proteins.
The concatenated C2H2 domains, conserved at the amino acid level so necessarily similar at the dna level, are apparently prone to replication slippage (or mis-registered gene conversion). Both processes can give rise to associated point mutations as well as leading to different repeat number distributions in human populations.  


The first C2H2 of the main repeat region is proximally degenerate, beginning in V<font color = blue>K</font>Y in all species (instead of Y<font color = blue>C</font>E). The lysine cannot plausibly replace the usual cysteine for zinc binding though the other three needed residues are present and may suffice. This domain ends in a typical cap region TGEKP. Humans are the exception here where the conserved helix-ending proline has been replaced with leucine in the reference human genome, with unknown functional consequences.
Taking the extremes of variations, it is '''a wonder that humans can still interbreed''', yet [http://en.wikipedia.org/wiki/Haldane%27s_rule Haldane's Rule] so far has not been invoked as a cause of human infertility. PRDM9 allelic differences may provide an importent speciation barrier (ie, infertility of F1 males), yet introgression has been reported for denisovan, neanderthal and earlier African hominid dna into contemporary human genomes. By way of comparison, mice with 13 zinc finger repeats [http://www.sciencemag.org/lookup/resid/323/5912/373?view=full&uritype=cgi form sterile hybrids] when crossed with mice differing merely by an extra repeat.


As noted, PRDM7 occurs immediately telomeric to the unrelated single-copy conserved gene GAS8 (with the two genes convergently transcribed). PRDM7 is otherwise the last gene on the q arm of its chromosome in many species which may predispose it to copy number dispersal events, which may in the past have resulted in juxtaposition and functional fusion to other genes. PRDM9 is not consistently located within placental mammals, suggesting numerous independent rearrangements.
Many other unrelated proteins with internal repeats (such as the [[Coding_indels:_PRNP#The_peculiar_prion_repeat_expansion_in_Felids|octapeptide region]] of the prion gene PRNP) are also affected by replication slippage. These events, though rare, have been intensively studied because they cause toxic gain of function (Creutzfeldt-Jacob disease). Repeat expansions here too are accompanied by localized point mutation. The PRNP repeats have anomalously high GC content prone to self-similarity loop-outs unlike the C2H2 repeats of PRDM9.


Both PRDM9 and PRDM7 contain a seldom-mentioned zinc finger early in the final exon, as annotated by SwissProt and readily found by the online domain tools such as [http://smart.embl-heidelberg.de/ SMART] regardless of species. This domain conserves the four critical residues needed for zinc binding (and so the associated fold) but lacks the terminal cap TGEKP which otherwise serves to lock down a C2H2 zinc finger after it has scanned along genomic dna to an appropriate trinucleotide. The function of this early domain and the following 112 highly variable residues are unknown -- no demonstrably homologous sequence occurs in other human proteins with the possible exception of PRDM4 and PRDM15.
The main zinc finger array also resides in this long distinctive terminal exon of splicing phase 12 that has been shuffled together into various contexts during mammalian evolutionary time. For once, intron phase is not so informative because the preceding PR(SET) domain with its codon overhang of 1 bp can accept any shuffled domain with overhang of 2 bp and still maintain reading frame. Since the KRAB domain also terminates in a phase 12 splice site, proteins can also skip the PR(SET) domain entirely, as in ZNF133 and many others. Concepts such as paralogy and orthology thus need piecewise definitions in these composite proteins.
The first C2H2 of the main repeat region is proximally degenerate, beginning in V<font color = blue>K</font>Y in all species (instead of Y<font color = blue>C</font>E). The lysine cannot plausibly replace the usual cysteine for zinc binding though the other three needed residues are present and may suffice. This domain ends in a typical cap region TGEKP. Humans are the exception here where the conserved helix-ending proline has been replaced with leucine in the reference human genome, with unknown functional consequences. This replacement is not recent since it is found in all human populations including the extinct [http://en.wikipedia.org/wiki/Denisova_hominin Denisovans] (41 kyr) and the basal (70 kyr) bushman lineage for which fragment V<font color = blue>K</font>YGECGQGFSVKSDVITHQRTHTGEK<font color = blue>L</font> YVCRECGRGFSWKSHLLIHQRIH is available from read 20_@FQ2QD2002IAZ67.
Another overlooked zinc finger domain occurs in the same exon as the PR(SET), preceding it. Being short, it is sometimes called a zinc knuckle rather than finger. There can be no doubt about its occurence because a crystallographic study has confirmed the [http://www.ncbi.nlm.nih.gov/pubmed/21604305 expected fold and zinc atom].
As noted, PRDM7 occurs immediately telomeric to the unrelated single-copy conserved gene GAS8 (with the two genes convergently transcribed). PRDM7 is otherwise the last gene on the q arm of its chromosome in many species which may predispose it to copy number dispersal events, which may in the past have resulted in juxtaposition and functional fusion to other genes. PRDM9 is not consistently present in placental mammals and each clade with it has a different syntentic location, suggesting numerous independent gene duplications (rather than many rearrangements and gene losses).
[[Image:PRDM7dot.gif|left]]
<br clear = all>
<br clear = all>


  >PRDM9_homSap Homo sapiens (human) Q9NQV7 10 exons chr5:23,509,579 span 18,301 bp <font color = green>KRAB</font> <font color = #00CC66>SSXRD</font> <span style="color: #990099;">zinc knuckle</span> <font color = #0066CC>SET</font> <font color = red>early ZNF</font> <font color = magenta>C2H2</font> <font color = blue>cap</font>
  >PRDM9_homSap Homo sapiens (human) Q9NQV7 10 exons chr5:23,509,579 span 18,301 bp <font color = green>KRAB</font> <font color = #00CC66>SSXRD</font> <span style="color: #990099;">zinc knuckle</span> <font color = #0066CC>PR(SET)</font> <font color = red>early ZNF</font> <font color = magenta>C2H2</font> <font color = blue>cap</font>
  0 MSPEKSQEESPEEDTERTERKPM 0
  0 MSPEKSQEESPEEDTERTERKPM 0
  0 <font color = green>VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  0 <font color = green>VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
Line 307: Line 574:
  2 VKPPWMALRVEQRKHQK 0
  2 VKPPWMALRVEQRKHQK 0
  0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL 1
  0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL 1
  2 <font color = #00CC66>ELRKKETERKMYSLRERKGHAYKEVSEPQDDDYL</font> 1
  2 <font color = #00CC66>ELRKKETERKMYSLRERKGHAYKEVSEPQDDDY</font><span style="color: #990099;">L 1
2 <span style="color: #990099;">YCEMCQNFFIDSCAAHGPPTFVKDSAV</span>DKGHPNRSALSLPPGL<font color = #0066CC>RIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
2 YCEMCQNFFIDSCAAHGPPTFVKDSAV</span>DKGHPNRSALSLPPGL<font color = #0066CC>RIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYG</font>QELGIKWGSKWKKELMAGR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYG</font>QELGIKWGSKWKKELMAGR 1
Line 326: Line 593:
  YVCRECGRGFSDRSSLCYHQRTH<font color = blue>TGEKP</font></font> YVCREDE* 0
  YVCRECGRGFSDRSSLCYHQRTH<font color = blue>TGEKP</font></font> YVCREDE* 0
           -1  23  6          traditional numbering of dna recognizing amino acids
           -1  23  6          traditional numbering of dna recognizing amino acids
  HPCPSCCLAFSSQKFLSQHVERNH    alignment of early C2H2 domain
LYCEMCQNFFIDSCAAHGPPTFVKDSAV alignment of zinc knuckle
  HPCPSCCLAFSSQKFLSQHVERNH    alignment of pre-array zinc finger
   *  *            *  *      zinc liganding positions
   *  *            *  *      zinc liganding positions


=== Different segmental duplications relate PRDM9 and PRDM7 ===
=== Segmental duplications creating PRDM9s from PRDM7 ===
[[Image:PRDM7segDup.gif|left]]
[[Image:PRDM7segDup.gif|left]]
In humans, PRDM9 and PRDM7 are related by a 26 kbp segmental duplication that begins about 8 kbp upstream of the start codon and continues through most of the 3' UTR. Since the retroposon patterns are nearly identical, the duplication must be fairly recent. The overall percent identity of non-coding dna is about 93%, again inconsistent with either early (within stem placental or late divergence (post-chimpanzee). The duplication contains a potentially diagnostic 1845 bp retroposon-free region upstream of the first coding exon.
In humans, PRDM9 and PRDM7 are related by a 26 kbp segmental duplication of chr16:90123419-90147718 that begins about 8 kbp upstream of the start codon and continues through most of the 3' UTR. Since the retroposon patterns are nearly identical, the duplication must be fairly recent. The overall percent identity of non-coding dna is about 93%, again inconsistent with either early (stem placental) or late divergence (great ape). The duplication contains a potentially diagnostic 1845 bp retroposon-free region upstream of the first coding exon.
 
PRDM7 is situated at the extreme tip of chromosome 16q, perhaps predisposing it to chromosomal copy number variation  (segmental duplications to other other chromosomes), ironically mediated by meiotic recombination. The syntenic context  TUBB3+ DEFB+ AFG3L1+ DBNDD1- GAS8+ PRDM7- qTel means PRDM7 is transcribed convergently with GAS8, a non-homologous conserved single copy gene whose distal exons are often detectable even in low coverage genomes in the contig containing PRDM7. This association has been extremely stable over placental mammal evolutionary time and so serves to reliably distinguish PRDM7 orthologs from its spin-offs.
 
The elephant genome has an old PRDM7 pseudogene adjacent to GAS8 in the expected opposite orientation. It has a second PRDM9-like copy in a novel syntenic location (ie unrelated to the CDH10-CDH12 location in primates) also seen in mammoth. Since afrotheres (plus xenarthrans) are the basal placental mammal, it follows that this locus too was spun off from PRDM7, establishing a 110 myr history of telomeric susceptibility of PRDM7 to repeated rearrangements.
 
Gene copy variation may be common in individual inheritance but a paralogous copy seldom becomes established across a species and even more rarely displaces the parental gene completely. Yet this scenario is repeatedly observed in evolutionary history of PRDM7. Thus the telomeric location of PRDM7 may predispose it to these events, but their persistance is not accidental: the erasure of meiotic recombination iniation sites by biased gene conversion '''drives evolution of PRDM7/9 at three different scales''' -- point mutation at key amino acid positions, expansion/contraction of zinc finger tandem repeat number, and whole gene copy number.


Note PRDM7 is situated at the extreme tip of chromosome 16q, perhaps predisposing it to chromosomal copy number rearrangements. The syntenic context is TUBB3+ DEFB+ AFG3L1+ DBNDD1- GAS8+ PRDM7- qTel, meaning it is transcribed convergently with GAS8, a non-homologous highly conserved single copy gene often detectable even in low coverage genomes in the small contig containing PRDM7. This association has been extremely stable over boreoeutheran placental mammal evolutionary time and so serves to reliably define PRDM7 orthologs and their spin-off copies. Elephants also have a gene pair similar to  human PRDM9 and PRDM7. The former is at a syntenically novel site but the latter is an old pseudogene but still detectably adjacent to GAS8 in opposite orientation. It thus follows that 'PRDM9' in elephant is an independent earlier spin-off of its conventional PRDM7 gene. This is consistent with telomeric susceptibility to repeated rearrangements.  
This history was not initially appreciated. Recall two genes in two species are orthologous only when they are vertically descended from the same gene in their last common ancestor which for human and elephant is post-marsupial mammal which had a single copy of PRDM7 adjacent to GAS8. The respective PRDM7 genes, still adjacent to GAS8 today are orthologous. The respective 'PRDM9' genes are however not descended from a common ancestral PRDM9 gene but from independent gene duplications of PRDM7 at different times during the course of afrothere and primate speciations.


Recall here the actual definition of gene orthology: two genes in two species are orthologous if they are vertically descended from the same gene in their last common ancestor. Here the LCA of human and elephant is ur-placental mammal which had PRDM7 but no PRDM9. The two PRDM9 genes are thus not descended from a common ancestral PRDM9 gene but from parallel gene duplications of a common PRDM7 gene at different times in different clades during the course of mammalian speciation. Such genes are called [http://ai.stanford.edu/~serafim/CS374_2006/papers/Sonhammer_TIGs_2002.pdf in-paralogs] within a given species and co-orthologs across them.
Human PRDM9 lies in a retroposon-rich gene desert, flanked by two pairs of cadherin genes at a larger scale of 7 mbp. In rhesus, these same genes are seen (with some minor rearrangements), by parsimony establishing this PRDM9 segmental duplication preceded the divergence of old world monkeys.  


The syntenic context of PRDM9 is quite variable, supporting the scenario of multiple origins. This context can be used to count the number of distinct segmental duplications of PRDM7. For example, in humans, PRDM9 basically lies in a retroposon-rich gene desert but is eventually flanked by two pairs of cadherin genes at the much larger scale of 7 mbp. In rhesus, these same genes are seen (with some minor rearrangements), establishing that this PRDM9 segmental duplication preceded the divergence of old world monkeys.  
Marmoset has a seemingly functional PRDM7 in the usual position facing GAS8, still at the extreme end of Callithrix chromosome 20. The cadherin cluster is intact on chr2:178,954,165-180,696,523. However Blastx of the intervening dna -- which is similar in size to rhesus and human so not suggestive of large deletions -- shows no suggestion of PRDM9. The assembly is gapless here. Blastx is sensitive enough to detect pseudogenes of this age provided they decayed only by small indels and nucleotide substitutions.  


Marmoset has a seemingly functional PRDM7 in the usual position facing GAS8, still at the extreme end of chromosome 20. The cadherin cluster is intact on chr2:178,954,165-180,696,523. However Blastx of the intervening dna -- which is similar in size to rhesus and human so not suggesting large deletions -- shows not even a suggestion of an old PRDM9 pseudogene. The assembly is gapless here. and Blastx is sensitive enough to detect very old pseudogenes provided they decayed by small indels and nucleotide substitutions. Thus it appears that PRDM7 never duplicated in marmoset -- placing that even in the stem to old world monkeys (or prior to tarsier divergence -- that assembly has poor coverage). Note that the marmoset PRDM7 has a respectable terminal zinc finger array of twelve units, enough to specify 36 bp.
Thus PRDM7 had not yet duplicated in the primate stem placing that event just prior to old world monkeys/great apes divergence. Note that the marmoset PRDM7 has a respectable terminal zinc finger array of twelve units, enough to specify an adequately specific dna recognition sequence. Tarsier assembly has poor coverage and only a fragmentary PRDM7 gene presumed adjacent to GAS8.
   
   
  Gene  Strand Protein      Start    Species
  Gene  Strand Protein      Start    Species
  CDH18    -  cadherin 18  19981287  homSap  ponAbe  macMul
  CDH18    -  cadherin 18  19981287  homSap  ponAbe  macMul
  CDH12    -  cadherin 12  22853731  homSap  ponAbe  macMul  calJac
  CDH12    -  cadherin 12  22853731  homSap  ponAbe  macMul  calJac
  PRDM9    +  human PRDM9  23528704  homSap  ponAbe  macMul  calJac
  PRDM9    +  human PRDM9  23528704  homSap  ponAbe  macMul   
  CDH10    -  cadherin 10  24644911  homSap  ponAbe  macMul  calJac
  CDH10    -  cadherin 10  24644911  homSap  ponAbe  macMul  calJac
  CDH9    -  cadherin 9  27038689  homSap  ponAbe  macMul
  CDH9    -  cadherin 9  27038689  homSap  ponAbe  macMul


Lemurs present a new complication. The Otolemur assembly has two distinct and seemingly functional PRDM7 copies (each with seven zinc fingerscontaining GAS8 end-sequence in expected opposite orientation. One of the GAS8 copies appears to be a pseudogene.  This represents a new type of lineage-specific segmental duplication. There is no sign of PRDM9. The other lemur with an assembly, Microcebus murinus, has but a single copy, again with seven zinc fingers. The only relevant contigs (ABDC01433247 and ABDC01371462) contain no coding syntenic information so this gene cannot be assigned to PRDM7 with certainty.  
Lemurs present a new complication. The Otolemur assembly has two distinct and possibly functional PRDM7 copies with 8-11 zinc fingers, according to how distal stop codons and frameshifts are interpreted in low coverage assemblies. One of these lies in a contig AAQR03144890 also containing GAS8 end-sequence in expected opposite orientation but this copy of GAS8 is a segmentally duplicated pseudogene, representing a new type of lineage-specific larger segmental duplication. Authentic GAS8 lies in a different Otolemur contig AAQR03166494 lacking any sign of a zinc finger protein. The second PRDM7 gene lies in a contig AAQR03189271 with novel synteny to the gene ARFGEF1. There is no sign of primate PRDM9 (a homolog intercalated between cadherins CDH10 and CDH12).  
 
The other lemur with an assembly, Microcebus murinus, has but a single presumptive PRDM7 with seven zinc fingers. The only relevant contigs (ABDC01433247 and ABDC01371462) contain no informative syntenic information so this gene cannot be associated with GAS8 with any confidence. However the contigs cannot be tiled and possibly belong to distinct genes.


The tree shrew assembly, like tarsier, has low coverage and only blast matches to zinc finger arrays that cannot be assigned to the PRDM family. This cannot be totally attributed to low coverage  because many ordinary genes are satisfactorily represented in these species. Other issues such as telomeric position, gene copy number (mobility), pseudogenization, deletional loss, chimerization, and individual heterozygosity must be affecting recovery of PRDM9 gene models in these species.
The basal euarchtonal species, tree shrew Tupaia belangeri, has an unsatisfactory assembly. A putative PRDM7/9 gene can be put together utilizing raw traces reads located with lemur blastn queries. These cannot be convincingly tiled and thus could originate from multiple genes including related chimeric domain proteins, even though best reciprocal blast of each exon calls up established PRDM7/9 matches.


Moving on to laurasiatheres, Bos taurus presents a much more complicated situation. First, the GAS8 locus on chr18 contains the first two exons of a PRDM7 pseudogene in expected orientation but distal regions of the gene are completely deleted. The cadherin locus on chr20 is also intact but the 2.6 mbp region between CDH12 and CDH10 contains no indication of PRDM9, consistent with that segmental duplication being primate-specific and PRDM7 being the older parental location. This holds in the Baylor 4.0 assembly carried at UCSC, the Baylor 4.2 assembly, and the alternative assembly of the same data, UMD3.1. The latter two can be queried by the genomic [http://www.ncbi.nlm.nih.gov/genome/seq/BlastGen/BlastGen.cgi?taxid=9913 blast server] at NCBI.
Moving on to laurasiatheres, Bos taurus presents a much more complicated situation. First, the GAS8 locus on chr18 contains the first two exons of a PRDM7 pseudogene in expected orientation but distal regions of the gene are completely deleted. The cadherin locus on chr20 is also intact but the 2.6 mbp region between CDH12 and CDH10 contains no indication of PRDM9, consistent with that segmental duplication being primate-specific and PRDM7 being the older parental location. This holds in the Baylor 4.0 assembly carried at UCSC, the Baylor 4.2 assembly, and the alternative assembly of the same data, UMD3.1. The latter two can be queried by the genomic [http://www.ncbi.nlm.nih.gov/genome/seq/BlastGen/BlastGen.cgi?taxid=9913 blast server] at NCBI.


A third locus on chr 1 hosts an unreviewed GenBank pipline entry called PRDM9, derived as NW_003053109 from the alternative bovine assembly UMD3.1 Staff corrected an unspecified frameshift to fix the reading frame -- a dangerous practise in a gene family so prone to pseudogenization. The gene, called PRDM9a here, resides on the extreme end of chromosome 1 and differs from the Baylor 4.0 assembly at two amino acids outside the zinc finger region. The syntenic context here is novel: EFHB- RAB5A+ PCAF+ ZNF596- PRDM9a- which corresponds overall to human chr 3. The juxtapositioning of two zinc finger proteins on the same strand causes PRDM9 alignments to extend spuriously into the 12 zinc fingers of ZNF596, jumping over its 5 earlier coding exons.  
A third locus on chr 1 hosts an unreviewed GenBank pipeline entry called PRDM9, derived as NW_003053109 from the alternative bovine assembly UMD3.1. NCBI staff corrected an unspecified frameshift to fix the reading frame -- a dangerous practice in a gene family prone to pseudogenization. The gene, called PRDM9a here, resides on the extreme end of chromosome 1 and differs from the Baylor 4.0 assembly at two amino acids outside the zinc finger region. The syntenic context here is novel: EFHB- RAB5A+ PCAF+ ZNF596- PRDM9a- which corresponds overall to human chr 3. The juxtapositioning of two zinc finger proteins on the same strand causes PRDM9 alignments to extend spuriously into the 12 zinc fingers of ZNF596, jumping over its 5 earlier coding exons.  


ZNF596 contains a KRAB domain but no SET methylase. Humans encode a best-blast protein of the same assigned name on chr 8 (77% identity). Note the early exons of ZNF596 can be added to end of PRDM9a to form an artificial probe for this association in other species, though the two genes have a 43,400 bp spacer in cow, which is large relative to contig size in low coverage assemblies. The sole fragmentary transcript from yak testis (EF432551) is nearly identical to this PRDM9a, suggesting that the gene -- and perhaps its syntenic location -- became established prior to yak-cow divergence and is still functional. However its array of seven zinc fingers could recognize at most a region of 21 bp.
ZNF596 contains a KRAB domain but no PR(SET) methylase. Humans encode a best-blast protein with the same assigned name on chr 8 (77% identity). Note the early exons of ZNF596 can be added to end of PRDM9a to form an artificial probe for this association in other species, though the two genes have a 43,400 bp spacer in cow, which is large relative to contig size in low coverage assemblies. The sole fragmentary transcript from yak testis (EF432551) is nearly identical to this PRDM9a, suggesting that the gene -- and perhaps its syntenic location -- became established prior to yak-cow divergence at 2.5 myr and is still functional. Its array of seven zinc fingers could recognize at most a region of 21 bp.


ZNF596 did not arise from a PRDM9-like gene through loss of the SET domain, though it is one of the better matches within the large zinc finger family. Excluding the zinc finger domain, ZNF343, ZNF133 and ZNF169 provide much higher blastp scores, as they also do just comparing the zinc finger arrays. The juxtaposition of ZNF596 and PRDM9a is likely coincidental rather than a consequence of inhomogeneous recombination between zinc fingers bringing PRDM9 to this site.
ZNF596 did not arise from a PRDM9-like gene through loss of the SET domain, though it is one of the better matches within the large zinc finger family. Excluding the zinc finger domain, ZNF343, ZNF133 and ZNF169 provide much higher blastp scores, as they also do just comparing the zinc finger arrays. The juxtaposition of ZNF596 and PRDM9a is likely coincidental rather than a consequence of inhomogeneous recombination between zinc fingers bringing PRDM9 to this site.


The fourth PRDM9 locus of interest, called here PRDM9b, is still not mapped to any bovine chromosome. It resides in contig DAAA02065087 in the UMD3.1 assembly and is temporarily assigned to chr Un.004.649 at Baylor assembly. Here the reading frame in exon two can be restored if a run of 5 A's is corrected to 6 A's. That is done here in the reference sequences because this is typically just sequencing error. The protein has a full set of domains KRAB SSXRD SET C2H2 with a moderate zinc finger array of five. Synteny cannot be determined in chr Un features which can simply pool unrelated unplaceable contigs into a manageable unit. Flanking dna in DAAA02065087map to several places in the cow genome, suggesting this feature has copy number attributes, perhaps of telomeric repeat type. PRDM9b is not a recent feature because it differs at a considerable number of amino acids from other PRDM9 in the cow genome. These substitutions avoid highly conserved residues, not consistent with early pseudogenization. PRDM9b is capable of histone marking but it is not clear whether that has functional significance to meiosis.
The fourth PRDM9 locus of interest, called here PRDM9b, is still not mapped to any bovine chromosome. It resides in contig DAAA02065087 in the UMD3.1 assembly and is temporarily assigned to chr Un.004.649 at Baylor assembly. Here the reading frame in exon two can be restored if a run of 5 A's is corrected to 6 A's, as homopolymer run length error is common in assemblies. The protein has a full set of domains KRAB SSXRD SET C2H2 with a moderate zinc finger array of five. Synteny cannot be determined in chr Un features which simple abuts unplaceable contigs into a manageable unit. Flanking dna in DAAA02065087 maps to several places in the cow genome, suggesting this feature has copy number attributes, perhaps of telomeric repeat type. PRDM9b is not a recent feature (or assembly stutte artifact) because it differs at toom any amino acids from other PRDM9 features in the cow genome. These substitutions avoid highly conserved residues, not consistent with cryptic pseudogenization. PRDM9b is capable of histone markup but it is not clear whether it does so.
 
Yet another locus in the Baylor 4.0 assembly, called PRDM9c here, could not initially be placed on a cow chromosome. While such features are often assembly artifacts, this one is supported by a transcript from 4-cell embryos (GO353654) consistent with a role in or after meiosis. In UMD3.1, this gene has been placed on chr X. Despite a very large contig, no zinc fingers occur in any reading frame, suggesting that the gene was transferred here without the last exon or it subsequently got deleted. In any event, the penultimate exon does not have a phase 1 splice donor in expected position and so would terminate at the next stop codon downstream. The protein retains the KRAB, SSXRD and SET domains but does not possess the ability to scan or bind dna. It has accrued various amino acid substitutions relative to other bovine PRDM9 that rule out recent establishment.


Yet another locus in the Baylor 4.0 assembly, called PRDM9c here, could not initially be placed on a cow chromosome. While such features are often assembly artefacts, this one is supported by a transcript from 4-cell embryos (GO353654) consistent with a role in or after meiosis. In UMD3.1, this gene has been placed on chr X. Despite a very large contig, no zinc fingers occur in any reading frame, suggesting that the gene was transferred here without the last exon (or it subsequently got deleted). In any event, the penultimate exon does not have a phase 1 splice donor in expected position and so terminates at the next stop codon downstream. The protein retains the KRAB, SSXRD and SET domains but does not possess the ability to scan or bind dna. It has accrued various amino acid substitutions relative to other bovine that rule out recent establishment.
Finally, two additional genes, denoted PRDM9d and PRDM9e, are located as a parallel tandem pair in a higher quality region of bovine chr X. These are 96% identical as proteins, consistent with one being derived fairly recently from the other. Synteny here will not be informative until other ruminant genomes become available.


Finally, two additional genes, denoted PRDM9d and PRDM9e here, are located as a parallel tandem pair in a higher quality region of bovine chr X. These are 96% identical as proteins, consistent with one being derived fairly recently from the other. Synteny here will not be informative until other ruminant genomes become available.
Overall the situation in cow is very different from primates and rodents. Results there about the function of single-copy autosomal PRDM9 genes in meiosis markup can scarcely be carried over to a species with five seemingly intact genes, three of which are on chr X. Ruminants have a [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593575/ well-characterized] small pseudoautosomal region on which crossovers with chrY can occur.  


Overall the situation in cow is very different from primates and rodents. Results there about the function of single-copy autosomal PRDM9 gnes in meiosis markup can scarcely be carried over to a species with five seemingly intact genes, three of which are on chr X (which intriguingly has the very limited pseudoautosomal region on chr Y where it can cross over).  
The cow situation cannot be limited to the Hereford breed used for the genome project because the PRDM9 are too diverged from one another outside the zinc finger region. Indeed there is some suggestion from [http://www.livestockgenomics.csiro.au/blast/ non-NCBI sheep genome] that it too has many of these copies. Muntjak too seems similar to cow. However other cetartiodactyl genomes (dolphin, pig and alpaca) and other laurasiatheres (panda, dog, cat, shrew, bats) are not so expanded, suggesting that this unprecedented complexity could be limited to pecoran ruminants. The PRDM7 pseudogene is presumably parental to all these ruminant genes based on other laurasiatheres and placentals overall.


The cow situation cannot be limited to the Hereford breed used for the genome project because the PRDM9 are too diverged from one another outside the zinc finger region. Indeed there is some suggestion from [http://www.livestockgenomics.csiro.au/blast/ non-NCBI sheep genome] that it too has many of these copies. However other cetartiodactyl genomes (dolphin, pig and alpaca) and other laurasiatheres (panda, dog, cat, shrew, bats) do not show these copies, suggesting that this complexity could be limited to pecoran ruminants. All-vs-all blastp percent identities are consistent with this, though rates of evolution in this gene family are hardly typical.This cannot be resolved with cow genome alone -- there is no good candidate still present for parent gene to all these copies. These results are summarized in the table below:  
All-vs-all blastp percent identities are consistent with this, though rates of evolution in this gene family hardly fit standard paradigms for quantification. Results for bovine are summarized in the table below:  


  Gene  #ZNF  Status  Chr  Synteny  cDNA  Accession    9a_bosTau 9b_bosTau 9e_bosTau 9a_oviAri 9a_turTru 7_ailMel
  Gene  #ZNF  Status  Chr  Synteny  cDNA  Accession    9a_bosTau 9b_bosTau 9e_bosTau 9a_oviAri 9a_turTru 7_ailMel
Line 378: Line 656:
  PRDM9d  9    ok    X    ---      no  none          80%      78%        96%      93%      73%      67%
  PRDM9d  9    ok    X    ---      no  none          80%      78%        96%      93%      73%      67%
  PRDM9e  9    ok    X    ---      no  none          81%      78%      100%      93%      73%      68%
  PRDM9e  9    ok    X    ---      no  none          81%      78%      100%      93%      73%      68%
== Human PRDM9 variation  ==
A great deal of attention -- and rightly so -- has been expended on cataloging variation in the zinc finger array at the level of both individuals and populations. While not the whole story of PRDM9 functionality by any means, this region is the primary determinant of recombination hotspot locations in meiotic dna. These sites greatly influence observed haplotypes and so the zinc finger array and its changing specificity over time must be understood to make reliable inferences about recent human evolutionary history and indeed speciation.
The zinc finger array is roughly analogous to tRNA. Both bind trinucleotides, the former in double-stranded dna and the latter in single-stranded messenger rna. Both are somewhat fuzzy in binding specificity, the zinc fingers only partly specifying a sequence (eg CCNCCNTNNCCNC) and tRNA accepting wobble codons. Both require an array, these are covalently joined and consecutive in the zinc finger array but are discrete and sequentially acting in tRNAs.
However this analogy only goes so far: the anticodons of tRNA have been fixed for billions of years whereas the four amino acid 'anticodons' of PRDM9 zinc fingers must undergo very rapid but highly restrictive mutation to keep up with an ever-changing recognition site (which obliterates itself with gene conversion, often the outcome of double-stranded break repair instead of recombination). Further, while all tRNAs recognize at least one codon, only a fraction of the zinc fingers in the human PRDM9 array can be utilized -- 13 fingers specify 39 nucleotides whereas observed sites are far shorter, some 13-17 base pairs. What selective pressure then maintains the unused fingers?
That is but one of many remaining questions about PRDM9. Expression in some mammals is not restricted to germ line cells, suggesting other functionalities in the regulation of gene expression. The PRDM9 locus on chr5 itself does not contain a notable recombination hotspot (relative to its own zinc finger array) so gene conversion here cannot explain its mutational frequency, focus on the four determinative residues, and restricted compositional outcome (to nine of twenty amino acids).
Selectional pressure on this gene is highly unusual in that an amino acid substitution in a germline cell yielding a zinc finger that cannot recognize a meiotic target is eliminated right away because recombination is essential to the meiotic process, meaning that no correctly divided haploid cell is available for fertilization. Other regions of the same protein evolve much more conventionally, with human PRDM9 diverging overall from other primates at unremarkable rates.
The zinc finger array varies not only pointwise but also in number of repeats, from 13 or fewer to 20 or more, in contrast to many other stable 'polydactylic' zinc finger proteins. The mutational mechanism by which repeat numbers contract and expand has not been established but is presumably replication slippage, as in other unrelated proteins (such as the octapeptide repeat region in human PRNP). It is unclear what happens to individual zinc finger utilization after an expansion or contraction.
Note in males, recombination must occur in the [http://en.wikipedia.org/wiki/Pseudoautosomal two short pseudoautosomal regions] of homology between chrX and chrY where few base pairs are available (relative to much longer autosomal chromosomes) for the recognition sequence to occur randomly with reasonable probability. Thus in humans PAR1 on the short-arm ends of chrX and chrY is 2.6 mbp whereas as PAR2 on the long arms ends only comprises 320 kbp. By comparison, the shortest human chromosome, chr22, has 50 million bases to host recombination recognition sites (16x as much). Thus the PARs may provide the do-or-die selectional bottleneck driving zinc finger array evolution.
Given that small surveys in moderately inbred populations (such as Iceland) already find considerable variation in both number and sequence particulars of PRDM9 zinc finger arrays, it seems inevitable that many individuals must be heterozygous, sometimes radically so. However these would not necessarily be reported from sequencing projects where commonly only one allele is determined. It is not known whether both alleles in a heterozygous individual would be expressed and participate on an equal footing in meiosis in the same dividing cell. If so, the repertoire of recognizable sites would be expanded, with complications for understanding haplotype evolution if common.
One last immense complication is that human and mouse do not speak for the rest of mammals. There, multiple copies are present in some major lineages, in some cases with zinc finger arrays too short to determine an adequately restrictive suite of recombination sites. Here the possibility must be considered that paralogous copies can act in tandem with short arrays acting in concert to define adequate length sites. The pseudoautosomal regions are by no means strictly conserved phylogenetically. Here adequate data may well be available from horse and cattle breeders but it has not surfaced to date.


=== The role of CpG mutations ===
=== The role of CpG mutations ===


Human PRDM9 has 39 CpG sites in its coding exons, potentially mutational hotspots. After attempted dna repair, these usually resolve to CpA or TpG. If not at a synonymous site, these changes alter the encoded amino acid. Some 28 of the CpG sites are at arginine CGn codons (of which the protein has 90 overall). These always result in a substitution: for G -> A, histidine for CGT and CGC and glutamine for CGG and CGA; for C -> T, cysteine for CGT and CGC and tryptophan and stop codon for CGG and CGA. These changes are in fact seen in many of the reference sequences. The display below shows wildtype human PRDM9 in the top lines and the effects of G -> A and C -> T in the next. The zinc finger array is highlighted. Note that position -1 is sensitive to the CpG hotspot effect, at least in human PRDM9 as it stands. However the rapid evolution reported for the four dna-recognizing residues cannot be primarily attributed to the CpG effect. The terminal partial finger YVCREDE* is commonly altered to Y*CREDE* but this is likely insufficient for loss of function.
Human PRDM9 has 39 CpG sites in its coding exons, potentially methylated on the C, subject to spontaneous deamination to uracil and mis-repair, and so mutational hotspots. After attempted dna repair, the resulting change can be either CpA or TpG. These changes alter the encoded amino acid at non-synonymous sites. Some 28 of the CpG sites of PRDM9 are at arginine CGn codons (of which the protein has 90 overall).  
 
These always result in a substitution: G -> A mis-repair yields histidine for CGT and CGC and glutamine for CGG and CGA; C -> T mis-repair leads to cysteine for CGT and CGC and tryptophan and stop codon for CGG and CGA. These changes indeed occur in reported human and mammal sequences where they are perhaps best viewed as cSNPs in an individual rather than  representing the species as a whole. The display below shows wildtype human PRDM9 in the top lines and the effects of G -> A and C -> T in the next.
 
In terms of upstream CpG islands that would protect against methylation of CpG in coding regions, PRDM9 has none. While three occur somewhat near the start of PRDM7, these do not extend into coding exons and may not even be associated with this gene. The composite snapshot below from chr5 and chr16 of the UCSC human genome browser displays these CpG islands relative to the two genes. Thus CpG cytidines would be methylated in coding regions of both PRDM7 and PRDM9, rendering them susceptible to hotspot mutations.
 
[[Image:CpGislandsPR.gif|left]]
<br clear=all>
 
In the terminal zinc finger array of the human PRDM9 reference sequence, position -1 is sensitive to the CpG hotspot effect. However rapid rapid evolution in the zinc finger array, which is overwhelmingly concentrated in the four dna-recognizing residues, cannot be explained by the CpG effect. On the other hand, the common alteration of the terminal partial finger YVCREDE* to Y*CREDE* in some species likely is a CpG effect but one that is insufficient for loss of function.


  PRDM9_homSapWT  MSPEKSQEESPEEDTERTERKPM<font color=green>VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITIGLRATRPAFMCHRRQAIKLQV</font>DDTEDSDEEWTPRQQVKPPWMALRVEQRKHQKGMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL<font color=blue>ELRKKETERKM</font>
  PRDM9_homSapWT  MSPEKSQEESPEEDTERTERKPM<font color=green>VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITIGLRATRPAFMCHRRQAIKLQV</font>DDTEDSDEEWTPRQQVKPPWMALRVEQRKHQKGMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL<font color=blue>ELRKKETERKM</font>
Line 409: Line 716:
  ..<font color=blue>.</font>..<font color=blue>.</font>.W..W......<font color=blue>.</font>...<font color=blue>.</font>.....  ..<font color=blue>.</font>..<font color=blue>.</font>.W.........<font color=blue>.</font>...<font color=blue>.</font>.....  ..<font color=blue>.</font>..<font color=blue>.</font>.W.<font color=red>C</font>.......<font color=blue>.</font>...<font color=blue>.</font>.....  ..<font color=blue>.</font>..<font color=blue>.</font>.W.........<font color=blue>.</font>...<font color=blue>.</font>.....  ..<font color=blue>.</font>..<font color=blue>.</font>.
  ..<font color=blue>.</font>..<font color=blue>.</font>.W..W......<font color=blue>.</font>...<font color=blue>.</font>.....  ..<font color=blue>.</font>..<font color=blue>.</font>.W.........<font color=blue>.</font>...<font color=blue>.</font>.....  ..<font color=blue>.</font>..<font color=blue>.</font>.W.<font color=red>C</font>.......<font color=blue>.</font>...<font color=blue>.</font>.....  ..<font color=blue>.</font>..<font color=blue>.</font>.W.........<font color=blue>.</font>...<font color=blue>.</font>.....  ..<font color=blue>.</font>..<font color=blue>.</font>.


Excluding pseudogenes, a [http://weblogo.berkeley.edu/logo.cgi weblogo] from an alignment of the remaining placental PRDM7 and PRDM9 genes illustrates the location of potential CpG mutations relative to conserved residues. These will be relatively high frequency disease alleles. In the initial KRAB domain, the potentially affected arginines are not especially well-conserved. However, at the first site, neither histidine nor cysteine is part of the reduced alphabet ans so these changes are unlikely to be tolerated. At the second and third sites, glutamine does occur secondarily in some species (cow, sheep and muntjac) and murid rodents, respectively. These changes are thus borderline for adverse effects on functionality.
A [http://weblogo.berkeley.edu/logo.cgi weblogo] based on alignment of placental mammal PRDM7 and PRDM9 genes (with pseudogenes excluded) illustrates the location of expected CpG mutations relative to conserved residues. These will be relatively high frequency loss-of-function  alleles (not affecting health per se if only reproductive meiosis is affected).
 
In the initial KRAB domain, the potentially affected arginines are not especially well-conserved. However, at the first site, neither histidine nor cysteine is part of the reduced alphabet so these changes are unlikely to be tolerated in meiotic functioning. At the second and third sites, glutamine does occur secondarily in some species (cow, sheep and muntjac) and murid rodents, respectively. These changes are thus borderline for adverse effects on functionality.


[[Image:KRAB9logo.png|KRAB9logo.png]]
[[Image:KRAB9logo.png|KRAB9logo.png]]
<br clear=all>


In terms of potentially protective upstream CpG islands, PRDM9 has none. Three occur somewhat near the start of PRDM7 but do not extend into the coding region and may not be associated at all with this gene. Thus cytidines would be methylated in both coding regions, rendering them susceptible to hotspot mutations. The composite snapshot below from the UCSC human genome browser shows CpG islands relative to the two genes.
=== Sequence analysis of human variation ===  
 
[[Image:CpGislandsPR.gif|left]]
<br clear=all>


=== PRDM9 human variation ===
The PRDM9 terminal zinc finger array varies extensively in human, with significant consequences for  hotspot recognition motif, distribution of recombination location options along the chromosomes,  population history (linkage disequilibrium), and chromosomal rearrangement diseases. No other species -- notably other great apes -- has been surveyed to any extent for individual variation (with the exception of mouse PRDM7 where hybrid sterility was first mapped).


The PRDM9 terminal zinc finger array varies extensively in human, with significant consequences for  hotspot recognition motif, distribution of recombination location options along the chromosomes,  population history (linkage disequilibrium), and chromosomal rearrangement diseases. No other species -- notably other great apes -- has been surveyed to any extent for individual variation (with the exception of mouse PRDM7 where hybrid sterility was first mapped). For these species, we have only the sequence of the animal selected for genome sequencing and so have no idea whether human variation is unique or typical. For example with chimp, Genbank contains only an uncurated mistaken gene prediction XM_517829 and an array fragment GU166820 with a disturbing number of differences to chimp reference genome. Mouse has considerable variation in its zinc finger array but the strains involved are highly inbred and not necessarily representative of natural wild mouse diversity.
For these species, we have only the sequence of the animal selected for genome sequencing and so have no idea whether human variation is unique or typical. With high priority chimp, Genbank contains only an uncurated erroneous gene prediction XM_517829 and an array fragment GU166820 with a disturbing number of differences to chimp reference genome. Gorilla is worse. Mouse has considerable variation in its zinc finger array but the strains involved are highly inbred and not necessarily representative of wild mouse diversity.


Cheap short reads mapped to human reference as SNPs prove highly unsatisfactory for genes like PRDM9 where individuals differ not only at pointwise sites but also in wholesale repeat number. Several labs have reported novel repeat multiples but found an hour of resequencing too tedious; others assumed all possible arrays were already reported and forced read assembly into one of these pre-existing classes; others left their discoveries as article graphics or behind firewall supplemental, not troubling themselves with GenBank entries, with [http://www.ncbi.nlm.nih.gov/nuccore/HM211006,HM211005,HM211004,HM211003,HM211002,HM211001,HM211000,HM210999,HM210998,HM210997,HM210996,HM210995,HM210994,HM210993,HM210992,HM210991,HM210990,HM210989,HM210988,HM210987,HM210986,HM210985,HM210984,HM210983 notable exceptions]. Even if certain arrays are rare, they provide invaluable information on the genetic mechanisms by which repeat number variation arises.
Cheap short reads mapped to human reference as SNPs prove highly unsatisfactory for genes like PRDM9 where individuals differ not only at pointwise sites but also in wholesale repeat number. Several labs have reported novel repeat multiples but found an hour of re-sequencing too tedious; others assumed all possible arrays had already been reported and forced reads into one of these pre-existing classes; others left their discoveries as article graphics, behind firewall or in supplemental, not troubling themselves with GenBank entries, with [http://www.ncbi.nlm.nih.gov/nuccore/NM_020227,FJ899869,FJ899872,FJ899895,FJ899905,GU183914,GU183915,GU183916,GU183917,GU183918,GU183919,GU216222,GU216224,GU216225,GU216226,GU216227,GU216228,GU216229,HM210983,HM210984,HM210985,HM210986,HM210987,HM210988,HM210989,HM210990,HM210991,HM210992,HM210993,HM210994,HM210995,HM210996,HM210997,HM210998,HM210999,HM211000,HM211001,HM211002,HM211003,HM211004,HM211005,HM211006 laudable exceptions]. Even if certain arrays are rare, they provide invaluable information on the genetic mechanisms by which repeat number variation arises.


[[Image:PRDM9gubi.gif|left]]
[[Image:PRDM9gubi.gif|left]]


It appears that few individual human genome or exome projects really gathered enough data to allow ab initio assembly of the zinc finger repeat array, or even when they did, walked away from that exercise, deposited their mess at the Short Read Archive and then claimed SNPs relative to human reference, contaminating that resource with error.  
It appears that few individual human genome or exome projects really gathered enough data to allow ab initio assembly of the zinc finger repeat array, or even when they did, walked away from that exercise, deposited a mess of indels and base miscalls at the Short Read Archive and then claimed SNPs relative to human reference, contaminating that resource with error.  


This is very unfortunate in the case of both basal and ancient human dna, which might record intermediate or population-specific stages in the evolution of human PRDM9. Extracting accurate bushman, paleo-eskimo, neanderthal, and denisova PRDM9 zinc finger arrays requires starting from scratch from raw read data. This may however be impossible due to inadequate coverage and confusion of short reads with PRDM7 and even within PRDM9.


Here PSU provides an [http://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks excellent display] of reads (along with quality scores) reported by the various projects. The final exon of PRDM9 can be viewed (noting PSU uses hg18 coordinates) at chr5:23562098-23562523 for the early region and chr5:23562524-23563636 for the terminal zinc finger array. Viewing the display to dense mode shows the extent of tiliing: it does not appear that adequate coverage  was obtained in the critical cases. Here it cannot be assumed that the zinc finger array of say bushman (who represent the earliest diverging living relative of Europeans) will resemble any of the extensively sequenced West African variants (Yoriba).
This is very unfortunate in the case of both basal and ancient human dna, which might record intermediate or population-specific stages in the evolution of human PRDM9. Extracting accurate bushman, paleo-eskimo, neanderthal, and denisova PRDM9 zinc finger arrays requires starting from scratch from raw read data. This may however be impossible due to inadequate coverage and confusion of short reads with PRDM7 and even within PRDM9, not to mention other closely related zinc finger proteins.  


<br clear=all>
Here PSU provides an [http://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks excellent display] of reads (along with quality scores) reported by the various projects. The final exon of PRDM9 can be viewed (noting PSU uses hg18 coordinates) at chr5:23562098-23562523 for the early region and chr5:23562524-23563636 for the terminal zinc finger array. Viewing the display to dense mode shows the extent of tiling: it does not appear that adequate coverage  was obtained in the critical cases. Here it cannot be assumed that the zinc finger array of bushman (who represent the earliest diverging living relative of Europeans) will closely resemble extensively sequenced West African variants (Yoriba). The best that can currently be done with bushman genome is VKYGECGQGFSVKSDVITHQRTHTGEKL YVCRECGRGFSWKSHLLIHQRIH ... YHQRTHTGEKP YVCREDE* which matches hg19 human reference sequence without shedding any light on internal repeat length or sequence variation.


Although the zinc finger array conveniently resides in a single exon, that exon is almost never sequenced in its entirety. It has never been sequenced as a byproduct of an expression project. Consequently we have no idea its early zinc finger covaries with the terminal array nor any understanding of the constraints acting on the long bridging domain.
Although the zinc finger array conveniently resides in a single exon, that exon is almost never sequenced in its entirety. It has never been sequenced as a byproduct of an expression project. Consequently we have no idea its early zinc finger covaries with the terminal array nor any understanding of the constraints acting on the long bridging domain.


  PRDM9_homSap  EPKPEI<span style="color: #0066CC;">HP<span style="color: #FF0000;">C</span>SC<span style="color: #FF0000;">C</span>LAFSSQKFLSQ<span style="color: #FF0000;">H</span>VERN<span style="color: #FF0000;">H</span>SSQN</span>FPGPSARKLLQPENPCPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK<span style="color: #0066CC;">VK<span style="color: #FF0000;">Y</span>GE<span style="color: #FF0000;">C</span>GQGFSVKSDVIT<span style="color: #FF0000;">H</span>QRT<span style="color: #FF0000;">H</span>TGEKL</span>
                      10        20        30        40        50        60        70        80        90      100      110      120      130      140      150      160      170
                        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
  PRDM9_homSap  EPKPEI<span style="color: #0066CC;">HP<span style="color: #FF0000;">C</span>PSC<span style="color: #FF0000;">C</span>LAFSSQKFLSQ<span style="color: #FF0000;">H</span>VERN<span style="color: #FF0000;">H</span>SSQN</span>FPGPSARKLLQPENPCPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK<span style="color: #0066CC;">VK<span style="color: #FF0000;">Y</span>GE<span style="color: #FF0000;">C</span>GQGFSVKSDVIT<span style="color: #FF0000;">H</span>QRT<span style="color: #FF0000;">H</span>TGEKL</span>
  PRDM9_panTro  ...............................................................R................................................................A........................D.............G.P
  PRDM9_panTro  ...............................................................R................................................................A........................D.............G.P
  PRDM9_gorGor  .........................................T.....................R.........................................................................................................P
  PRDM9_gorGor  .........................................T.....................R.........................................................................................................P
Line 442: Line 750:
  PRDM9_nomLeu  ...A......................A.H.............F.................S..R.C...............................S..V...........I..-.............Q...........E............................
  PRDM9_nomLeu  ...A......................A.H.............F.................S..R.C...............................S..V...........I..-.............Q...........E............................
  PRDM9_macMul  ...............................T.........R.F....L.S.........S..R.C.....................PK................S...E.M....Y........E...........................D.....I.........P
  PRDM9_macMul  ...............................T.........R.F....L.S.........S..R.C.....................PK................S...E.M....Y........E...........................D.....I.........P
  PRDM9_papHam  ...............................T.........R......L.S.........S..C.C......................K................S...E.M.............E.I.....E...................D....VI......R..P
  PRDM9_papHam  ...............................T...R.....R......L.S.........S..R.C....................R.K................S...E.M...........S.E.I.........................D....VI.........P
  PRDM7_calJac  .S.....................H.............T.T............K.KE....F..CNS........T........I......MA....N........S..EE.M.............VD...............A..........DM...TG.........P
  PRDM7_calJac  .S.....................H.............T.T............K.KE....F..CNS........T........I......MA....N........S..EE.M.............VD...............A..........DM...TG.........P
  PRDM7_micMur  ............S.............KHT....IS.RT.G..H................HS....C...A.D..V...P.PFH.K.Q..G...........K.....E........P......G..D.D..CAAG.....SR....DS..S..D..N..I.........P
  PRDM7_micMur  ............S.............KHT....IS.RT.G..H................HS....C...A.D..V...P.PFH.K.Q..G...........K.....E........P......G..D.D..CAAG.....SR....DS..S..D..N..I.........P
Line 449: Line 757:
A '''terrible error''' was made early on in human PRDM9 variant nomenclature. It is completely unacceptable for PRDM9 to have a private system for naming zinc fingers that stands in conflict with dozens of previously established crystallographic structures, SwissProt, SCOP and PFAM practice, and nomenclature for the other 842 zinc fingers encoded in the human genome.  
A '''terrible error''' was made early on in human PRDM9 variant nomenclature. It is completely unacceptable for PRDM9 to have a private system for naming zinc fingers that stands in conflict with dozens of previously established crystallographic structures, SwissProt, SCOP and PFAM practice, and nomenclature for the other 842 zinc fingers encoded in the human genome.  


Wrong as it is, the current nomenclature will not be easy to displace. However this site will utilize a nomenclature consistent with physical structure and comparative genomics while providing a 'translation' table to various misguided motif naming systems.
Wrong as it is, the current nomenclature will not be easy to displace. However this site uses a nomenclature consistent with physical structure, comparative genomics and historical precedent throughout and only provides a partial translation table to the numerous misguided motif naming systems.


The mistake arose because the first and last zinc fingers in primate PRDM9 are mildly anomalous. However it is exceedingly common even for internal zinc fingers to depart from canonical form, even to admit different spacings and substitutions in the C2H2 ligands, as well depart in length and cap domain. Zinc finger arrays commonly terminate in fragmentary motifs that often continue for a while in another reading frame (ie, represent non-3n indels with run-on to the next encountered stop codon).  
The mistake arose because the first and last zinc fingers in primate PRDM9 are mildly anomalous. However it is exceedingly common even for internal zinc fingers to depart from canonical form, even to admit different spacings and substitutions in the C2H2 ligands, as well depart in length and cap domain. Zinc finger arrays commonly terminate in fragmentary motifs that often continue for a while in another reading frame (ie, represent non-3n indels with run-on to the next encountered stop codon).  
Line 457: Line 765:
Some 7,000 of the overall ten thousand zinc fingers end in a structurally distinct cap unit, typically TGEKP. This was shown long ago to lock the zinc finger down after scanning and has found the recognition sequence. Proteins with a single zinc finger still have this motif. It occurs at the end -- not the beginning -- of the main zinc binding region. Proline is no accident here: as a cyclic imino acid, it is structurally terminating for helix and sheet.
Some 7,000 of the overall ten thousand zinc fingers end in a structurally distinct cap unit, typically TGEKP. This was shown long ago to lock the zinc finger down after scanning and has found the recognition sequence. Proteins with a single zinc finger still have this motif. It occurs at the end -- not the beginning -- of the main zinc binding region. Proline is no accident here: as a cyclic imino acid, it is structurally terminating for helix and sheet.


In summary, zinc fingers begin 5 residues before the second zinc cysteine, not at the second cysteine as in the 'L' nomenclature. Human PRDM9 begins with a full length zinc finger, but with a lysine at position 2 replacing the usual branched aliphatic, a tyrosine at position 3 replacing the first cysteine and a leucine replacing the terminal proline: V<span style="color: #FF0000;">KY</span>GECGQGFSVKSDVITHQRTHTGEK<span style="color: #FF0000;">L</span>. These oddities became stably established in the theran ancestor 135 myr ago (though departures -- and even the expected residues -- are seen in some species). Otherwise, the first zinc finger is quite conventional. The terminal leucine surprisingly is seen in all reported human variants. While the first zinc finger assuredly has the zinc finger fold and likely binds zinc to some extent, it likely does not function directly in specific dna motif recognition. Its role may more that of a macro cap, facilitating the lineup of downstream zinc fingers.  
In summary, zinc fingers begin 5 residues before the second zinc cysteine, not at the second cysteine as in the 'ABCD...' nomenclature. Human PRDM9 begins with a full length zinc finger, but with a lysine at position 2 replacing the usual branched aliphatic, a tyrosine at position 3 replacing the first cysteine and a leucine replacing the terminal proline: V<span style="color: #FF0000;">KY</span>GECGQGFSVKSDVITHQRTHTGEK<span style="color: #FF0000;">L</span>. These oddities became stably established in the theran ancestor 135 myr ago (though departures -- and even the expected residues -- are seen in some species). Otherwise, the first zinc finger is quite conventional. The terminal leucine surprisingly is seen in all reported human variants. While the first zinc finger assuredly has the zinc finger fold and likely binds zinc to some extent, it likely does not function directly in specific dna motif recognition. Its role may more that of a macro cap, facilitating the lineup of downstream zinc fingers.  


Similarly, the terminal YVCRE<span style="color: #FF0000;">DE</span>* fragment, with its anomalous charged aspartate and glutamate in place of cysteine and glycine, is not zinc binding or part of a dna recognizing motif but simply a partial end cap. It has persisted (imperfectly) since the boreoeutheran ancestor so evidently provides significant value. In many laurasiatheres it is YCRECE or even YRCREG. Even a canonical hexapeptide cannot reach across the preceding TGEKP cap to displace zinc binding residues of the last full repeat, nor can the six residues circle around to displace the first five residues of first repeat. Instead, these residues form the start of an additional fold, enough to that keep the repeat array from unravelling.
Similarly, the terminal YVCRE<span style="color: #FF0000;">DE</span>* fragment, with its anomalous charged aspartate and glutamate in place of cysteine and glycine, is not zinc binding or part of a dna recognizing motif but simply a partial end cap. It has persisted (imperfectly) since the boreoeutheran ancestor so evidently provides significant value. In many laurasiatheres it is YCRECE or even YRCREG. Even a canonical hexapeptide cannot reach across the preceding TGEKP cap to displace zinc binding residues of the last full repeat, nor can the six residues circle around to displace the first five residues of first repeat. Instead, these residues form the start of an additional fold, enough to that keep the repeat array from unraveling.


(to be continued shortly)
Below the available diversity at GenBank is shown, with the 0th GEKL repeat removed because it has no variation. Also the longest allele has its last two repeats removed to shorten the display width. The terminal fragment is also not shown. Redundant sequences have been largely removed from the set of 42. The alignment is shown at the protein level because synonymous dna variation is largely irrelevant to function.
[[Image:Prdm9HumVarAlign.gif|left]]
<br clear=all>
If all [http://www.ncbi.nlm.nih.gov/nuccore/NM_020227,FJ899869,FJ899872,FJ899895,FJ899905,GU183914,GU183915,GU183916,GU183917,GU183918,GU183919,GU216222,GU216224,GU216225,GU216226,GU216227,GU216228,GU216229,HM210983,HM210984,HM210985,HM210986,HM210987,HM210988,HM210989,HM210990,HM210991,HM210992,HM210993,HM210994,HM210995,HM210996,HM210997,HM210998,HM210999,HM211000,HM211001,HM211002,HM211003,HM211004,HM211005,HM211006 42] human variant zinc finger array alleles at GenBank are collected, parsed into their zinc fingers and aligned for their differences relative to the genomic reference sequence, 25 variant fingers emerge at varying frequencies of occurrences. These are provided below, ordered by subgroup. The full sequence, allele name of the original investigators and representative accession are also given.


== Domain by domain structure/function ==
As previously observed, variation at the amino acid level is overwhelmingly concentrated at that handful of internal positions recognizing dna bases in the major groove. Furthermore, the amino acid substitutions are strongly concentrated within only 9 of the 20 available amino acids. These observations raise the question of how ordinary random mutational processes could possibly have produced these results. Perhaps variation elsewhere results in failed meiosis, causing these to disappear immediately, leaving only the observed variation.


PRDM7 and PRDM9 are chimeric proteins comprised of 6 recognizable domains joined by linker regions. While multi-domain proteins are common in the overall human proteome, this particular combination occurs nowhere else. However some of the domains here occur in other combinations in other proteins, notable in the vast heterogeneous family of zinc finger proteins (gene names ZNFxxx).
Note in the table below (whose underlying data is [http://genomewiki.ucsc.edu/index.php/File:ZNFvariation.pdf here]) that threonine appears as a very common alternative to isoleucine outside the critical region (between the two zinc-binding histidines): YVCRECGRGFSWKSHLLIHQR<span style="color: #FF0000;">I</span>HTGEKP. This is actually an oddity of the first GEKP repeat: T is found here in all other primates (ie ancestrally), not I. As bushmen also have I here, this allele was fixed prior to their divergence at 70,000 years.


  KRAB_A Kruppel
            Human Variation in 507 Zinc Fingers in 42 PRDM9 Variants
  SSXRD
Difference to NM refSeq    Freq  Full length zinc finger      Accession Allele  Great Ape Zinc Finger Variation
  zinc knuckle
  PR of SET domain
YVCRECGRGFSWKSHLLIHQRIHTGEKP  39  YVCRECGRGFSWKSHLLIHQRIHTGEKP NM_020227 ref      YVCRECGRGFSWKSHLLIHQRIHTGEKP    homSap
  early zinc finger
......................R.....    1  YVCRECGRGFSWKSHLLIHQRIRTGEKP FJ899869    7      .................S...T...... 1  panTro
  terminal zinc finger array
............Q.V..T...T......  100  YVCRECGRGFSWQSVLLTHQRTHTGEKP NM_020227 ref      ...........V..S..S...T...... 6  panTro
............Q.V..S...T......  22  YVCRECGRGFSWQSVLLSHQRTHTGEKP GU216222    A      ...........V..S..S.RTT...... 1  panTro
............Q.V..R...T......  13  YVCRECGRGFSWQSVLLRHQRTHTGEKP GU183919  CH3      ...........VQ.N..S...T.....L 1  panTro
......R.....Q.V..T...T......    1  YVCRECRRGFSWQSVLLTHQRTHTGEKP HM211000  L18      ...........QQ.N..S...T...... 1  panTro
............Q.VP.T...T......    1  YVCRECGRGFSWQSVPLTHQRTHTGEKP FJ899895  18a      ...........RQ.A......T...... 1  panTro
...........N.....R...T......  65  YVCRECGRGFSNKSHLLRHQRTHTGEKP NM_020227 ref      ......E....QQ....R...T...... 1  panTro
..........RN.....R...T......  39  YVCRECGRGFRNKSHLLRHQRTHTGEKP NM_020227 ref      ...........QQ....R...T...... 2  panTro
..........RK.....R...T......    1  YVCRECGRGFRKKSHLLRHQRTHTGEKP GU183915  AA2      ...........QQ....S...T...... 2  panTro
..........RD.....S...T......  14  YVCRECGRGFRDKSHLLSHQRTHTGEKP GU216229    I      ...........KQ....S...T...... 2  panTro
..........RD.....R...T......  27  YVCRECGRGFRDKSHLLRHQRTHTGEKP NM_020227 ref      ...........RQ.V......T...... 1  ponAbe
..........RD..N..S...T......  48  YVCRECGRGFRDKSNLLSHQRTHTGEKP NM_020227 ref      ...........RR.V......T...... 1  ponAbe
..........RD..P..S...T......    1  YVCRECGRGFRDKSPLLSHQRTHTGEKP GU183915  AA2      ...........QQ.V......T...... 1  ponAbe
..........RD..N..S...T...D..    4  YVCRECGRGFRDKSNLLSHQRTHTGDKP GU183915  AA2      ...........RR.V......T...... 1  ponAbe
..........RDE.N..S...T......    2  YVCRECGRGFRDESNLLSHQRTHTGEKP HM211006  24L      ..............V..R...T...... 1 ponAbe
  ..........RDQ....S...T......    1  YVCRECGRGFRDQSHLLSHQRTHTGEKP GU183919  CH3      ...........QQ.VVF....T...... 1  ponAbe
  ...........RQ.V..T...T......    2  YVCRECGRGFSRQSVLLTHQRTHTGEKP FJ899905  10b      ...........G..V.FR...T...... 1  ponAbe
...........RQ.V..T...R......  79  YVCRECGRGFSRQSVLLTHQRRHTGEKP NM_020227 ref      ...........D..GVCY...T...... 1  ponAbe
...........RQ.V..T...G......    2  YVCRECGRGFSRQSVLLTHQRGHTGEKP FJ899872  10      ...........V..N..S...T..E..L 1  ponAbe
...........RQ.V..S...T......    1  YVCRECGRGFSRQSVLLSHQRTHTGEKP GU216228    H      ...........D..S..R...T...... 3  nomLeu
...........NQ.V..T...T......    1  YVCRECGRGFSNQSVLLTHQRTHTGEKP GU183916 AA11      ...........K..N..S...T...... 1  nomLeu
  ...........DQ.V..T...T......    1  YVCRECGRGFSDQSVLLTHQRTHTGEKP GU183916 AA11      ...........V..N..S...T...... 1  nomLeu
  ...........DR.S.CY...T......  37  YVCRECGRGFSDRSSLCYHQRTHTGEKP HM210983  L1      ...........Q..S..S...T...... 3  nomLeu
  ...........DR.S.CY...T..MSKS    5  YVCRECGRGFSDRSSLCYHQRTHTMSKS GU183916 AA11      .L.........V..S..S...T...... 1  nomLeu
                              507


Because the inter-domain linkers are evolving chaotically in terms of little amino acid property conservation and sometimes length, they cannot plausibly be under significant selective pressure, nor can they assume a stable structural fold. However this does not imply that the domains that they link do not have significant physical interactions important to the global tertiary protein structure. To date, only the isolated domains have been studied crystalographically (with the exception of the knuckle-PR combination).
When the 42 variants are aligned at the dna level, synonymous variation might be anticipated more or less evenly across the repeat array under the assumption that natural selection acts here only at amino acid level. However this is not the case as shown in the graphic below. For example, the GEKL repeat has no variation whatsoever despite numerous 4N codons. Elsewhere, synonymous variation is again highly concentrated at residues important to meiotic repeat recognition. This suggests a novel mutational mechanism exists that focuses change at the key regions, at a rate far above the genomic average. Conceivably the dna itself might have additional hairpin structure that exposes the critical regions to enhanced mutation. Such a speculative structure would fit with replication slippage varying the number of array repeats. This mechanism can also sweep out variation. Alternatively, the observed distribution of synonymous variation could arise via hypothetical mRNA editing in conjunction with a retroposon-like or copy-editing mechanism. A third option envisions another protein recognizing the dna encoding the repeats and acting upon them to provide variation.


While the domain folds individually are quite ancient and do not reflect de novo innovation in vertebrates from random dna strings, their assembly into PRDM7/9 is fairly recent, about 150 million years ago. Prior to this, a proto-PRDM7 containing the last 4 domains arose and persisted for 300 million years, giving rise to several gene duplicates, all with vaguely understood function related to transcriptional regulation.
[[Image:PRDM9syn.gif]]


The following sections consider what is known about each domain in turn primarily from the perspective of comparative genomics. As of July 2011, 51 land vertebrate genomes are available, providing a rich history of how PRDM7 has been evolving in various branches of the phylogenetic tree.
The terminal zinc finger array in the human reference sequence (but not chimp or orangutan) has a two-block structure. That is, the repeats 3-7.5 have a high degree of internal self-similarity as do repeats 7.6-13.4. However these two blocks are markedly dissimilar to each other, primarily due to transversions (rather than transitions C<->T or A<->G). The genetic code is such that transversions give rise to markedly less conservative amino acid substitutions in both physical and dna binding properties, as can be readily seen at the protein level for human PRDM9.  


=== Reciprocal translocation: origin of the SSX1-PRDM chimera ===
The origin of the two-block feature cannot be dated accurately because of limited sampling of individuals in great apes but is likely specific to human (or even to some human populations). It is closely correlated with the history of repeat contraction and expansion in this rapidly changing region of the gene. Note the zinc finger array is neither a [http://en.wikipedia.org/wiki/Microsatellite_%28genetics%29 microsatellite] being 84 bp long vs the requirement of 1-6 bp nor a [http://en.wikipedia.org/wiki/Minisatellite minisatellite].


Upon blastp of the first 6 exons of any PRDM7/9 protein against GenBank restricted to human, SSX1 emerges as the only full length non-self match. Comparison of its 6 exons establishes further that their intron phasing is an exact match. Since this is impossibly coincidental, it follows that PRDM7 (the immediate parent of PRDM9 in primates) arose as a chimera of ancestors to these two proteins prior to marsupial divergence. The percent identity has dropped from the initial perfect agreement to 32% today, without however loss of KRAB_A and SSXRD domain recognizability in either gene family. No other proteins in the human genome -- in particular no zinc finger proteins -- contain these 6 exons though the KRAB domain alone is widespread.
[http://www.vivo.colostate.edu/molkit/dnadot/ Dotplots] can create visual artifacts, depending on scanning window and mismatch settings. Here the two-block structure is highly robust to exploration of parameter space and its basis is readily apparent at both the dna and protein sequence levels.


>SSX1_homSap                                      >PRDM9_homSap
[[Image:Prdm9Blocks.gif]]
<span style="color: #0066CC;">0 MNGDDTFAKRPRDDAKASEKRSK 0                        0 MSPEKSQEESPEEDTERTERKPM 0</span>
<br clear = all>
<span style="color: #990099;">0 AFDDIATYFSKKEWKKMKYSEKISYVYMKRNYKAMTKL 1        0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1</span>
A very recent [http://www.pnas.org/content/108/30/12378.full.pdf+html?with-ds=yes PNAS article] looks at many human meioses and assigns the recognition sequence to the distal region of the zinc finger array (in Fig 1D and supplemental S2), which corresponds to the second block identified above. That raises the question whether the two blocks evolve by different non-mixing mutational mechanisms and leaves unexplained the functional tasks implied by observed conservation of the first block. The lack of block structure in chimpanzee PRDM9 illustrates once again that meiotic initiation is evolving in many different directions.
<span style="color: #0066CC;">2 GFKVTLPPFMCNKQATDFQGNDFDNDHNRRIQ 1              2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1</span>
<span style="color: #990099;">2 VEHPQMTFGRLHRIIPK 0                              2 VKPPWMALRVEQRKHQK 0</span>
<span style="color: #0066CC;">0 IMPKKPAEDENDSKGVSEASGPQNDGKQLHPPGKANISEKINKRS 1  0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL 1</span>
<span style="color: #990099;">2 GPKRGKHAWTHRLRERKQLVIYEEISDPEEDDE*              2 ELRKKETERKMYSLRERKGHAYKEVSEPQDDDYL 1</span>
PRDM9 <span style="color: #0066CC;">MSPEKSQEESPEEDTERTERKPM</span><span style="color: #990099;">VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI</span><span style="color: #0066CC;">GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ</span>
      <span style="color: #0066CC;">M+ + +  + P +D + +E++  </span><span style="color: #990099;"> K AF DI+ YF+K+EW +M  EK  Y  +KRNY A+  +</span><span style="color: #0066CC;">G + T P FMC+ +QA  Q +D    D +   R Q</span>
SSX1  <span style="color: #0066CC;">MNGDDTFAKRPRDDAKASEKRSK</span><span style="color: #990099;">---AFDDIATYFSKKEWKKMKYSEKISYVYMKRNYKAMTKL</span><span style="color: #0066CC;">GFKVTLPPFMCN-KQATDFQGNDF---DNDHNRRIQ</span>
PRDM9 <span style="color: #990099;">VKPPWMALRVEQRKHQK</span><span style="color: #0066CC;">GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL</span><span style="color: #990099;">ELRKKETERKMYSLRERKGHA-YKEVSEPQDDDYL 1</span>
      <span style="color: #990099;">V+ P M      R  K</span><span style="color: #0066CC;"> MPK    +E+  K +S      ASG +  K + P G+A+ S + ++  </span><span style="color: #990099;">  ++      + LRERK    Y+E+S+P++DD    </span>
SSX1  <span style="color: #990099;">VEHPQMTFGRLHRIIPK</span><span style="color: #0066CC;">IMPKKPAEDENDSKGVSE------ASGPQNDGKQLHPPGKANISEKINK-RS</span><span style="color: #990099;">GPKRGKHAW-THRLRERKQLVIYEEISDPEEDDE*  </span>


This chimera arose subsequent to the duplication of proto-PRMD7 and its divergence to PRDM11, its nearest PRDM relative which has leading exons unrelated to SSX1. Indeed none of the other 14 PRDM proteins have a KRAB or SSXRD domain. The SSX1 gene itself, then and now, lies in a tandem array and so did not disappear as a standalone gene family as only one copy was used up in forming the hybrid protein. For viability, the event was likely a reciprocal translocation, accounting for the SSX array and PRDM7 being on different chromosomes today.
[[Image:BergRecogn.gif|left]]
<br clear = all>


The SSX1-group genes occurs in the human reference genome as 11 features in two nearby clusters both on chromosome X. Some of these may be pseudogenes. The degree of similarity suggests recent gene duplication and/or gene conversion. The array is notorious for reciprocal translocations involving the one of 24 human synaptotagmins, the SYT4 gene on chromosome 18. These translocations [http://www.ncbi.nlm.nih.gov/pubmed/11368913 fuse] early exons of SYT4 with distal exons of an SSX gene, usually SSX1 or SSX2 but sometimes SSX4. The event takes place within intron 4 of the SSX genes and preserves reading frame, allowing for a chimeric protein with diseasterous regulatory properties to emerge -- nearly all cases of synovial sarcomas arise from repeated occurrence of this event.
=== Rate of proximal PRDM9 evolution in primates ===


SSX1b  +  chrX:47967088-47980069  similar to SSX1
The rate of evolution of human PRDM9 at the protein level -- excluding special evolution in the terminal zinc array -- is rapid but perhaps not unusually so. A rate anomaly can only be defined relative to the rather skewed rate distribution of the human proteome (20,000 loci). However a better comparison might be just to rates of the many other KRAB, SSXRD and PR(SET) domains in the proteome and to linker regions which are often under little selection. These regions have mediocre conservation in general and so a rapid rate there for PRDM9 has no immediate implications for its association with meiosis or protein binding partners.
SSX5  - chrX:48045656-48056199  synovial sarcoma X breakpoint 5
 
SSX1a  +  chrX:48114797-48126879  synovial sarcoma X breakpoint 1
The fact that PRDM9 is a recent gene duplicate of PRDM7 adds another rate complication, as gene duplicates often exhibit rapid initial evolution as the copies subfunctionalize, a problem exacerbated here by functional persistence of a variously truncated PRDM7 in some primate lineages. Independent duplications of PRDM7 (eg afrotheres and pecorans) further complicate rate considerations outside of primates.
SSX9  -  chrX:48154885-48165614  synovial sarcoma X breakpoint 9
 
SSX3  -  chrX:48205863-48216142  synovial sarcoma X breakpoint 3
Together, these considerations make it difficult to define a meaningful 'peer group' in any major clade by which to benchmark the rate of PRDM7/9 evolution. However by any measure this gene family is not evolving slowly in placental mammals, perhaps surprising because excluding the zinc finger array leaves domains with seemingly fixed and demanding functionality. That is, the KRAB domain is co-evolving with its protein binding partners which are under many other constraints. The histone substrate for methylation is exceedingly conserved but the PR(SET) catalytic domain of PRDM9 is not, despite its narrow specificity.
SSX4  +  chrX:48242968-48252785  synovial sarcoma X breakpoint 4
 
SSX4B  -  chrX:48261524-48271344  synovial sarcoma X breakpoint 4B
The difference alignment below shows change localization relative to human functional domains within other primate PRDM9. The comparison includes catarrhine PRDM7 corrected where needed for frameshifts and stop codons as well as PRDM7 from euarchontal species that diverged before the gene duplication. The 532 residues are relatively free of deletions or insertions.
SSX8  +  chrX:52651985-52662998  similar to SSX8
 
SSX7  -  chrX:52673111-52683950  synovial sarcoma X breakpoint 7
None of the four sites where human diverges from long-established consensus (R5K, P155S, G178R, R445H) are CpG hotspots. With the exception of G178R, these are conservative substitutions in linker regions and likely near-neutral. G178R represents a radical change in amino acid properties within the SSXRD domain. However this is [[#Reciprocal_translocation:_origin_of_the_SSX1-PRDM_chimera|not a conserved residue]] in the parental SSX1 domain.
SSX2a  - chrX:52725946-52736249  synovial sarcoma X breakpoint 2
SSX2b  +  chrX:52780308-52790617  synovial sarcoma X breakpoint 2


Possibly the SSX1 array has long been predisposed to translocation events. It might seem very difficult to establish the structure of the ancestral array at the time of PRDM chimera formation -- contemporary marsupial has barely related genes on different chromosomes; elephant and dog too lack a multi-gene array. However rhesus but not marmoset has a chr X cluster, so that aspect is restricted to old world primates. A single SSX1 gene can be recovered from elephant but is already quite diverged from human. Marsupials have no evident SSX1 genes today.
Sequencing accuracy is an issue here because some genes are missing exons altogether and other exons have only single trace coverage. Outside of human and mouse, only a single individual has been sequenced. However humans are not especially variable in the proximal region of the gene, only a single coding SNP is known to date (R113C), in marked contrast to the zinc finger array. Much more intensive sequencing of primates is essential to quantitative understanding recent evolution or PRMD9 -- the 16 species sampled so far represent [http://en.wikipedia.org/wiki/Primate only 5%] of living primate diversity. For example, the flying lemur divergence node is not represented at all.


This gene fusion of SSX1 and PRDM brought together a negative regulatory domain for transcription with a histone methylase and dna site recognition domain. This new combination succeeded in replacing whatever prior mechanism existed for meiotic breakpoint pairing and recombination.
                                      <------------------------ KRAB domain ------------------------>                cSNP:R113<font color=blue>C</font>                                                        <-------- SSXRD domain ---------><-------- zinc knuckle ---->                <---------------
<font color=blue>PRDM9_homSap  MSPEKSQEESPEEDTERTERKPMVKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITIGLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQVKPPWMALRVEQRKHQKGMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKLELRKKETERKMYSLRERKGHAYKEVSEPQDDDYLYCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWN
PRDM9_panTro  ....R...................................................................................................L.................................................P................K.....G....................................................................................
PRDM9_gorGor  ....R...................................................................................................C.................................................P......................G............................................I.......................................
PRDM9_ponAbe  ....R.......D.........T.....................................................................................................N.........E...................P.................S....GNT.............I.........-....................................T.....................
PRDM9_nomLeu  ....R..............Q..T......................................................................................M........................GA..................P.................R....G.....<font color=black>*</font>............................T...........I...T.G...............................
PRDM9_macMul  ....R.................T....................................................................................V....S...........N.......V.GM.....T............P...R.............R....G..............................................I.....E...............................
PRDM9_papHam  ----------------------------------------------------------------------------------------------------.......F....S....E...T............G.P...ST.........A..P.................R..A.G..................L.................................N...............................
</font><font color=brown>PRDM7_homSap  ....R.......G..........................................M.......V...........................................F.G..S...........N.....R...G.P....T.D..........P.................R....G...............I....................................................................
PRDM7_panTro  ....R...................................................................................................L.................................................P................K.....G....................................................................................
PRDM7_gorGor  ....R.......G........................................................Q.V............................-----------------.......N.........G.P....T............P...........R.....R....G...............I.K....................................R.............................
PRDM7_ponAbe  ....R......KG...........................T.................KT...............................................F.G..S...........N.........G.Q....T............P..........T..I...R....G.T..................................................................................
PRDM7_nomLeu  ----------------------------------------------------------------------------------------------------I.S....V....S...........N...G.....GSQ....T..<font color=black>*</font>...R.....P...........Q.....R....G.....<font color=black>*</font>............................T.......................H.........................
PRDM7_macMul  ----------------------------------------------------------------------------------------------------.......F....S....E...T..N.........G.P...ST.D..<font color=black>*</font>....A..P.................R....G.........R.....A..L.H............................N..N...............................
PRDM7_papHam  ....R..............W.......................................................................................V....S...........N.......V.GM.....T............P...R.............R....G..............................................I.....E...............................</font>
<font color=green>PRDM7_calJac  ....R.......G..G...Q............M..S.................M..................................................G..F..G.S...........G......K..G...V..T..P.........P.................R.D..E..........L.................I.............................HA........................
PRDM7_tarSyr  ...DR.P.D...G..G...C.SA.........................I..........T..A.....P........KR...PL.......................F....N.......R.PL.IV.......EM....<font color=magenta>^</font>T.D....W......<font color=magenta>^</font>.....E....K.I.F....I.VN........DC.....N...........Q..........T..I...IN....................................
PRDM7_micMur  ...N........V.AG..GW..TD...........S.....Q......I..........V........P.............H.................----------------------------------------------------------------------------------------------............K.......................................K.R.............
PRDM7_otoGar  ----------------------------------------------------------------....P...........T.YK..................H....F.M..S.R..ILK.CML.FNMH.....GP.S.P.I.....H..HM.SPR.........GR.SD..I..I.VR...........................K.......N..V.........T..E.......V....S..G.RT.......F....</font>
                ---------------------------- PR(SET) domain ------------------------------------------------------->                        <- early zinc finger -->
<font color=blue>PRDM9_homSap  EASDLPLGLHFGPYEGRITEDEEAANNGYSWLITKGRNCYEYVDGKDKSWANWMRYVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGI<font color=magenta>k</font>WGSKWKKELMAGREPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
PRDM9_panTro  ..............K.......................................................................................................................................................................R................................................................A.............
PRDM9_gorGor  ..............K.................................................................................................................................................T.....................R..............................................................................
PRDM9_ponAbe  ...................K..........................................................................................................................................................H....S..R.C............................................................................
PRDM9_nomLeu  ..................................................................................Q.......P........................T.E....A......................A.H.............F.................S..R.C...............................S..V...........I................Q...........E
PRDM9_macMul  ...................Q..................................................................................................................................T.........R.F....L.S.........S..R.C.....................PK................S...E.M....Y........E................
PRDM9_papHam  .....................K.................................----------------------------------------------------------------...............................T.........R......L.S.........S..C.C......................K................S...E.M.............E.I.....E........
PRDM7_homSap  ..........................S......................S............................................S.................................................................................R..S..RCC.......................................S...E.M..............................
</font><font color=brown>PRDM7_panTro  ..............K...................................................................................................................................................-.....<font color=black>*</font>.......R..S..RCC........V.........W............L.......S...E.M..............................
PRDM7_gorGor  .....................K....S...........................................L............................................T............................................................R..S..RCC..................<font color=black>^</font>....<font color=black>^</font>...............S...E.M..............................
PRDM7_ponAbe  .....................K......................................W.......................................................P...........................................H...A..............S..DCC...............................SA......S...E.M.....G........................
PRDM7_nomLeu  .................................................<font color=black>*</font>....K.......H...................Q.......P........................T.E...............V.T..........C.................R..............S.SR.C...............-...I...K.......L.......S...E.M..............................
PRDM7_macMul  .............C.......K....S........................K...----------------------------------------------------------------......Y................<font color=black>^</font>....................S..............S..S.C.........................L...T.........S...E.M....F.....A............E......
PRDM7_papHam  ...................Q.........................................................................................................Y......................................S..............S..S.C....................R..Q.L...T.........S...E.M.K..F.....A............E......</font>
<font color=green>PRDM7_calJac  .................V.......SS.............................................................................................S.....................H.............T.T............K.KE....F..CNS........T........I......MA....N........S..EE.M.............VD...............
PRDM7_tarSyr  ...E............Q..D......S........................................................I....................................T..K.L..S..S..L.....F....KC..PP.I...T....YV.......E.L.....QS....W...S.C..A.....PMH...Q...S..SL.N..TE.TE.S.EKE.M.K..PS.S...HL.D..YE.HHI.A.AAR-
PRDM7_micMur  ...E............QV........S....................D..............E...................Q.............................E..TIRQ............S.............KHT....IS.RT.G..H................HS....C...A.D..V...P.PFH.K.Q..G...........K.....E........P......G..D.D..CAAG.....SR
PRDM7_otoGar  .....Q..........QV........S....................E.QG...........E....................................................T..Q............S....T..........T.P..ISQ.T.G..N.R.QT...R.E.....HS..N..........V..M..TSH.K.Q.SR...I..C........S.E.E.MI...P.PD...G..D.E.FC.AI...G.V-
</font>
As expected, percent identity declines monotonically with increasing time of divergence. The rate of amino acid substitution, subject to the caveats above,  places PRDM9 in the lowest quartile of human protein conservation, but with thousands of proteins evolving still faster. Variability is noticeably but not exclusively concentrated in the linker between the KRAB and SSXRD domains and in the long terminal linker. Variation within the PR(SET) domain largely avoids deeply conserved residues defined from [[#Structural_alignment_of_all_PRDM_proteins|comparison]] of the 16 distinct PRDM genes and 35 additional SET domains in human.  


>SSX1_loxAfr
The table below shows percent amino acid difference relative to human, first for the entire 523 residues preceding the array and then separately for the three domains. Note the KRAB and PR(SET) are evolving slower than the overall proximal region while the SSXRD domain is changing more rapidly (however it is short so subject to wide rate swings).
0 VNRDSSLAKSSKEDTQKPEKESK 0
0 AFKDILKYFSKEEWAKLGYSKKVTYVYMKRNYDTMTNL 1
2 GLRATLPPFMDPNRLATKSQLDESDEEQNPGTQ 1
2 DEPPQMASSVRESKHLM 0
0 MKPKKPSKEENGSKVVPGTAGLMRTSGPEQAQKQPCPPGKANTSGQQSKQTP 1
2 VPGKEETKVWACRLRERKNLVAYEEISDPEEED*


=== The zinc knuckle preceding the PR (SET) domain ===
Missing exons were supplied here by merging incomplete sister taxa (lemurs) or taking them from the closest source (gibbon, gorilla, tree shrew PRDM7). Taken human/tree shrew divergence at [http://genomewiki.ucsc.edu/index.php/Phylogenetic_Tree 90 million years], roughly one substitution per million years has been occurring, much of it in the last exon between the early zinc finger and terminal array.


A 2011 [http://www.ncbi.nlm.nih.gov/pubmed/21604305 crystallographic study] establishes that a short motif YC..C..........C..HGP  found in 6 members of the human PRDM gene family binds zinc via the 3 cysteines and a histidine. The fold most closely resembles the previously known RanBP2 zinc finger domain which occurs in some 21 human proteins, notably nucleoporins NUP153, NUP358, NPL4, EWS, TLS, RBP56, RBM5, RBM10, TEX13A, RANDB2 and ZRANB2. Not all these domains are necessarily homologous because the fold is small and zinc fingers seem to have evolved numerous times. Such fingers can bind other proteins, ssRNA and likely DNA. Their function in PRDM genes is completely unknown but the aromatic residue preceding the first cysteine may contribute to a pi-bonding base stack with guanines.
In summary, the proximal region of PRDM9 is evolving quite differently than the zinc finger array. It is difficult to distinguish here between adaptive change, neutral drift, and substitutions driven by the role of PRDM9 in meiosis and recombination.


[[Image:KnuckleSET.jpg|left]]
        KRAB  SSXRD  PR(SET)               
100%  100%  100%  100%    PRDM9_homSap    Homo      sapiens    (human)
  98%  100%    93%    99%    PRDM9_panTro    Pan        troglodytes (chimp)
  98%  100%    96%    99%    PRDM9_gorGor    Gorilla    gorilla    (gorilla)
  96%  100%    84%    99%    PRDM9_ponAbe    Pongo      abelii      (orangutan)
  94%  100%    90%    98%    PRDM9_nomLeu    Nomascus  leucogenys  (gibbon)
  94%  100%    93%    99%    PRDM9_macMul    Macaca    mulatta    (rhesus)
  94%    96%    90%    97%    PRDM7_homSap    Homo      sapiens    (human)
  96%  100%    93%    99%    PRDM7_panTro    Pan        troglodytes (chimp)
  94%    96%    87%    97%    PRDM7_gorGor    Gorilla    gorilla    (gorilla fusion)
  93%    95%    90%    98%    PRDM7_ponAbe    Pongo      abelii      (orangutan)
  91%    n/a    90%    95%    PRDM7_nomLeu    Nomascus  leucogenys  (gibbon fusion)
  93%  100%    93%    99%    PRDM7_papHam    Papio      hamadryas  (baboon)
  90%    95%    87%    97%    PRDM7_calJac    Callithrix jacchus    (marmoset)
  80%    87%    78%    95%    PRDM7_tarSyr    Tarsius    syrichta    (tarsier)
  81%    90%    84%    92%    PRDM7_micMur    Microcebus murinus    (lemur fusion)
  73%    76%    75%    92%    PRDM7_tupBel    Tupaia    belangeri  (tree shrew)


The domain begins at a phase 2 exon, meaning that the first codon letter is borrowed from the preceding exon splice donor. A dozen earlier residues from this exon are also used but do not exhibit any conservation outside their orthology class. In most cases the knuckle domain exon also contains a downstream PR(SET) domain but at variable intervening lengths (distances shown are to conserved FGP in center of PR(SET) domain. The function of these intervening residues are unknown.
=== Variation in closely related ZNF proteins ===
<br clear=all>
 
exon 6    splice exon 7                    SET  gene name
Among the 843 human genetic loci encoding zinc fingers proteins, the arrays most closely resembling PRDM9 in length, structure and amino acid composition are ZNF133, HKR1, ZNF343, ZNF589, ZNF169, ZNF596. While the functions of these proteins are largely unknown, the first two have a KRAB domain, a spacer, early zinc finger in the terminal phase 2 exon, and a zinc finger array similar in size to human. The next two are similar but lack the spacer, with the KRAB domain encroaching into the final exon. The final two have only the KRAB domain and terminal array. Some 290 human gene products encode a KRAB domain.
IPLNQHTSDPNN 1 2 R<span style="color: #FF0000;">C</span>DM<span style="color: #FF0000;">C</span>ADNRNGE<span style="color: #FF0000;">C</span>PM<span style="color: #FF0000;">HGP</span>LHSLRRLVG .49. PRDM6_homSap
 
PDPPRPFDPHDL 1 2 W<span style="color: #FF0000;">C</span>EE<span style="color: #FF0000;">C</span>NNAHASV<span style="color: #FF0000;">C</span>PK<span style="color: #FF0000;">HGP</span>LHPIPNRPV .16. PRDM10_homSap
Here ZNF133 and the misnamed HKR1 are the best candidates for donating (via inhomogeneous recombination) the zinc finger array to the nascent PRDM7 which was already a chimer of KRAB, SSXRD and PR(SET) domains. The relationships here might instead go the other way (domain loss in PRDM) but different intronation of the KRAB domain is incompatible with that scenario. While none of the six ZNF is capable of histone methylation, KRAB domains are [http://www.ncbi.nlm.nih.gov/pubmed/11959841 capable of recruiting] SETDB1, a H3K9 methylase, partnering with the TIF1ß co-repressor protein (encoded by TRIM28), which interacts with many KRAB domains).
MAEDGSEEIMFI 1 2 W<span style="color: #FF0000;">C</span>ED<span style="color: #FF0000;">C</span>SQYHDSE<span style="color: #FF0000;">C</span>PE<span style="color: #0066CC;">L</span><span style="color: #FF0000;">GP</span>VVMVKDSFV .99. PRDM15_homSap
 
GSKENMATLFTI 1 2 W<span style="color: #FF0000;">C</span>TL<span style="color: #FF0000;">C</span>DRAYPSD<span style="color: #FF0000;">C</span>PE<span style="color: #FF0000;">HGP</span>VTFVPDTPI .36. PRDM4_homSap
Phylogenetic variation in the zinc finger arrays of these proteins is potentially quite informative, the question being whether their variation too is focused on the four amino acid positions providing dna binding specificity in PRDM7/9. This next sections examine each protein separately for mutational variation in the zinc fingers over placental mammal evolutionary time.
IVPKSFQQVDFW 1 2 F<span style="color: #FF0000;">C</span>ES<span style="color: #FF0000;">C</span>QEYFVDE<span style="color: #FF0000;">C</span>PN<span style="color: #FF0000;">HGP</span>PVFVSDTPV .42. PRDM11_homSap
KEVSEPQDDDYL 1 2 Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span>QNFFIDS<span style="color: #FF0000;">C</span>AA<span style="color: #FF0000;">HGP</span>PTFVKDSAV .42. PRDM9_homSap
KEISEPQDDDYL 1 2 Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span>QNFFIDS<span style="color: #FF0000;">C</span>AA<span style="color: #FF0000;">HGP</span>PTFVKDSAV .42. PRDM7_homSap
QEIWDPQDDDYL 1 2 Y<span style="color: #FF0000;">C</span>EE<span style="color: #FF0000;">C</span>QTFFLET<span style="color: #FF0000;">C</span>AV<span style="color: #FF0000;">HGP</span>PKFVQDSVM .42. PRDM7_monDom
NENYRPEDDDYL 1 2 Y<span style="color: #FF0000;">C</span>EI<span style="color: #FF0000;">C</span>QTFFLEK<span style="color: #FF0000;">C</span>VL<span style="color: #FF0000;">HGP</span>PVFVQDLPV .42. PRDM7_ornAna
EEQDDTFNDQPF 1 2 Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span>QQHFIDQ<span style="color: #FF0000;">C</span>ET<span style="color: #FF0000;">HGP</span>PSFTCDSPA .42. PRDM7_danRer
TEEEELRDEEYF 1 2 F<span style="color: #FF0000;">C</span>EE<span style="color: #FF0000;">C</span>KSFFIEE<span style="color: #FF0000;">C</span>EL<span style="color: #FF0000;">HGP</span>PLFIPDTPA .42. PRDM7_salSal
IKEEEADVKDFL 1 2 Y<span style="color: #FF0000;">C</span>EV<span style="color: #FF0000;">C</span>KSVFFSK<span style="color: #FF0000;">C</span>EV<span style="color: #FF0000;">HGP</span>ALFIADSPV .42. PRDM7_ictPun
                YV<span style="color: #FF0000;">C</span>RE<span style="color: #FF0000;">C</span>GRGFSWQSVLLT<span style="color: #FF0000;">H</span>QRT<span style="color: #FF0000;">H</span>TGEKP comparison to longer zinc finger in main array of PRDM7/9


=== Structural alignment of all PRDM proteins ===
Here the [http://genome-test.cse.ucsc.edu/cgi-bin/hgPal?g=knownGene&c=chr20&l=18269121&r=18297638&i=uc010gcs.2&hgsid=2970269&db=hg19 46-species genomic alignment] at UCSC serves as initial source of zinc finger arrays, which are then tested by blat back into individual species and then parsed into separate fasta files for each protein finger (the formats needed by the [http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_multalin.html Multalin2] variable width differential aligner, [http://weblogo.berkeley.edu/logo.cgi weblogo] and [http://www.vivo.colostate.edu/molkit/dnadot/ DotPlot tool]).


To determine the evolutionary relationship of the 16 human PRDM genes, it is useful (given the great divergence in primary sequence) to consider rare genomic events such as intron gain/loss and indels. Only 7 of the 16 contain the knuckle region. Of these PDRM11 is the most closely related to PRMD9.
==== ZNF133 and HKR1 ====


This is fortunate because the 3D structure of PRDM11 was recently determined (PDB: 3RAY) from before the knuckle region on into the final exon, thus allowing threading of PRDM9 (whose structure has not been studied). The dozen-odd conserved patches in these widely diverged paralogs find their explanation in the atomic details of this structure. Note the PRA(SET) domain and zinc fingers are all that can currently modeled as the KRAB, SSXRD and final exon have no counterparts at PDB.
Human ZNF133 is a conventional KRAB-zinc finger array (that lacks however the PR(SET) domain). Although the KRAB domains are only 31% identical, the array provides a better model for PRDM9 than the other 14 PRDM* loci in terms of zinc repeat character and length. However rodents cannot be used here as a model system for ZNF133 as the mouse syntenic counterpart is a [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922377/ known pseudogene] -- as is rat but not guinea pig or rabbit. ZNF133 is yet another protein in this class that does not readily track back into marsupials or earlier vertebrates.  


The knuckle region apparently represents a one-time domain acquisition relative to a knuckle-less ancestral state. The date of this event relative to species phylogeny and the source of the domain are unclear (it is very unlikely to have evolved in situ). Similarly, the internal phase 00 intron is ancestral even though it breaks up a coherent structural domain. Note the final 12 intron is also ancestral -- the PR(SET) domain never occurs without it even though zinc fingers are not always found in the next exon. However the later 21 intron is a newer acquired feature specific to PRDM9 and its closest associates, post-dating acquisition of the knuckle domain and predating duplication and divergence of the PRDM7/9 group. This again follows from gene tree and parsimony considerations.
As with PRDM7/9, the C-terminal run-off of ZNF133 is subject to frameshifts. However elephant and human are still 86% identical in their last exon, with zinc finger arrays even higher. Armadillo, another mammal diverging from human at 101 myr, is 91% identical in this region and has exactly the same number of zinc fingers (14.7). This suggests that the dna binding target is strongly conserved, just the opposite of PRDM7/9. However this conservation in ZNF133 weakens markedly in the distal 3 repeats.


Crystallographic coverage is excessive yet highly unsatisfactory -- the knuckle-PR(SET) domain is covered by 6 different structures, yet none of them are exactly what is needed (PRDM11 3RAY; PRDM4 2L9Z/3DB5; PRDM10 3IXH; PRDM1  3DAL; PRDM2  3JV0; PRDM12 3EP0). There is no coverage of the preceding KRAB or SSXRD domain or the following early knuckle. However on the knuckle-PR(SET) domain, all these structures could likely be superimposed simultaneously on the near-universal domains identified below. PRDM7/9 would then follow this fold trace as well, though it could be modeled directly from just PRDM11. The intervening regions between conserved anchors can be modeled for PRDM7/9 only to the extent that local conservation in length and residue can be found to a determined structure. For example, <span style="color: #FF0000;">IFY</span>RTCRV<span style="color: #FF0000;">I</span> in PRDM9 can be modeled by the PRDM11 structure since its internal residues contain three matches and no gaps, <span style="color: #FF0000;">IFY</span><span style="color: #0066CC;">R</span>A<span style="color: #0066CC;">CR</span>D<span style="color: #FF0000;">I</span>.  
The 11 conserved zinc fingers in ZNF133 are long enough to specify nearly unique dna sites in a 3 gbp genome, even if not all fingers take part in a given site recognition. Note the SGEKP lockdown cap departs from canonical form in repeats 5, 7, 12, and 13 perhaps impacting binding site utility. Human variation in repeat numbers has not been studied but it appears from phylogenetic considerations to be far less common than in PRDM7/9. [http://www.vivo.colostate.edu/molkit/dnadot/ Dotplots] of ZNF133 show far less agreement across repeats at the dna level, indicating that neither homogenization, expansion, nor contraction of repeats by replication slippage has occurred recently in this gene (unlike PRDM9).


Humans have [http://www.ncbi.nlm.nih.gov/pubmed/21564555 51 genes encoding SET domains], with the PRDM group most diverged from the canonical structures. It is difficult enough to meaningfully align the PRDM and even more so to include all 51 of these lysine methylases. [http://onlinelibrary.wiley.com/store/10.1111/j.1747-0285.2011.01135.x/asset/supinfo/CBDD_1135_sm_TableS1-FigS1-4.pdf?v=1&s=81ef430033f1fd8d18bed72183e312564387ad66 When that is done], most of the conserved patches below emerge as universal motifs yet others are restricted to the PRDM family. All of these proteins would likely bind S-adenosyl methionine and have a lysine pocket in addition superimposable global folds (neither relatable to the 45 human arginine methyltransferases).
                            Alignment of human ZNF133 zinc finger array to orthologs in Primates, Glires, Laurasiatheres, Xenarthra and Afrotheres
                z  z            z  z        z  z            z  z        z  z            z  z        z  z            z  z        z  z            z  z     
homSap      VNCGECGLSFSKMTNLLSHQRIHSGEKP YVCGVCEKGFSLKKSLARHQKAHSGEKP IVCRECGRGFNRKSTLIIHERTHSGEKP YMCSECGRGFSQKSNLIIHQRTHSGEKP YVCRECGKGFSQKSAVVRHQRTHLEEKT
calJac      ............................ ............................ ............................ ............................ ............................
oryCun      ........G...LA.............. ............................ ............................ ...T........................ ............................
equCab      ........G................... ............................ ............................ ............................ ............................
canFam      ...R....G................... ............................ ............................ ...................R........ ............................
dasNov      I..A....G................... ............................ ............................ ............................ .......................S....
proCap      ...E....G................... ............................ ............................ ........R................... .......................S....
homSap      IVCSDCGLGFSDRSNLISHQRTHSGEKP YACKECGRCFRQRTTLVNHQRTHSKEKP YVCGVCGHSFSQNSTLISHRRTHTGEKP YVCGVCGRGFSLKSHLNRHQNIHSGEKP IVCKDCGRGFSQQSNLIRHQRTHSGEKP
calJac      ............................ ............................ ............................ ............................ ............................
oryCun      ...G........................ ............................ ............................ .....................T...... ...Q......................R.
equCab      ............................ ............................ ............................ .........................D.. ............................
canFam      ...N........................ ............................ ............................ .........................D.. ............................
dasNov      ............................ ............................ ............................ ................I........D.. ............................
proCap      ............................ ...G........................ ............................ ................T........D.. ............................
   
   
[[Image:PRDMs.gif|left]]
homSap      MVCGECGRGFSQKSNLVAHQRTHSGERP YVCRECGRGFSHQAGLIRHKRKHSREKP YMCRQCGLGFGNKSALITHKRAHSEEKP CVCRECGQGFLQKSHLTLHQMTHTGEKP YVCKTCGRGFSLKSHLSRHRKTTS    VHHRLPVQPDPEPCAGQPSDSLYSL
<br clear=all>
calJac      ...A......................K. ............................ ............................ ..........I............N.... ....M..Q..............K.    ......L..G...R....A...C..
gapping:     uncertain between conserved markers                                      iM: initial methionine, protein thus too short for further comparison
oryCun      ...Q............L.........K. ............................ .T.........S.........T...... .GGGQ...S.S......S..L..K.... H......Q...Q.........IKA    ...KP.LH..S.AYS...PGP....
knuckle:    shortened zinc finger motif                                              underlining: magenta coloring shows non-informative idiosyncratic introns
equCab      ...E............I.........K. ............................ .T........S.........W......L ..........I.....V......Q...L .......Q...Q........RMK.    ..Q.P.PH.AS.A.S..S..P.H..
  C2H2:        terminal zinc finger region following universal phase 12 intron          PRDM15: duplicated diverged exon removed 21 SWPASGHVHTQAGQGMRGYEDRDRADPQQLPEAVPAGLVRRLSGQQLPCRSTLTWGRLCHLVAQGR
canFam      ...E......................K. ............................ ..........S......I...V...... ........D.I.....L......Q.... ....M.DK...H........RMK.    ..YK..LP....A....S..L.H..
  0:          indel unifying PRDM9/7/11, cannot be resolved as insertion or deletion    7: near-universal motif NWMrYV split by phase 21 intron gained by PRDM9/7/11/4
dasNov      ...E............I.........K. ...................R........ .T........S...T......L...... ........S.I.R...I....I.KE... ...R...Q...Q.......SRMKC    ...KPLL...S.DYS..S..P....
  1:          arginine supporting PRDM6 as outgroup to the knuckle subgroup              8: inexplicable repositioning of 6 residues to previous exon in PRDM4
proCap      ...ED...........I.........K. ............................ .A....R...N...T..A..QL...D.L .......ED.M.....LV.....K.... ..SR.H.Q..NQ......Y.RIK.    ...KS.F.S.L.T.S..S.VPV...
  2:          near-universal motif SLP                                                  9: near-universal motif EQNL
 
  3:          near-universal motif GF                                                  10: near-universal motif IFY
[[Image:ZNF133function.png|left]]
  4:          indel unifying PRDM9/7/11, resolvable as an insertion                    11: near-universal motif ELLVWY
 
  5:          near-universal motif FGP                                                  12: possible synapormorphy grouping first 9 genes
The ubiquitously expressed ZNF133 has been established by [http://www.e-emm.org/article/article_files/EMM039-04-03.pdf experiment] to be a transcriptional repressor, recognizing specific sites in dsDNA. Despite the presence of the KRAB domain (which usually has this task), the zinc finger array alone contributes to transcriptional repression, with this effect mediated by another gene product, PIAS1, which binds the main array and recruits histone deacylases. The early zinc finger is not necessary for the PIAS1 effect and though conserved, its role remains obscure. PIAS1 may also [http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0020321 have a role] in PRDM9 and recombination.
  6:          near-universal motif WLI split by universal phase 00 intron              PRDM16: CVDANQAGAG insertion removed from ISEDLGSEKFCVDANQAGAGSWLKYIRVA
<br clear = all>
  PRDM3:       inexplicably has official gene name MECOM                                text-pdf version [http://genomewiki.ucsc.edu/index.php/Image:PRDMseq.pdf here]
[[Image:Znf133Freqs.gif|left]]
 
For ZNF133, the weblogo below based on 413 repeats from 32 placentals illustrates that quite different selectional pressures have been operative here than in PRDM7/9. First, variation is not concentrated at the four special amino acid positions (purple boxes between CxxC HxxxH) but instead is distributed (though unevenly) among the non-C2H2 positions. Some of this occurs at residues primarily concerned with the zinc binding fold and not targeting macromolecule interactions. This establishes structural variation in the fold can be tolerated, ie PRDM7/9 is the real oddity for not exhibiting it.
<br clear = all>
The early zinc finger (which is [http://pfam.sanger.ac.uk/family?id=zf-C2H2 classified by Pfam] as C2H2)in the terminal exon is rather variable. While a consistently found zinc finger in such a protein is suggestive, nothing can be said about its function at this time.
 
              early zinc finger of ZNF133  early zinc finger of PRDM7/9 early zinc finger of ZNF343  early zinc finger of ZNF589
           
homSap      YLDPFCPPGFSSQKFPMQHVLCNHPPW  HPCPSCCLAFSSQKFLSQHVERNHSSQ  YTCSSCLLAFSCQQFLSQHVLQIFLGL  YTCSSCLLAFSCQQFLSQHVLQIFLGL
panTro      ...........................  ...........................  ...........................  ....C.......P..............
gorGor      ...........................  ...........................  ..........L................  ...........................
ponAbe      ...........................  ...........................  ...........................  ...........................
rheMac      ...........................  .........................T.  .P.........................  ...........................
papHam      ...........................  .........................T.  .P.........................  ...........................
calJac      C..........................  .................H.........  .P.........................  .......VV..................
micMur      H.G..F..DL......V.R...S....  ......S.............KHT....  .P.......S.........T....Q..  ..FWL......................
otoGar      H.G.L...DL......R...P......  ......S....T..........T.P..  .P..................FR.....  (no seqs before duplication)
tupBel      H.SVS..LD...E......E....H..  ...L..S.........N....H...C.  (no seqs before duplication)
cavPor      Q.G..GG.D..A.R..V.....GQ...  ......S.....H......M.CS....
oryCun      H.G.L...DC.T..L.V..T..DP...  ...FL.S.........T....W..RTE
ochPri      S.G.C....L...N....QP.GDP.R.  ...A..S.............QH..P..
turTru      H.G..R..D....QLR...M..S....  Q..G..S.......I......CS.P..
bosTau      H.C.....DLC....H..Q...SP...  ......S......R........S.P..
equCab      H.C.....D.....VH..R........  .R....S..............CK....
  felCat      H.C....SD..-L..H...M..T....  ......S............L.H..P..
  canFam      H.C.L..SD.....RHT..M.......  ......SV.....T.....GK...P.E
  myoLuc      H.CA....D......H...M..SN...  ......S.................P..
  eriEur      PSC.SN..DI....SH...MP...C..  Y...C.S....N.....R...HS.P.L
  sorAra      H.C....SD.....LHV.R........  ......R............MKHS.P.P
  loxAfr      QPC.....D......H..R...SP...  N.....P..L...QLKHS.PFQSLPGT
  proCap      Q.C.....N..G...H...A....R..  ......P....TP....H..KHS.PC.
  echTel      QPC....LD..N...HK.....S.A..  ......P....TE.......Q...P..
  dasNov       QFC.....D...K..H......S....  ......P....T.....Y..NHS...E
 
HKR1 is another zinc finger protein that often surfaces in PRDM9-related blast searches. Structurally it is very similar to ZNF133. The zinc finger array begins with two very degenerate units that cannot bind zinc but may still retain the fold. The next 9 fingers are conventional but the tenth is missing the last two amino acids of the SGEKP cap. The last repeat has an intercalating residue after the two cysteines and lacks the final 3 cap residues. These features were in place at the time of stem placental divergence.
 
This gene, sometimes called ZNF875, also arose in placental mammal as part of the dramatic expansion of zinc finger proteins. However regulation of gene expression is probably no more refined in placentals than in marsupials, birds and other vertebrates -- these just have different systems. Indeed, rodents seem to have lost both HKR1 and ZNF133 yet get along just fine with poor overall orthologous correlation to primates.
 
The intra-repeat pattern of variation is different than in PRDM9 and ZNF133. There is more of it and this variation is not concentrated on the macromolecule recognizing amino acid positions, in fact seems to avoid it. This implies that the binding partner is fixed. The single [http://www.ncbi.nlm.nih.gov/pubmed/9813242 1998 publication] on this gene sheds no light on what this might be. Assuming the function is in regulation of gene expression, the recognition sites in human might be predicted approximately from the conserved zinc fingers. This would yield an association with specific genes including false positives and negatives. Repeating this exercise in a dozen mammals and identifying the commonalities to the human gene set would yield a much improved list of regulated genes. HKR1 is widely expressed in a variety of tissues.
                                                                  z        z  z            z  z        z  z            z  z        z  z            z  z
HKR1_homSap  IKYEEFGPGFIKESNLLSLQKTQTGETP YMYTEWGDSFGSMSVLIKNPRTHSGGKP YVCRECGRGFTWKSNLITHQRTHSGEKP YVCKDCGRGFTWKSNLFTHQRTHSGLKP YVCKECGQSFSLKSNLITHQRAHTGEKP
HKR1_panTro2  ............................ ..............I............. .G.......................... ............................ ............................
HKR1_ponAbe2  ........D.......F.F......... ..............I.........R... ............................ ....H...............GI...... .M..........................
HKR1_papHam1  ...........................A ..............I............. ............................ ............................ ............................
HKR1_calJac1  ............K......R.......A .V.....Q.........G.......... R........................... ..........S...........R..... ....D...............K.......
HKR1_tarSyr1  ..C.........N....NF...H....A .......Q..S.V.......K....E.. .M.........................A .........................V.. F...........................
HKR1_micMur1  .......R....DP...GF...H....T .......Q..S..............E.. ...G........................ A.......................V... M..........................
HKR1_dipOrd1  L...KL..R.M.....P.....HPR..S FIG.K..Q.LSRLP..M...K..V.D.. FL.Q.................M...... F....................I...V.. .M.Q.................S......
HKR1_equCab2  ...R...L..............H...I. R..S...Q..SN....T..QSMR..E.. ...G............V........... ....E....................VR. .......................S....
HKR1_canFam2  .......L..L..PK......MGA.... ......KQ..SKR.I....QKIP..EN. ...K........................ ....E....................V.. .......................S....
HKR1_proCap1  .G.GDL.L...RG.D......AY..G.T .LCN...RDL........KQ..R.R... H..S............L........... H..AE...A.A.R..........A.... HG.RD.....R..A..AA.R...A.AR.
HKR1_dasNov2  ..CTD..F.C..K..V......NIA.SS ...S...EG.N...I....R..Q.EE.. ..........N................. ....E................I...V.. .I.....................S....
HKR1_choHof1  M.CG...L....K..V......HI...A ...S..ERG.S...I....Q....EE.. ..........N......A.......... ....E................I...V.. .I.....................S....
                z  z            z  z        z  z            z  z        z  z            z  z        z  z            z  z        z  z            z  z
HKR1_homSap  YVCRECGRGFRQHSHLVRHKRTHSGEKP YICRECEQGFSQKSHLIRHLRTHTGEKP YVCTECGRHFSWKSNLKTHQRTHSGVKP YVCLECGQCFSLKSNLNKHQRSHTGEKP FVCTECGRGFTRKSTLSTHQRTHSGEKP
HKR1_panTro2  ......................................................... ............................ ............................ ................I...........
HKR1_ponAbe2  ............................ ............................ ............................ ............................ ................I...........
HKR1_papHam1  ............................ ............................ ............................ .A.......................... ...A............I...........
HKR1_calJac1  .......H........I..R........ .T.......................... ......W.Q................... ..F......................... ...MA.......R...I...........
HKR1_tarSyr1  ......E.........I..R.I...... .V....K..................... .....................M...... ........R..........R........ ................N...........
HKR1_micMur1  ................I........... .V......A................... ............................ ............................ ................I...........
HKR1_dipOrd1  ...K...S........I........... FV....Q.R.......V........... .I......G.......L........... ........S.......S...KA.A.... .G......S.....S.V...KK.....L
HKR1_equCab2  ................I........... .V.......................... ..........................R. .T......R.................... ..R............I...........
HKR1_canFam2  .......H........I........... .V....D.S................... .I.......................... ........R.................... ..R............I...........
HKR1_proCap1  H..A....A.G.S...A..A......R. HA.GQ...A.G.....V........... F........................I.. ......E................S..... ..Q.........T..V...........
HKR1_dasNov2  F......H....N...I..L........ .V.......................... ...P.....................I.. .M.....................S..... I.R............I...........
HKR1_choHof1  F......H....N...I..L........ .V.......................... .......................A.I.. ................S......S..... K.R...Q........IS..........
                z  z            z  z        z  z            z  z        z  z            z  z        z  z            z  z        z  z            z  z
HKR1_homSap  FVCAECGRGFNDKSTLISHQRTHSGEKP FMCRECGRRFRQKPNLFRHKRAHSGA  FVCRECGQGFCAKLTLIKHQRAHAGGKP HVCRECGQGFSRQSHLIRHQRTHSGEKP  YICRKCGRGFSRKSNLIRHQRTHSG
HKR1_panTro2  ............................ ..........................  ............................ ............................  .........................
HKR1_ponAbe2  ............................ ..........................  .......................S.... ............................  .........................
HKR1_papHam1  ...R............V........... ..........................  .......................S.... ..........N.................  .........................
HKR1_calJac1  ...R........................ .T........................  ....G...A..D.....N.H.E.S...L ..............Y.............  ...........W.............
HKR1_tarSyr1  ...R........................ ..........................  ...G.......D....L...KE.SA... ...P....D...K...............  .V......C.......V.......R
HKR1_micMur1  ...R........................ .V.......................S  C.......S..D...F.......L.... ............................  ........C...........K....
HKR1_dipOrd1  ...R..K.S....L..HT...I...... .......Q.................D  S..........D.......E...S.N.V .M..............L...........  ......A.A.......L.....I..
HKR1_equCab2  ...V........................ .I........G............A..  ...........D.....T.....S...S ................A....I......  .T....................G..
HKR1_canFam2  ...R.............A.......... .I.....K..S........R.....T  ...........D.....T..K..S.... .....................I......  ......E................P.
HKR1_proCap1  ...R....A.....A.L........... ...G......S.R......R.T....  L..K.......D....NA.....S..R. ...V......G.....V...........  .V....E..................
HKR1_dasNov2  ...R........................ .I..Q.....S...............  ...........D.....T.....S.... ............................  .........................
HKR1_choHof1  ...R........................ .I.K......S..............V  ....D......D.....T.....S.S.. ......R.....................  .V.......................
 
HRK1 is found within a cluster of ZNF genes on chromosome 19 but has no better than 50% identity to any of them. PRDM7, PRDM9, ZNF133, ZNF343, ZNF589, ZNF169 and ZNF596 are not found in tandem ZNF clusters nor in syntenic associations, as determined by setting the UCSC GeneSorter tool to gene distance and comparing gene neighbors.
 
[[Image:HKR1cluster.jpg|left]]
<br clear=all>
==== ZNF343 and ZNF589 ====


Applicable 3D structural determinations:
ZNF343 is another very closely related KRAB zinc finger array protein. It appears restricted phylogenetically to primates but may have earlier spin-offs reminiscent of PRDM7 (such as the microbat sequence below). Two species, baboon and tarsier have deletions of 2 and 1 zinc finger respectively. The new world monkey Callithrix has a moderately degenerated pseudogene. However it is not plausible that other mammalian species (such as rodents) ever had this gene.  
.... PRDM9  Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span><span style="color: #990099;">QNFFIDS</span><span style="color: #FF0000;">C</span>AA<span style="color: #FF0000;">H</span>GPPTFVKDSAVDKGHPN<span style="color: #FF0000;">R</span>SAL<span style="color: #FF0000;">SLP</span>PGLRIGPSGI.PQAGL<span style="color: #FF0000;">GV</span>WNEASDLPLGLH<span style="color: #FF0000;">FGP</span>YEGRIT.....EDEEAANNGYS<span style="color: #FF0000;">WLI</span>TKG.RNCYEY<span style="color: #FF0000;">VD</span>.......GKDKSWA<span style="color: #FF0000;">NWM</span>R<span style="color: #FF0000;">YV</span>NCARDDE<span style="color: #FF0000;">EQNL</span>VAFQYHR..Q<span style="color: #FF0000;">IFY</span>RTCRV<span style="color: #FF0000;">I</span>RPGC<span style="color: #FF0000;">ELLVWY</span>GDE<span style="color: #FF0000;">Y</span>GQELGIKWGSKWKKELMAGR
3RAY PRDM11  <span style="color: #0066CC;">FCESCQEYFVDECPNHGPPVFVSDTPVPVGIPDRAALTIPQGMEVVKDTS...GESDVRCVNEVIPKGHIFGPYEGQIS......TQDKSAGFFSWLIVDK.NNRYKSID.......GSDETKANWMRYVVISREEREQNLLAFQHSE..RIYFRACRDIRPGEWLRVWYSEDYMKRLHSMSQETIHRNLAR</span>
2L9Z PRDM4  <span style="color: #0066CC;">WCTLCDRAYPSDCPEHGPVTFVPDTPIE....SRARLSLPKQLVLRQSIV..GAEVGVWTG.ETIPVRTCFGPLIGQQSHSMEVAEWTDKAVNHIWKIYHN.GVLEFCII.......TTDENECNWMMFVRKARNREEQNLVAYPHDG..KIFFCTSQDIPPENELLFYYSRDYAQQI</span>..............
3IXH PRDM10  WCEECNNAHASVCPKHGPLHPI<span style="color: #0066CC;">PNRPVL....TRARASLPLVLYIDRFLG......GVFSK.RRIPKRTQFGPVEGPLV.....RGSELKDCYIHLKVSLDKGDRKERDLHEDLWFELSDETLCNWMMFVRPAQNHLEQNLVAYQYGH..HVYYTTIKNVEPKQELKVWYAASYAEFVNQK</span>IHDISEEERK.
3DAL PRDM1                              <span style="color: #0066CC;">DGGTSVQAEASLPRNLLFKYATN.SEEVIGVMSK.EYIPKGTRFGPLIGEIY..TNDTVPKNANRKYFWRIYSR.GELHHFID.......GFNEEKSNWMRYVNPAHSPREQNLAACQNGM..NIYFYTIKPIPANQELLVWYCRDFAERL</span>HYPYPGELTMMNL.
3JV0 PRDM2                              LAEV<span style="color: #0066CC;">PEHVLRGLPEEVR.LFPSAVDKTRIGVWAT.KPILKGKKFGPFVGDKK.....KRSQVKNNVYMWEVYYP.NLGWMCID.......ATDPEKGNWLRYVNWACSGEEQNLFPLEINR..AIYYKTLKPIAPGEELLVWYNGEDNPEIA</span>AAIEEERASARSK
3EP0 PRDM12                            S<span style="color: #0066CC;">GEVQKLSSLVLPAEVIIAQSSIPGEGL.GIFSK.TWIKAGTEMGPFTGRVI..APEHVDICKNNNLMWEVFNEDGTVRYFID.......ASQEDHRSWMTYIKCARNEQEQNLEV.VQIGT.SIFYKAIEMIPPDQELLVWYGNSHNTFLG</span>IPGVPGLEEDQKK


Phylogenetic variability of the knuckle-PR(SET) domain for PRDM7/9, shown below, is complicated by the various gene duplications of PRDM7. [http://genomewiki.ucsc.edu/index.php/Image:PRDMdifAlign.pdf Much less variability] occurs between the universally conserved patches in the other five genes with a comparable domain, namely PRDM11, PRDM4, PRDM10, PRDM15 and PRDM6. These genes did not experience duplications during placental evolution. The fact that the entire domain is strongly conserved -- with vary different amino acids in each protein -- implies strong selective pressure acts along the entire domain in these five proteins so the 3D structure is not floppy (indeterminate random coil) between the universally conserved patches, and that whatever functions these genes have remained constant during placental evolution.
No experimental study has ever considered the function of this gene though occasionally it surfaces in expression studies. It is quite conserved at least in apes, indicative of an important function in gene regulation via specific site recognition. Outside of the terminal zinc finger region, ZNF589 most closely resembles ZNF589 and ZNF133 and so has no direct bearing on PRDM7 or PrDM9.


Note knuckle region in PRDM7/9 has moderate variability. Assuming on analogy with the terminal array zinc fingers that the residues between the second and third zinc ligands contain the residues that provide recognition specificity, these are <span style="color: #990099;">QNFFIDS</span>. This region has little phylogenetic variability in PRDM7/9. However overall PRDM11, PRDM4, PRDM10, PRDM15 and PRDM6 have [http://genomewiki.ucsc.edu/index.php/Image:knucklePhylo.pdf even less variability]. These regions could bind dna, single stranded rna or another protein involved in regulation. Those these partners may differ, the type of macromolecule will likely be the same because of underlying homology and implausibility of type change. The phylogenetic alignment of non-pseudogenes in the PRDM7/9 group is quite conservative from calJac (new world monkey Callithrix) to human:
Prior to ZNF gene family expansion, each of the proteins initially present may have had multiple functions (as proposed by [http://en.wikipedia.org/wiki/Protein_moonlighting Piatigorsky]). With zinc finger arrays, different subsets of fingers may have recognized different dna sites, regulating different genes. After gene duplication, the descendent genes could then diverge to specialize on distinct subsets of these pre-existing functions (subfunctionalization). This allowed fine-tuning of regulation relative to a parent gene operating under slightly conflicting selectional pressures that had to be satisfied simultaneously.


PRDM9_homSap    Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span><span style="color: #0066CC;">QNFFIDS</span><span style="color: #FF0000;">C</span>AA<span style="color: #FF0000;">H</span>GPPTFVKDSAVDKGHPN<span style="color: #FF0000;">R</span>SAL<span style="color: #FF0000;">SLP</span>PGLRIGPSGIPQAGL<span style="color: #FF0000;">GV</span>WNEASDLPLGLH<span style="color: #FF0000;">FGP</span>YEGRITEDEEAANNGYS<span style="color: #FF0000;">WLI</span>TKGRNCYEY<span style="color: #FF0000;">VD</span>GKDKSWA<span style="color: #FF0000;">NWM</span>R<span style="color: #FF0000;">YV</span>NCARDDE<span style="color: #FF0000;">EQNL</span>VAFQYHRQ<span style="color: #FF0000;">IFY</span>RTCRV<span style="color: #FF0000;">I</span>RPGC<span style="color: #FF0000;">ELLVWY</span>GDE<span style="color: #FF0000;">Y</span>GQELGIKWGSKWKKELMAGR
Placental mammals today do not differ greatly from the stem placental mammal in which the expansion began. This expansion (and later contraction) continued into the present era, yielding many lineage-specific sets of ZNF gene families (ie lack of 1:1 orthologous correspondences). Evolution need not take the same path to reach the same end -- indeed, marsupials, birds and other vertebrates have attained excellent regulation of gene expression by other approaches.  
PRDM9_panTro    .......................................................R.......P.....S.....Q.........S.............................E............S......S..........................................
PRDM9_gorGor    ...................I.....................................................K........................................................................................................
PRDM9_ponAbe    ................................................................................K......................................W.......................................................P..
PRDM9_nomLeu    .....................I...T.G...........................................................................................W.......................................................P..
PRDM9_macMul    .....................I.....E..................................................Q...................................................................................................
PRDM9_papHam    ...........................N....................................................K.................................................................................................
PRDM7_homSap    .....................................................................................S......................S.....................................................................
PRDM7_ponAbe    .....................................T........................................K...................................................................................................
PRDM7_calJac    ...I.............................HA.........................................V.......SS............................................................................................
PRDM7_micMur    ...K.......................................K.R................E............QV........S....................D..............E...................Q.............................E..TIRQ
PRDM7_otoGar    ...K.......N..V.........T..E.......V....S..G.RT.......F.........Q..........QV........S....................E.QG...........E....................................................T..Q
PRDM7_tupBel    ...K.........S.....I..........SL...V.........A.....E.......A.T.............Q.........S....................E.C..............................................E................S.WQ.E
PRDM9_oryCun    ...K.....L....V....I...............V...............E.......................Q...E.....S....................R.............N............K.......Q..K..........................E..T...
PRDM7_oryCun    ...K.....L....V....I...............V...............E.......................Q...E.....S....................R.............N............K.......Q..K..........................E..T...
PRDM7_ochPri    ..........E...V..S..............H..V....S..........E........TT.............QV..E...T.S...........R........P.Q...........N.....................AV.Q.........................E..T...
PRDM7_ratNor    ...K.........PN....V.....V..R....H.V...............E.............V.......K.Q.........S..................Q.E.Q.........................K............R.....................M..GFT...
PRDM7_musMus    ...K.........PN....L.....M..R....H.V.........S.....E.............V.........Q.........S..................Q.E.Q.........................K..................................M..GFT...
PRDM7_musMol    ...K.........PN....L.....M..R....H.V.........S.....E.............V.........Q.........S..................Q.E.Q.........................K..................................M..GFT...
PRDM7_dipOrd    ...Q......N..TV....I..R.NV.....YD..V.........RQ.S..E........E..............Q.....D...S....M........V........Q...........Y.......................KA.........................R..T...
PRDM7_speTri    ..DK.....M...PV......I...V.N.D.S.H.T....L.......S..E.........T...........R.Q.........S....................E.Q.................................................................S...
PRDM9_bosTau    ..QE.........D.............E...A...V.T.....S.KL....E..........H............Q..D.K..I.S...........S........T.L...........HY...........G.......Q.V...............EK....CE.RG.SMFA...
PRDM9_oviAri    ..QE......N..D.............E...A.....T.....S.RL....E..........H............Q..D.K..V.S....................T.L....................L..QG.......Q.V................D....RD.SG.S..A...
PRDM9_munMun    ...E......N.............C..E...A.....T..H..S.RL....D.......KV...A........K.Q..DN.....S..A.................T..........................G.......Q.V................DF...RN.RG.S..A...
PRDM7_turTru    ...K.............A.........E.........T.....S.R.....E.......................Q.........S....................T..............E.....................V..............S.....P...G..SQ.V...
PRDM7_lamPac    ...K.................................T.......R.....E.........H.............QV........S..........K..........Y...............................................E................S.WQ.E
PRDM7_susScr    ...K.................................T.......R.....E.........H.............QV........S.........................................................V..............................T..I
PRDM7_felCat    ...K..........V.........N..G.........T.......R..S..E...............T.......Q.........S....................N................................................................S..ST.K
PRDM7_ailMel    ...K..........V...............Q......T.......R.............................Q.........S....................N..............E.................................................S..A..K
PRDM7_pteVam    ...K.............S.I.....E..IR.......T.............E................L......QV........S.....QG.............E.R..............................................................R..T...
PRDM7_myoLuc    ...K..........V................A.....T.............E........EC...V...Y.....Q.....AI..S....................T.Q..................................V.K.........E...............T.PV...
PRDM7_equCab    ...N...............I.................T..L....R.....E.......................Q.........S....................I....................................V...........................R..T...
PRDM7_sorAra    ...N......NK.S...S.I....N..A...S.....T..H..........E....I..................Q..N......S..................V.E.L............Y....................I.K..........................S..T.DK
PRDM9_loxAfr    ...K.......T..V..A.M.....P..R....H...T..........S..K..........E............QV...K....S.........K..........E..............E....................T.Q.D.....................R.....TS..
PRDM7_choHof    ...K.....FEN........LL.....GQ.R.KH...V......L......E.......................QV......T.S......................C.................................A...............................T.EK
PRDM9_homSap    Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span><span style="color: #0066CC;">QNFFIDS</span><span style="color: #FF0000;">C</span>AA<span style="color: #FF0000;">H</span>GPPTFVKDSAVDKGHPN<span style="color: #FF0000;">R</span>SAL<span style="color: #FF0000;">SLP</span>PGLRIGPSGIPQAGL<span style="color: #FF0000;">GV</span>WNEASDLPLGLH<span style="color: #FF0000;">FGP</span>YEGRITEDEEAANNGYS<span style="color: #FF0000;">WLI</span>TKGRNCYEY<span style="color: #FF0000;">VD</span>GKDKSWA<span style="color: #FF0000;">NWM</span>R<span style="color: #FF0000;">YV</span>NCARDDE<span style="color: #FF0000;">EQNL</span>VAFQYHRQ<span style="color: #FF0000;">IFY</span>RTCRV<span style="color: #FF0000;">I</span>RPGC<span style="color: #FF0000;">ELLVWY</span>GDE<span style="color: #FF0000;">Y</span>GQELGIKWGSKWKKELMAGR


=== Central PR(SET) domain locatable in fish ancestor ===


Various additional sequences are relevant to understanding the curated placental mammal PRDM7/9 set. For example, the neanderthal genome despite being very far from satisfactory coverage can provide a PRDM9 sequence derived from the human reference sequence using non-synonymous SNPs reported in the corresponding UCSC browser track. The changes reported in the zinc finger domain (R HDL S R) may be enough to have created somewhat of a species barrier, though this involves comparing a fossil sequence to a contemporary human (which are today themselves quite variable). Similarly, the bushman genome sequence might yield an intermediate outgroup, though that assembly (like so many others) remains elusive.
ZNF343_homSap  INCREYEPDHNLESNFITNPRTLLGKKP YICSDCGRSFKDRSTLIRHHRIHSMEKP YVCSECGRGFSQKSNLSRHQRTHSEEKP YLCRECGQSFRSKSILNRHQWTHSEEKP YVCSECGRGFSEKSSFIRHQRTHSGEKP
ZNF343_panTro  ...................S........ ............................ ............................ ................S........... ............................
ZNF343_gorGor  ............................ ............................ ............................ ............................ ............................
ZNF343_ponAbe  .....C...................... ..............A............. ............................ ............................ ............................
ZNF343_nomLeu  .....C...............I...... .....................T...... ............................ ...........N................ ............................
ZNF343_macMul  .....C...RS................. ..............A......T...... ............................ ...........N....K........... ............................
ZNF343_papHam  .....C...RS................. ..............A......T...... ............................ ...........NN...K........... ....D.......................
ZNF343_tarSyr  N..K.R...YSP.....R.S..F..E.. CV......G..N....N..R.T..V... ....D.....KNR.T.I.......G... .VR.Q..RG.SQ..NVAQ..R...D... .I.R......RD..TLVI.E........
ZNF343_otoGar  V....F.S.C...........V.FRE.. .V.....PG.....I......T.TG... .E..............T..R........ ...........N....S.......G... .M....E....Q................
ZNF343_myoLuc  GS.N.H.L.CS.K...AV.QV..SEE.. .V.RE...G.NNK.N.N....T...... ...GD......LMAI.VH......G... .V.K...RG.SK..N....TE....... .L.R...QS.RNN.VL....WI......
ZNF343_homSap  YVCLECGRSFCDKSTLRKHQRIHSGEKP YVCRECGRGFSQNSDLIKHQRTHLDEKP YVCRECGRGFCDKSTLIIHERTHSGEKP YVCGECGRGFSRKSLLLVHQRTHSGEKH YVCRECRRGFSQKSNLIRHQRTHSNEKP
ZNF343_panTro  ............................ ............................ ............................ ............................ ............................
ZNF343_gorGor  ............................ ............................ ............................ ............................ ............................
ZNF343_ponAbe  ........G................... ...K........................ ...G........................ ............................ ............................
ZNF343_nomLeu  ........G................... ............................ ............................ ............................ ............................
ZNF343_macMul  ........G................... ............................ ............................ ............T............... ............................
ZNF343_papHam  ---------------------------- ---------------------------- .......G.................... ............T............... ............................
ZNF343_tarSyr  F..S.Y.QG.IQ..Q.LV...T....N. ---------------------------- ....K.....SW..H.LV.Q.K...... ...R....S..Q..CVIT.........P .I....G....K..S.........G...
ZNF343_otoGar  .I......G.S..........T...D.. ......R.....K.N..R.....SN... .I............N..V...M...... .T.S........................ ......G..Y.............A....
ZNF343_myoLuc  ...P....G.AY.........T...... .I.Q...H...EK.SF.R.....SG... F..L......G.....RK.Q........ .T.S....S.TQ..F..I..G....... ......G.S..Y........K...DV..
ZNF343_homSap  YICRECGRGFCDKSTLIVHERTHSGEKP YVCSECGRGFSRKSLLLVHQRTHSGEKH YVCRECGRGFSHKSNLIRHQRTH
ZNF343_panTro  ............................ ............................ .......................
ZNF343_gorGor  ............................ ............................ ..........G............
ZNF343_ponAbe  F........................... ................P........... .......................
ZNF343_nomLeu  ..............S............. ...................K........ .......................
ZNF343_macMul  ............................ .....................I...... ................V......
ZNF343_papHam  ............................ .....................I...... .......................
ZNF343_tarSyr  .V.K......SQ..Y..K.Q...LD... FI.R.......W...............P ...........Q..Y..K.E...
ZNF343_otoGar  .V.G..........A............. .IR.DR...S.Q....VS.........W ..........GY...........
ZNF343_myoLuc  ..........FY..D..I.......... ........S..Q..F.VI..G....K.. ....D...S..YR....T...K.


Terminal sequences for 9 additional species of murid rodents have been determined but these have limited value for comparative genomics because they do not even cover the entire terminal exon and their syntenic contexts (and thus homological relationships) were not established. The single individual sequenced may not be representative of the overall population in the zinc finger region (based on the extensive diversity observed in human), diminishing their utility for predicting species barriers. These genes are most likely PRDM7 orthologs only secondarily related to the catarrhine primate PRDM9 set, ie descended from the unique locus present in stem euarchontoglires whereas the latter duplicated from a stem old world monkey PRDM7. It is worth noting that the reported sequences are very orderly and lack the overall chaos of frameshifts and stop codons so often seen in this gene family. The protein accessions are [http://www.ncbi.nlm.nih.gov/protein/ADA68112,ADA68113,ADA68116,ADA68117,ADA68118,ADA68119,ADA68120,ADA68121,ADA68122 here].
ZNF589 is also a primate-specific expansion within the KRAB ZNF gene family which may have expanded independently from the same parental gene in artiodactyls, again similarly to the separate expansions of PRDM7. It has been the subject of 3 publications under the name [http://www.ncbi.nlm.nih.gov/pubmed/12097288,10748030,10029171 SZF1] and its consensus region [http://cancerres.aacrjournals.org/content/62/13/3773.long identified experimentally] as CCAGGGTAACAGCCG which is similar to that of ZBRK1. Regulation of gene expression reportedly takes place in hematopoietic progenitor cells.
 
In humans, ZNF589 has an internal stop codon at the second cysteine within the 5th repeat due to a T to A transversion. This is not an error or mutation in the reference genome hg19, nor a balanced polymorphism, nor 1% allele as no corrective SNP is known from the 1000 genome project or individual sequencing projects. It remains possible that some human populations (notably African because of greater diversity) will not have this stop codon if it is a very recent development. However all human populations sampled including bushman KB1 genomic reads all contain it, as do Neanderthal and Denisova fossil dna. (View chr3:48,285,273-48,285,286 on [http://genome-test.cse.ucsc.edu/cgi-bin/hgTracks?db=hg19&position=chr3:48285273-48285286 UCSC human genome browser] hg19 with appropriate tracks opened.)
 
Past the stop codon, the zinc finger array continues on another nine repeats and do not seem impaired (strict conservation of cysteines, histidines, and invariant phenylalanine and leucine). It is not clear whether the mRNA would be targeted by [http://en.wikipedia.org/wiki/Nonsense-mediated_decay nonsense mediated decay], whether a truncated and possibly still functional protein is produced, or whether that a suppressor mechanism that allows some read-through of the early stop codon. If ZNF589 functions with four repeats, the dna recognition sites would be truncated relative to what the full zinc finger array could have recognized. Terminal alternative splicing has been seen for ZNF589 but not rejoin the array.
 
Chimpanzee does not have this internal stop codon and has a full set of repeats. However the orthologous gene in gorilla (contig CABD02243014) has a frameshift near the end of its 10th repeat. Assuming this is not assembly error in a low coverage genome, this raises the same question about pseudogenization vs function-retaining truncation as in human. If this represents gene loss, the event is independent from the one in human and the resultant protein may have higher dna specificity (recognize a longer or different site).
 
Similarly orangutan has a frameshift at the end of the 7th repeat, a reading frame restoring frameshift 4 repeats later followed shortly by an early stop codon. Gibbon also has a frameshift. However macaque, like chimpanzee, has maintained a full length zinc finger array. New world monkey Callithrix has a much older pseudogene. This is truly an ortholog because biflanking synteny is still preserved (NME6+ ZNF589- CAMP-) from human to marmoset.
 
Tarsier also has severely decayed gene candidate. Its contig maps uniquely to the ZNF589 region of human by blastn but is too short to establish flanking synteny. Since ZNF589 appears missing in lemurs and tree shrew, the duplication event occurred in the tarsier divergence stem, or about 65 myr ago. Tarsiers are basal haplorrhine and [http://www.ncbi.nlm.nih.gov/pubmed/21620437 not part of the strepsirrhine (lemur) clade].
 
Thus the gene duplicate ZNF589 persisted in the ancestor past the tarsier and new world monkey divergences and losses, kept a full length repeat role in old world monkeys and chimp, but may have carved out altered separate roles in great apes with utilizing recently truncated arrays.  


A [http://www.uniprot.org/uniprot/Q6P2A1 zebrafish protein] put forward as an ortholog to placental mammal PRDM9 seems implausible given that birds, lizard and frog lack notable homologs. It lacks close counterparts in other species of fish with determined genomes and is not syntenic to mammalian gene locations. Thus it might represent an independent gene shuffle that resulted in a similar concatenation of domains (parallel evolution).  
The parental gene for ZNF589 -- based on the terminal exon minus the array -- appears to be ZNF133 or PRDM7, genes that arose about the same time in stem placentals.


The protein lacks the KRAB and SSXRD domains but contains a standard knuckle, PR(SET), early ZNF finger and ZNF repeat domain (all in exons phased identically to human). Although backblast restricted exons 3-5 to the human proteome has best matches to PRDM9, PRDM7 and the closely related PRDM11 (suggesting orthology of this region), the pre-zinc finger part of exon 6 does not give a clear signal despite its early C2H2 domain, perhaps because of few conserved residues after it. The same could be said for the pre-zinc finger of PRDM9 -- it is apparently just a fast evolving linker region not under selection for amino acid sequence.
ZNF589 Repeat Region in Apes:
  nominal length of zinc finger array produced shown in <span style="color: #0066CC;">blue</span>
  stop codons and truncated repeats shown in <span style="color: #FF0000;">red</span>
  frameshifts and cryptic repeats shown in <span style="color: #990099;">purple</span>
<table><tr align="left" valign="top">
<td>
<span style="color: #0066CC;">>ZNF589_homSap AADD01032563
QVCRECGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSHCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGRGFREKSELIKHQRIHTGDKP
YVCRD</span><span style="color: #FF0000;">*GRGFVRRSCLNTHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSSLKSHRRTHSGEKP
YVCGECGRGFSRRIVLNGHWRTHTGEKP
YTCFECGRNFSLKSALSVHQRIHSGEKP
YACTECGQGFITKSQLIRHQRTHTGEKP
YVCGECGRGFIAQSTLHYHRSTHSKEKP
YVCSQCGRGFCDKSTLLAHEQTHSGEKP
YVCGECGRGFGRKILLNRHWRTHTGEKP
YACIECGRNFSHKSTLSLHQRIHSGEKP
YACVECGQSFRRKSQLIIHQKIHSGKSF
RGARSEDVILATSQPSATPAEMLREKPCL
</span></td>
<td>
<span style="color: #0066CC;">>ZNF589_panTro AADA01029841
QVCRECGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSHCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGRGFREKSELIKHQRIHTGDKP
YVCRDCGRGFVRRSCLNAHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSSLKSHRRTHSGEKP
YVCGECGRGFSRRIVLNGHWRTHTGEKP
YTCFECGRNFSLKSALSVHQRIHSGEKP
YACTECGQGFITKSQLIRHQRTHTGEKP
YVCGECGRGFIAQSTLHYHRSTHSKEKP
YVCSQCGRGFCDKSTLLAHEQTHSGEKP
YVCGECGRGFGRKILLNRHWRTHTGEKP
YACIECGRNFSHKSTLSLHQRIHSGEKP
YACVECGRSFRRKSQLIIHQKIHSGKSF
RGARSEDVILATSQPSATPAEMLREKPCL
</span></td>
<td>
<span style="color: #0066CC;">>ZNF589_gorGor CABD02243014
QVCRDCGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSHCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGRGFREKSELIKHQRIHTGDKP
YVCRDCGRGFVRRSCLNTHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSSLKSHRRTHSGEKP
YVCGECGRGFSRRIVLNGHWRTHTGEKP
YTCFECGRNFSLKSALSVHQRIHSGEKP
YACTECGQGFITKSQLIRHQRTHT</span><span style="color: #990099;">gEKP
YVCGECGRGFIAQSTLHYHRSTHSKEKP
YVCSQCGRGFCDKSTLLAHERTHSGEKP
YVCGECGRGFGRKILLNRHWRTHTGEKP
YACIECGRNFSHKSTLSLHQRIHSGEKP
YACMECGRGFRRKSQLIIHQKIHSGKSF
RGARSEDVILATSQPSATPAEMLREKTCL
</span></td>
<td>
<span style="color: #0066CC;">>ZNF589_ponAbe ABGA01071880
QVCRECGRGFSRKSQLIIHQRTHTGEKP
YVCRECGRGFIVESVLRNHLSTHSGEKP
YVCSHCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGQGFREKSELIKHQRIHTGDKP
YVCRDCGRGFVRRSCLNTHQRIHSDEKP
FVCKECGRGFHAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSTLKSHRRTHSG</span><span style="color: #990099;">e</span><span style="color: #990099;">KS
YVCEECGRGFSRRIFLNGHWRTHTREKP
YTCFECGRNFSLKSALSVHQRMHSGEKP
YACTECGQGFITKSQLIRHQRTHTGEKP
YVCREWARLYSSDNPPLPPAYTLQGETp</span>
<span style="color: #0066CC;">YVCSQRG</span><span style="color: #FF0000;">*GFCDKSTLLAHEQTHSGEKP
YVCGECGWGFGRKILLNRHWRTHTGEKT
YACIECGQNFSHKSTLSLHQRIHSGEKP
YACMECGRGFRRKSQLIIHQKIHSGKSF
RGASSEDVILATSQPSATPAEMLREKTCL
</span></td>
<td>
<span style="color: #0066CC;">>ZNF589_nomLeu ADFV01172942
QVCRECGRGFSRKSQLIIQQRTHTGEK
YVCEECGRGFIVESVLRNHLSAHSAEKP
YVCSHCGRGFSCKPYLMRHQRTHTREKS
FMCTVCGRGFREKSELIKHQIIHTGGKP
YVCRDCGRGFVRRSCLNTHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEDCGHGFSQKSTLKSHRRTHSGEKP
YVCGECGQGFSRRIFLNGHWRTYTGEKP
YTCFECGRNFSLKSALSVHQRIYWGE</span><span style="color: #990099;">kP
YACVECGRGFITKSQLIRHQRTHTGEKP
YVCGECGQGFIAQSALRYHRSTHSREKP
YVCSQCGrGEAFVINQLAHEQTHSGEKP
YVCGECGQGFGRKILLNRHWRTHTGEKP
YACIECGRNFSHKSTLSLHQRIHSGEKP
YACTECGRGFRRKSQLITHQKTHSGKSF
RGARSEDVILATSQPSATLAEMLREKACL
</span></td></tr>
<tr align="left" valign="top">
<td>
<span style="color: #0066CC;">>ZNF589_rheMac AANU01238696
QVCGECGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSQCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGRGFREKSELIKHQRIHTGDKP
YVCRDCGRGFVRRSCLNTHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSTLKSHQRTHSGEKP
YVCGECGRGFSRRIFLSGHWRTHTGEKP
YTCFECGRNFSLKSALSVHQRIHSGEKP
YACAECGRGFITKSQLIRHQRTHTGEKP
YVCGECGRGFIAQSTLHYHRSTHSGEKP
YVCSQCGRGFRDKSALLAHEQTHSGEKP
YVCGECGWGFGRKILLSRHWRTHTGEKP
YACMECGRNFSHKSTLSLHQRIHSGEKP
YACTECGRGFRRKSQLSIHQKTHLGKSF
RGARSEDVIFASQPSAAPAEMLREKPCL</span>
</td>
<td>
<span style="color: #0066CC;">>ZNF589_papHam ti|2005908815
QVCRECGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSQCGRGFICKPYLIRHQRTHTREKS
FMCTVCGRGFRENSELIKHQRIHTGDKP
YVCRDCGRGFVRRSYLNTHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSTLKSHRRTHSGEKP
YVCGECGRGFSRRIFLSGHWRTHTGEKP
YTCFECGRNFSLKSALSVHQRIHSGEKP
YACAECGRGFITKSQLIRHQRTHTGEKP
YVCGECGRGFIAQSTLHYHRSTHSGEKP
YVCSQCGRGFRDKSTLLAHEQTHSGEKP
YVCGECGRGFGRKILLSRHWRTHTGEKP
YACMECGRNFSHKSTLSLHQRIHSGEKP
YACTECGRGFRRKSQLNIHQKTHLGKSF
RGARSEDVIFASQPSAAPAEMLREKPCL</span>
</td>
<td>
<span style="color: #0066CC;">>ZNF589_calJac  ACFV01038884
QMCTVCGRGIRNKSHLIQHQRIHTGDKP
YVCRNCGRGFVRSCLIK HQRILSGEKP
FICRECGRGFRDKSTPHT</span><span style="color: #990099;">hQRAHSGEKP
s</span><span style="color: #0066CC;">CGEECGRGFTRKSTLKSHRRTHSGEKP
YVYGECGWGFSSKGVLNTHWRTHTGAKP
YACRVATSPL</span><span style="color: #990099;">sHKSTLSSHQRIHSGEKP</span>
</td>
<td>
<span style="color: #0066CC;">>ZNF589_tarSyr ABRT010411760
SVCREYGQSFSRKSHLLRHWRTHTGEKP
YV</span><span style="color: #990099;">nGNCGHTFIDKSVLHNYQSTHSGKKP
YVCRECGCSLD<span style="color: #FF0000;">*</span>KSHLIRHQRTHTQERP
FMCTV</span>
</td>
<td></tr></table>


While blastp of the zinc finger array is always a problematic exercise, here it gives closer resemblance to other zinc finger genes, notably ZNF658 and ZNF 585, than to any member of the PRDM family. The phase 12 intron here is moderately diagnostic in conjunction with the early zinc finger. The zebrafish terminal zinc finger array, while disorderly, does have several zinc fingers ending in the GEKP-like lockdown cap which supports a relationship with similar caps in PRDM7/9. Genes related to the zebrafish feature are found in salmon, trout, catfish and minnow but not stickleback, fugu, tetraodon or medaka. Transcripts are exceedingly common in contrast to mammals. The missing KRAB and SSXRD domains are believed  critical in recruiting other essential proteins to the hotspot in the only systems with experimental data (mouse and human) so this gene cannot fulfill the same functional role.
By comparing each sequence to itself and to PRDM9, it emerges that PRDM9 is highly unusual for its remarkable self-similarity in its zinc finger array. That strongly suggests some form of homogenization (master-slave) of repeats that is unique to it and very likely highly relevant to its role in defining recombination hotspots. Whatever the precise evolutionary relationships to the other closely related zinc fingers, that has not resulted in retention of close matching at the dna level to PRDM9.


Thus only central PR(SET) exons are established as directly relevant to the history of PRDM7/9, ie that it was present in the common ancestor of mammals and fish. The terminal exon could represent orthology with extreme relative divergence but the evidence favors a chimeric origin with a different zinc finger terminal exon. The zebrafish gene is thus only a partially verifiable member of the PRDM family, one lacking a convincingly orthologous terminal exon as well as the final fusion with SSX1 as in PRDM7/9. Early diverging tetrapods need re-examination to see if they too have a gene with central PR(SET) exons of PRDM7/9 in a gene with a following phase 12 exon.
[[Image:DotPlotCompZNF.gif|left]]
<br clear=all>
The alignment below of the final exon (minus the terminal arrays) shows positions conserved at 60% identity. Overall, conservation is unremarkable outside the early zinc finger region. However several distal patches also suggest a moderate level of conservation pressure and thus some function beyond merely serving as a long linker between the terminal array (which is wrapped around the major groove of the dna target) and the early repeat (whose binding partner, if any, is unknown).
                                                                                                                                                                  first anomalous repeat
PRDM9_homSap  E.KPEI..CPSC.LAFSSQ.FLSQHV..NH..Q.F....A...L.P.NP.PGDQ.Q.-QQ..D.........GQE....S..L..RT..R....AFSSPP.-.Q..S.R.G.R..E.E....Q..NP..T.K............ ....ECG.GFS..S....HQRTHTGEK.
PRDM7_homSap  E.KPEI..CPSC.LAFSSQ.FLSQHV..NH..Q.F....A...L.P.NP.PGDQ.Q.-.Q..D.........GQE....S..L..RT..R....AFSSPP.-.Q..SSR.G.R..E.E....Q..NP..T.K............ ....ECG.GFS..S....HQRTHTG.KP
PRDM7_calJac  E.KPEI..CPSC.LAFSSQ.FLS.HV..NH..Q.F........L.P.NP.PG.Q...-QQ..D.........GQE....S..L..RT..R....AFS.PP.-.Q..SSR...R..E.E....Q..NP..T.K............ ....ECG.GFS..S....HQRTHTGEKP
ZNF133_homSap ...PE....P.C...FSSQ.F..QHV..NH....F....A.....P..P.PGDQ...-QQ............G.E.....-.L..RT..R-...AFS.PP.-.Q..SSR.G.R..E.E....Q..NP..T.K............ ....ECG..FS.......HQR.H.GEKP
ZNF589_homSap E.KPE...CPSC.LAF.SQ.FLSQ....NH....F.---A...L.P.NP.P.DQ.Q.-Q...D..........Q........L...T..R.....FSS...-....SS..G.R..E......Q..................... ....ECG.GFS..S....HQRTHTGEK
ZNF343_homSap E.KPEI..C.SC.LAFS.Q.FLSQHV.-----Q.F....A.....P.N..PG...Q..QQ............GQE....S.....RT..R....AF.SP..-.Q..S.R.G....E.E....Q..NP....K............ ....E........S......RT..G.KP
HKR1_homSap  E.KPEI...PSC.L.FSSQ..LSQHV...H..Q.F....A...L......P.DQ.Q.----.D................S..L..R........A.SSPP...Q...S.....................T.K............ ....E.G.GF...S.....Q.T.TGE.P


Absence in frog, lizard and bird genomes would require persistence through the common ancestor but multiple independent loss events in the descendent lineages. Here  frog still has a knuckle-PR(SET) domain most like that of PRDM7/9 but it is attached to a long BED domain and most resembles the human protein ZBED1 family overall.
== Domain by domain structure/function ==


[http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000753 Reported] PRDM9 orthologs in early diverging bilatera such as Lottia, Capitella and Nematostella can be dismissed as independent occurrences of common ancient domain combinations. None of these domains are mammalian innovations -- PR(SET) traces back to bacterial methylases and zinc fingers also have a long and complex history. Without conservation of all mammalian domains, exon phasing, syntenic chromosomal location and demonstration of descent from a single gene in the last common ancestor, there is no basis for calling such genes orthologous nor assuming they function similarly in meiosis or illuminate mammalian PRDM7/9 evolution. Widespread expression in testes is not supportive as it conflicts with the very restrictive mammalian expression pattern. How could such a fundamental capacity be lost (and replaced by a non-homologous system) so many times in so many other lineages -- all of which have obligatory meiosis?
PRDM7 and PRDM9 are chimeric proteins comprised of 6 recognizable domains joined by linker regions. While multi-domain proteins are common in the overall human proteome, this particular combination occurs nowhere else. However some of the domains here occur in other combinations in other proteins, notable in the vast heterogeneous family of zinc finger proteins (gene names ZNFxxx).


  >PRDM7_danRer Danio rerio (zebrafish) Q6P2A1 transcript BC064665 no KRAB SSXRD or exon 5 but <span style="color: #0066CC;">knuckle</span> <span style="color: #990099;">SET</span> <span style="color: #6699FF;">early ZNf</span> <span style="color: #FF0000;">C2H2 array</span>
  KRAB_A Kruppel
  0 MSLSP 1
  SSXRD
  2 DLPPSEEQNLEIQGSATNCYSVVIIEEQDDTFNDQPF 1
  zinc knuckle
  2 <span style="color: #0066CC;">YCEMCQQHFIDQCETHGPPSFTCDSPA</span>ALGTPQRALLTLP<span style="color: #990099;">QGLVIGRSSISHAGLGVFNQGQTVPLGMHFGPFDGEEISEEKALDSANSWV 0
  PR or SET domain
  0 ICRGNNQYSYIDAEKDTHSNWMK 2
  early zinc finger
  1 FVVCSRSETEQNLVAFQQNGRILFRCCRPISPGQEFRVWYAEEYAQG</span>LGAIWDKIWDNKCISQ 1
  terminal zinc finger array
2 GSTEEQATQN<span style="color: #6699FF;">CPCPFCHYSFPTLVYLHAHVKRTH</span>PNEYAQFTQTHPLESEAHTPITEVEQCLVASDEALSTQTQPVTESPQEQISTQNGQPIHQTENSDEPDASDIYTAAGEISDEI
HA<span style="color: #FF0000;">C</span>VD<span style="color: #FF0000;">C</span>GRSFLRSCHLKR<span style="color: #FF0000;">H</span>QRTI<span style="color: #FF0000;">H</span>SKEKP
YC<span style="color: #FF0000;">C</span>SQ<span style="color: #FF0000;">C</span>KKCFSQATGLKR<span style="color: #FF0000;">H</span>QHT<span style="color: #FF0000;">H</span>QEQEKNIESPDRPSDI
YP<span style="color: #FF0000;">C</span>TK<span style="color: #FF0000;">C</span>TLSFVAKINLHQ<span style="color: #FF0000;">H</span>LKRH<span style="color: #FF0000;">H</span>HGEYLRLVESGSLTAETEEDHT
EV<span style="color: #FF0000;">C</span>FDKQDPNYEPPSRGRKSTKNSLKGRGCPKKVAVGRPRGRPPKNKNLEVEVQKIS
PI<span style="color: #FF0000;">C</span>TN<span style="color: #FF0000;">C</span>EQSFSDLETLKT<span style="color: #FF0000;">H</span>QCPRRDDEGDNVEHPQEASQ
YI<span style="color: #FF0000;">C</span>GE<span style="color: #FF0000;">C</span>IRAFSNLDLLKA<span style="color: #FF0000;">H</span>ECIQQGEGS
YC<span style="color: #FF0000;">C</span>PH<span style="color: #FF0000;">C</span>DLYFNRMCNLRR<span style="color: #FF0000;">H</span>ERTI<span style="color: #FF0000;">H</span>SKEKP
YC<span style="color: #FF0000;">C</span>TV<span style="color: #FF0000;">C</span>LKSFTQSSGLKR<span style="color: #FF0000;">H</span>QQS<span style="color: #FF0000;">H</span>LRRKSHRQSSALFTAAI
FP<span style="color: #FF0000;">C</span>AY<span style="color: #FF0000;">C</span>PFSFTDERYLYK<span style="color: #FF0000;">H</span>IRR<span style="color: #FF0000;">H</span>HPEMSLKYLSFQEGGVLSVEKP
HS<span style="color: #FF0000;">C</span>SQ<span style="color: #FF0000;">C</span>CKSFSTIKGFKN<span style="color: #FF0000;">H</span>SCFKQGEKV
YL<span style="color: #FF0000;">C</span>PD<span style="color: #FF0000;">C</span>GKAFSWFNSLKQ<span style="color: #FF0000;">H</span>QRI<span style="color: #FF0000;">H</span>TGEKP
YT<span style="color: #FF0000;">C</span>SQ<span style="color: #FF0000;">C</span>GKSFVHSGQLNV<span style="color: #FF0000;">H</span>LRT<span style="color: #FF0000;">H</span>TGEKP
FL<span style="color: #FF0000;">C</span>SQ<span style="color: #FF0000;">C</span>GESFRQSGDLRR<span style="color: #FF0000;">H</span>EQK<span style="color: #FF0000;">H</span>SGVRP
CQ<span style="color: #FF0000;">C</span>PD<span style="color: #FF0000;">C</span>GKSFSRPQSLKA<span style="color: #FF0000;">H</span>QQL<span style="color: #FF0000;">H</span>VGTKL
FP<span style="color: #FF0000;">C</span>TQ<span style="color: #FF0000;">C</span>GKSFTRRYHLTR<span style="color: #FF0000;">H</span>HQKM<span style="color: #FF0000;">H</span>S* 0
>ZBED1_xenTro
0 MQAAEEACAQLEDELL 1
2 <span style="color: #0066CC;">FCEDCRLYFRDSCPTHGAPTFILDTPV</span>PENVPSRALLSLPEGLVVKERP<span style="color: #990099;">QGGFGVWCTIPVIPRGCIFGPYEGDVIMDRSDCTVYSWA 0
0 VRENGSYFYIDASDDSKSSWMR 2
1 YVACASTEEEHNLTVFQYRGKIYYRASQVIPTGTELLVWIGEEYARTLG</span>LKL 1
2 GEHFKYEFGEKELLMKLFQDLQLKPVDSISNHVSSQSQYMCNDMVTPVMQAHRTSYPLNNIGHTSSVFPLLEGTQNLVSLGRAQSRYWTFFGFQGDAYGRIIDKTK<span style="color: #6699FF;">IICKLCGVRLSYSGNTTNLRQHLIYK</span>HRRQYNDL


=== Structural considerations in C2H2 zinc fingers ===
Because the inter-domain linkers are evolving chaotically in terms of little amino acid property conservation and sometimes length, they cannot plausibly be under significant selective pressure, nor can they assume a stable structural fold. However this does not imply that the domains that they link do not have significant physical interactions important to the global tertiary protein structure. To date, only the isolated domains have been studied crystallographically (with the exception of the knuckle-PR combination).


High resolution structures of C2H2 zinc finger domains have been available for decades. As the name suggests, the divalent zinc atom locks the two cysteines and two histidines into a rigid geometry providing a core conformation that a small peptide of 28 residues could not otherwise stably assume. Note in the unbound state, finger tips must retain flexibility while the domain ensemble scans its genome for specific dna sequences appropriate to its function. Each finger binds a trinucleotide -- in effect making a zinc finger the protein counterpart to tRNA anticodon. However overall binding is not a simple read-off code because adjacent fingers alter each other's specificities in subtle ways.
While the domain folds individually are quite ancient and do not reflect de novo innovation in vertebrates from random dna strings, their assembly into PRDM7/9 is fairly recent, about 150 million years ago. Prior to this, a proto-PRDM7 containing the last 4 domains arose and persisted for 300 million years, giving rise to several gene duplicates, all with vaguely understood function related to transcriptional regulation.


The linker region TGEKP plays a key role when the correct DNA sequence is encountered, [http://www.ncbi.nlm.nih.gov/pubmed/10656784 snap-locking] its finger down onto its target by capping the C-terminus of its alpha helix. A hydrogen bond between the first threonine and middle glutamate is key to this binding-induced conformational shift. From comparative genomics, it appears that a serine in first position can also form this hydrogen bond. The role of the glycine is to stay out of the way; the lysine counterbalances the negative charge of the glutamate; the proline terminates any helical propensity, allowing a fresh start in the adjacent finger.
The following sections consider what is known about each domain in turn primarily from the perspective of comparative genomics. As of July 2011, 51 land vertebrate genomes are available, providing a rich history of how PRDM7 has been evolving in various branches of the phylogenetic tree.


While this motif is immensely conserved within C2H2 zinc finger of PDRM9 homologs, exceptions do occur. It is important to understand these because these loss of dna lock-down could loosen or even eliminate trinucleotide binding specificity. Such steps might represent initial stages of pseudogenization. However many exceptions occur within the first or last fingers. It is also common for fragmentary and imperfect motifs to end the protein, sometimes continuing on in another reading frame past the current stop codon.
=== Reciprocal translocation: origin of the SSX1-PRDM chimera ===


Note in aligning zinc finger motifs, the breaks should always be put at the end of the linker region. It is completely illogical to break at the first cysteine as some authors do because capping by the linker region is specific to its zinc finger, not the following one.
Upon blastp of the first 6 exons of any PRDM7/9 protein against GenBank restricted to human, SSX1 emerges as the only full length non-self match. Comparison of its 6 exons establishes further that their intron phasing is an exact match. Since this is impossibly coincidental, it follows that PRDM7 (the immediate parent of PRDM9 in primates) arose as a chimera of ancestors to these two proteins prior to marsupial divergence. The percent identity has dropped from the initial perfect agreement to 32% today, without however loss of KRAB_A and SSXRD domain recognizability in either gene family. No other proteins in the human genome -- in particular no zinc finger proteins -- contain these 6 exons though the KRAB domain alone is widespread.


=== Predicting dna binding sites of zinc finger domains ===
>SSX1_homSap                                      >PRDM9_homSap
 
<span style="color: #0066CC;">0 MNGDDTFAKRPRDDAKASEKRSK 0                        0 MSPEKSQEESPEEDTERTERKPM 0</span>
[[Image:PRDM9onDNA.jpg|left]]
<span style="color: #990099;">0 AFDDIATYFSKKEWKKMKYSEKISYVYMKRNYKAMTKL 1        0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1</span>
<span style="color: #0066CC;">2 GFKVTLPPFMCNKQATDFQGNDFDNDHNRRIQ 1              2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1</span>
<span style="color: #990099;">2 VEHPQMTFGRLHRIIPK 0                              2 VKPPWMALRVEQRKHQK 0</span>
<span style="color: #0066CC;">0 IMPKKPAEDENDSKGVSEASGPQNDGKQLHPPGKANISEKINKRS 1  0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL 1</span>
<span style="color: #990099;">2 GPKRGKHAWTHRLRERKQLVIYEEISDPEEDDE*              2 ELRKKETERKMYSLRERKGHAYKEVSEPQDDDYL 1</span>
PRDM9 <span style="color: #0066CC;">MSPEKSQEESPEEDTERTERKPM</span><span style="color: #990099;">VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI</span><span style="color: #0066CC;">GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ</span>
      <span style="color: #0066CC;">M+ + +  + P +D + +E++  </span><span style="color: #990099;"> K AF DI+ YF+K+EW +M  EK  Y  +KRNY A+  +</span><span style="color: #0066CC;">G + T P FMC+ +QA  Q +D    D +  R Q</span>
SSX1  <span style="color: #0066CC;">MNGDDTFAKRPRDDAKASEKRSK</span><span style="color: #990099;">---AFDDIATYFSKKEWKKMKYSEKISYVYMKRNYKAMTKL</span><span style="color: #0066CC;">GFKVTLPPFMCN-KQATDFQGNDF---DNDHNRRIQ</span>
PRDM9 <span style="color: #990099;">VKPPWMALRVEQRKHQK</span><span style="color: #0066CC;">GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL</span><span style="color: #990099;">ELRKKETERKMYSLRERKGHA-YKEVSEPQDDDYL 1</span>
      <span style="color: #990099;">V+ P M      R  K</span><span style="color: #0066CC;"> MPK    +E+  K +S      ASG +  K + P G+A+ S + ++  </span><span style="color: #990099;">  ++      + LRERK    Y+E+S+P++DD    </span>
SSX1  <span style="color: #990099;">VEHPQMTFGRLHRIIPK</span><span style="color: #0066CC;">IMPKKPAEDENDSKGVSE------ASGPQNDGKQLHPPGKANISEKINK-RS</span><span style="color: #990099;">GPKRGKHAW-THRLRERKQLVIYEEISDPEEDDE*  </span>


<br clear = all>
This chimera arose subsequent to the duplication of proto-PRMD7 and its divergence to PRDM11, its nearest PRDM relative which has leading exons unrelated to SSX1. Indeed none of the other 14 PRDM proteins have a KRAB or SSXRD domain. The SSX1 gene itself, then and now, lies in a tandem array and so did not disappear as a standalone gene family as only one copy was used up in forming the hybrid protein. For viability, the event was likely a reciprocal translocation, accounting for the SSX array and PRDM7 being on different chromosomes today.


== Supplemental information ==
The SSX1-group genes occurs in the human reference genome as 11 features in two nearby clusters both on chromosome X. Some of these may be pseudogenes. The degree of similarity suggests recent gene duplication and/or gene conversion. The array is notorious for reciprocal translocations involving the one of 24 human synaptotagmins, the SYT4 gene on chromosome 18. These translocations [http://www.ncbi.nlm.nih.gov/pubmed/11368913 fuse] early exons of SYT4 with distal exons of an SSX gene, usually SSX1 or SSX2 but sometimes SSX4. The event takes place within intron 4 of the SSX genes and preserves reading frame, allowing for a chimeric protein with disastrous regulatory properties to emerge -- nearly all cases of synovial sarcomas arise from repeated occurrence of this event.


The sections below store data used above. This includes curated sequences from all available mammals for PRDM7 and PRDM9 and additional their partial paralogs in the PRDM gene family. These latter have extensive comparative genomics alignments readily available elsewhere (UCSC genome browser, under GeneSorter feature and ProteinFasta feature in gene details page) so that is not repeated here.
SSX1b  +  chrX:47967088-47980069  similar to SSX1
SSX5  -  chrX:48045656-48056199  synovial sarcoma X breakpoint 5
SSX1a  +  chrX:48114797-48126879  synovial sarcoma X breakpoint 1
SSX9  -  chrX:48154885-48165614  synovial sarcoma X breakpoint 9
SSX3  -  chrX:48205863-48216142  synovial sarcoma X breakpoint 3
SSX4  +  chrX:48242968-48252785  synovial sarcoma X breakpoint 4
SSX4B  -  chrX:48261524-48271344  synovial sarcoma X breakpoint 4B
SSX8  +  chrX:52651985-52662998  similar to SSX8
SSX7  -  chrX:52673111-52683950  synovial sarcoma X breakpoint 7
SSX2a  -  chrX:52725946-52736249  synovial sarcoma X breakpoint 2
SSX2b  +  chrX:52780308-52790617  synovial sarcoma X breakpoint 2


While this topic has a long history in the peer-reviewed scientific literature, only the most recent articles are provided here because their reference sections satisfactorly summarize pre-2005 studies. Instead, the focus here is identifying free full text access to the recent articles, preferably as html which better supports copying snippets of text. The journal, google, and PubMed all provide forward citations to still other articles that cite the articles provided here.
Possibly the SSX1 array has long been predisposed to translocation events. It might seem very difficult to establish the structure of the ancestral array at the time of PRDM chimera formation -- contemporary marsupial has barely related genes on different chromosomes; elephant and dog too lack a multi-gene array. However rhesus but not marmoset has a chr X cluster, so that aspect is restricted to old world primates. A single SSX1 gene can be recovered from elephant but is already quite diverged from human. Marsupials have no evident SSX1 genes today.


=== Curated reference sequences ===
This gene fusion of SSX1 and PRDM brought together a negative regulatory domain for transcription with a histone methylase and dna site recognition domain. This new combination succeeded in replacing whatever prior mechanism existed for meiotic breakpoint pairing and recombination. 


The sequences below have largely been compiled from genome projects -- only rarely do validating transcripts exist at GenBank. Sequences with a single frameshift or other glitch have been edited to allow full length proteins on the theory that the error either reflects an aberrant atypical individual chosen for sequencing or sequencing error in low coverage projects within a difficult region. However such sequences may instead reflect early stages of pseudogenization. Other sequences are in fact clearly pseudogenes; here recognizable exons have been collected to allow rough dating of loss of function.
>SSX1_loxAfr
 
0 VNRDSSLAKSSKEDTQKPEKESK 0
In the case of more intensively studied species such as human, the number of C2H2 repeats varies widely. Only the reference sequence representative is shown here. This variation likely occurs in all species with the individual animal chosen for sequencing not necessarily the most common allele. Many clades have independent histories of gene amplification and gene loss, making both orthologous and functional comparisons problematic at substantial divergences.
0 AFKDILKYFSKEEWAKLGYSKKVTYVYMKRNYDTMTNL 1
2 GLRATLPPFMDPNRLATKSQLDESDEEQNPGTQ 1
2 DEPPQMASSVRESKHLM 0
0 MKPKKPSKEENGSKVVPGTAGLMRTSGPEQAQKQPCPPGKANTSGQQSKQTP 1
2 VPGKEETKVWACRLRERKNLVAYEEISDPEEED*
 
=== The zinc knuckle preceding the PR (SET) domain ===


The reference sequences below are also available as [http://genomewiki.ucsc.edu/index.php/Image:PRDM9refSeqs.pdf here] as tab-delimited pdf text that will paste cleanly into rows and columns of a spreadsheet which allows sorting to conveniently select data subsets.
A 2011 [http://www.ncbi.nlm.nih.gov/pubmed/21604305 crystallographic study] establishes that a short motif YC..C..........C..HGP  found in 6 members of the human PRDM gene family binds zinc via the 3 cysteines and a histidine. The fold most closely resembles the previously known RanBP2 zinc finger  domain which occurs in some 21 human proteins, notably nucleoporins NUP153, NUP358, NPL4, EWS, TLS, RBP56, RBM5, RBM10, TEX13A, RANDB2 and ZRANB2. Not all these domains are necessarily homologous because the fold is small and zinc fingers seem to have evolved numerous times. Such fingers can bind other proteins, ssRNA and likely DNA. Their function in PRDM genes is completely unknown but the aromatic residue preceding the first cysteine may contribute to a pi-bonding base stack with guanines.


Other useful sequences such as PRDM11, PRDM4 and zinc finger semi-homologs having similar exon and domain structures, are provide in the subsequent section along with syntenic markers such as GAS8.
[[Image:KnuckleSET.jpg|left]]


>PRDM9_homSap Homo sapiens (human) genome Prim gene 13 CDH12 chr5 10 exon size 18,301 bp KRAB SSXRD SET C2H2
The domain begins at a phase 2 exon, meaning that the first codon letter is borrowed from the preceding exon splice donor. A dozen earlier residues from this exon are also used but do not exhibit any conservation outside their orthology class. In most cases the knuckle domain exon also contains a downstream PR(SET) domain but at variable intervening lengths (distances shown are to conserved FGP in center of PR(SET) domain. The function of these intervening residues are unknown.
  0 MSPEKSQEESPEEDTERTERKPM 0
<br clear=all>
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
exon 6    splice exon 7                    SET gene name
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  IPLNQHTSDPNN 1 2 R<span style="color: #FF0000;">C</span>DM<span style="color: #FF0000;">C</span>ADNRNGE<span style="color: #FF0000;">C</span>PM<span style="color: #FF0000;">HGP</span>LHSLRRLVG .49. PRDM6_homSap
  2 VKPPWMALRVEQRKHQK 0
  PDPPRPFDPHDL 1 2 W<span style="color: #FF0000;">C</span>EE<span style="color: #FF0000;">C</span>NNAHASV<span style="color: #FF0000;">C</span>PK<span style="color: #FF0000;">HGP</span>LHPIPNRPV .16. PRDM10_homSap
  0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL 1
  MAEDGSEEIMFI 1 2 W<span style="color: #FF0000;">C</span>ED<span style="color: #FF0000;">C</span>SQYHDSE<span style="color: #FF0000;">C</span>PE<span style="color: #0066CC;">L</span><span style="color: #FF0000;">GP</span>VVMVKDSFV .99. PRDM15_homSap
  2 ELRKKETERKMYSLRERKGHAYKEVSEPQDDDYL 1
  GSKENMATLFTI 1 2 W<span style="color: #FF0000;">C</span>TL<span style="color: #FF0000;">C</span>DRAYPSD<span style="color: #FF0000;">C</span>PE<span style="color: #FF0000;">HGP</span>VTFVPDTPI .36. PRDM4_homSap
  2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
  IVPKSFQQVDFW 1 2 F<span style="color: #FF0000;">C</span>ES<span style="color: #FF0000;">C</span>QEYFVDE<span style="color: #FF0000;">C</span>PN<span style="color: #FF0000;">HGP</span>PVFVSDTPV .42. PRDM11_homSap
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  KEVSEPQDDDYL 1 2 Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span>QNFFIDS<span style="color: #FF0000;">C</span>AA<span style="color: #FF0000;">HGP</span>PTFVKDSAV .42. PRDM9_homSap
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  KEISEPQDDDYL 1 2 Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span>QNFFIDS<span style="color: #FF0000;">C</span>AA<span style="color: #FF0000;">HGP</span>PTFVKDSAV .42. PRDM7_homSap
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
  QEIWDPQDDDYL 1 2 Y<span style="color: #FF0000;">C</span>EE<span style="color: #FF0000;">C</span>QTFFLET<span style="color: #FF0000;">C</span>AV<span style="color: #FF0000;">HGP</span>PKFVQDSVM .42. PRDM7_monDom
  VKYGECGQGFSVKSDVITHQRTHTGEKL
  NENYRPEDDDYL 1 2 Y<span style="color: #FF0000;">C</span>EI<span style="color: #FF0000;">C</span>QTFFLEK<span style="color: #FF0000;">C</span>VL<span style="color: #FF0000;">HGP</span>PVFVQDLPV .42. PRDM7_ornAna
  YVCRECGRGFSWKSHLLIHQRIHTGEKP
  EEQDDTFNDQPF 1 2 Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span>QQHFIDQ<span style="color: #FF0000;">C</span>ET<span style="color: #FF0000;">HGP</span>PSFTCDSPA .42. PRDM7_danRer
YVCRECGRGFSWQSVLLTHQRTHTGEKP
  TEEEELRDEEYF 1 2 F<span style="color: #FF0000;">C</span>EE<span style="color: #FF0000;">C</span>KSFFIEE<span style="color: #FF0000;">C</span>EL<span style="color: #FF0000;">HGP</span>PLFIPDTPA .42. PRDM7_salSal
YVCRECGRGFSRQSVLLTHQRRHTGEKP
  IKEEEADVKDFL 1 2 Y<span style="color: #FF0000;">C</span>EV<span style="color: #FF0000;">C</span>KSVFFSK<span style="color: #FF0000;">C</span>EV<span style="color: #FF0000;">HGP</span>ALFIADSPV .42. PRDM7_ictPun
YVCRECGRGFSRQSVLLTHQRRHTGEKP
                YV<span style="color: #FF0000;">C</span>RE<span style="color: #FF0000;">C</span>GRGFSWQSVLLT<span style="color: #FF0000;">H</span>QRT<span style="color: #FF0000;">H</span>TGEKP comparison to longer zinc finger in main array of PRDM7/9
YVCRECGRGFSWQSVLLTHQRTHTGEKP
 
YVCRECGRGFSWQSVLLTHQRTHTGEKP
=== Structural alignment of all PRDM proteins ===
YVCRECGRGFSNKSHLLRHQRTHTGEKP
 
YVCRECGRGFRDKSHLLRHQRTHTGEKP
To determine the evolutionary relationship of the 16 human PRDM genes, it is useful (given the great divergence in primary sequence) to consider rare genomic events such as intron gain/loss and indels. Only 7 of the 16 contain the knuckle region. Of these PDRM11 is the most closely related to PRMD9.
YVCRECGRGFRDKSNLLSHQRTHTGEKP
 
YVCRECGRGFSNKSHLLRHQRTHTGEKP
This is fortunate because the 3D structure of PRDM11 was recently determined (PDB: 3RAY) from before the knuckle region on into the final exon, thus allowing threading of PRDM9 (whose structure has not been studied). The dozen-odd conserved patches in these widely diverged paralogs find their explanation in the atomic details of this structure. Note the PRA(SET) domain and zinc fingers are all that can currently modeled as the KRAB, SSXRD and final exon have no counterparts at PDB.
YVCRECGRGFRNKSHLLRHQRTHTGEKP
 
  YVCRECGRGFSDRSSLCYHQRTHTGEKP
The knuckle region apparently represents a one-time domain acquisition relative to a knuckle-less ancestral state. The date of this event relative to species phylogeny and the source of the domain are unclear (it is very unlikely to have evolved in situ). Similarly, the internal phase 00 intron is ancestral even though it breaks up a coherent structural domain. Note the final 12 intron is also ancestral -- the PR(SET) domain never occurs without it even though zinc fingers are not always found in the next exon. However the later 21 intron is a newer acquired feature specific to PRDM9 and its closest associates, post-dating acquisition of the knuckle domain and predating duplication and divergence of the PRDM7/9 group. This again follows from gene tree and parsimony considerations.
  YVCREDE.....................
 
Crystallographic coverage is excessive yet highly unsatisfactory -- the knuckle-PR(SET) domain is covered by 6 different structures, yet none of them are exactly what is needed (PRDM11 3RAY; PRDM4 2L9Z/3DB5; PRDM10 3IXH; PRDM1 3DAL; PRDM2 3JV0; PRDM12 3EP0). There is no coverage of the preceding KRAB or SSXRD domain or the following early knuckle. However on the knuckle-PR(SET) domain, all these structures could likely be superimposed simultaneously on the near-universal domains identified below. PRDM7/9 would then follow this fold trace as well, though it could be modeled directly from just PRDM11. The intervening regions between conserved anchors can be modeled for PRDM7/9 only to the extent that local conservation in length and residue can be found to a determined structure. For example, <span style="color: #FF0000;">IFY</span>RTCRV<span style="color: #FF0000;">I</span> in PRDM9 can be modeled by the PRDM11 structure since its internal residues contain three matches and no gaps, <span style="color: #FF0000;">IFY</span><span style="color: #0066CC;">R</span>A<span style="color: #0066CC;">CR</span>D<span style="color: #FF0000;">I</span>.
 
Humans have [http://www.ncbi.nlm.nih.gov/pubmed/21564555 51 genes encoding SET domains], with the PRDM group most diverged from the canonical structures. It is difficult enough to meaningfully align the PRDM and even more so to include all 51 of these lysine methylases. [http://onlinelibrary.wiley.com/store/10.1111/j.1747-0285.2011.01135.x/asset/supinfo/CBDD_1135_sm_TableS1-FigS1-4.pdf?v=1&s=81ef430033f1fd8d18bed72183e312564387ad66 When that is done], most of the conserved patches below emerge as universal motifs yet others are restricted to the PRDM family. All of these proteins would likely bind S-adenosyl methionine and have a lysine pocket in addition superimposable global folds (neither relatable to the 45 human arginine methyltransferases).
   
   
>PRDM9_panTro Pan troglodytes (chimp) genome Prim gene 19 CDH12 chr5 frag assembly glitch in mid C2H2
[[Image:PRDMs.gif|left]]
  0 MSPERSQEESPEGDTERTERKPM 0
<br clear=all>
  0 VKDAFKDISIYFTKEEWAEMGDWgKTRYRiVKMNYNALITi 1
  gapping:    uncertain between conserved markers                                      iM: initial methionine, protein thus too short for further comparison
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  knuckle:    shortened zinc finger motif                                              underlining: magenta coloring shows non-informative idiosyncratic introns
  2 VKPPWMAFRGEQSKHQK 0
  C2H2:        terminal zinc finger region following universal phase 12 intron          PRDM15: duplicated diverged exon removed 21 SWPASGHVHTQAGQGMRGYEDRDRADPQQLPEAVPAGLVRRLSGQQLPCRSTLTWGRLCHLVAQGR
  0 GMPKASFNNESSLkELSGmPNLLNTSgSEQAQKPVSPPGEASTSGQHSRLKL 1
  0:          indel unifying PRDM9/7/11, cannot be resolved as insertion or deletion    7: near-universal motif NWMrYV  split by phase 21 intron gained by PRDM9/7/11/4
  2 ELRRKETvGKMYSLRERKGHAYKEISEPQDDDYL 1
  1:          arginine supporting PRDM6 as outgroup to the knuckle subgroup              8: inexplicable repositioning of 6 residues to previous exon in PRDM4
  2 yCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLRVWNEASDPPLGLHSGPYEGQITEDEEAANSGYSWL 0
  2:          near-universal motif SLP                                                  9: near-universal motif EQNL
  0 ITKGRNCYEYVDGKDKSwANWMR 2
  3:          near-universal motif GF                                                  10: near-universal motif IFY
  1 YENCARDDEEQNLVSFQYHRQSFYRTCRVIRPGCELLVWYGDE GQELGIKWGSKWKKELMAGR 1
  4:          indel unifying PRDM9/7/11, resolvable as an insertion                    11: near-universal motif ELLVWY
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPRSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTAKLFVGVGISRIAK
  5:          near-universal motif FGP                                                  12: possible synapormorphy grouping first 9 genes
  VKYGECGQGFSDKSDVITHQRTHTGGKP
  6:          near-universal motif WLI split by universal phase 00 intron              PRDM16: CVDANQAGAG insertion removed from ISEDLGSEKFCVDANQAGAGSWLKYIRVA
YVCRECGRGFSWKSHLLSHQRTHTGEKP
  PRDM3:      inexplicably has official gene name MECOM                                text-pdf version [http://genomewiki.ucsc.edu/index.php/Image:PRDMseq.pdf here]
  YVCRECGRGFSVKSSLLSHRTTHTGEKP
 
  YVCRECGRGFSVKSSLLSHQRTHTGEKP
  Applicable 3D structural determinations:
YVCRECGRGFSQQSNLLSHQRTHTGEKP
  .... PRDM9  Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span><span style="color: #990099;">QNFFIDS</span><span style="color: #FF0000;">C</span>AA<span style="color: #FF0000;">H</span>GPPTFVKDSAVDKGHPN<span style="color: #FF0000;">R</span>SAL<span style="color: #FF0000;">SLP</span>PGLRIGPSGI.PQAGL<span style="color: #FF0000;">GV</span>WNEASDLPLGLH<span style="color: #FF0000;">FGP</span>YEGRIT.....EDEEAANNGYS<span style="color: #FF0000;">WLI</span>TKG.RNCYEY<span style="color: #FF0000;">VD</span>.......GKDKSWA<span style="color: #FF0000;">NWM</span>R<span style="color: #FF0000;">YV</span>NCARDDE<span style="color: #FF0000;">EQNL</span>VAFQYHR..Q<span style="color: #FF0000;">IFY</span>RTCRV<span style="color: #FF0000;">I</span>RPGC<span style="color: #FF0000;">ELLVWY</span>GDE<span style="color: #FF0000;">Y</span>GQELGIKWGSKWKKELMAGR
YVCRECGRGFSVKSSLLSHQRTHTGEKP
  3RAY PRDM11  <span style="color: #0066CC;">FCESCQEYFVDECPNHGPPVFVSDTPVPVGIPDRAALTIPQGMEVVKDTS...GESDVRCVNEVIPKGHIFGPYEGQIS......TQDKSAGFFSWLIVDK.NNRYKSID.......GSDETKANWMRYVVISREEREQNLLAFQHSE..RIYFRACRDIRPGEWLRVWYSEDYMKRLHSMSQETIHRNLAR</span>
YVCRECGRGFSVKSSLLSHQRTHTGEKP
  2L9Z PRDM4  <span style="color: #0066CC;">WCTLCDRAYPSDCPEHGPVTFVPDTPIE....SRARLSLPKQLVLRQSIV..GAEVGVWTG.ETIPVRTCFGPLIGQQSHSMEVAEWTDKAVNHIWKIYHN.GVLEFCII.......TTDENECNWMMFVRKARNREEQNLVAYPHDG..KIFFCTSQDIPPENELLFYYSRDYAQQI</span>..............
YVCRECGRGFSKQSHLLSHQRTHTGEKP
3IXH PRDM10  WCEECNNAHASVCPKHGPLHPI<span style="color: #0066CC;">PNRPVL....TRARASLPLVLYIDRFLG......GVFSK.RRIPKRTQFGPVEGPLV.....RGSELKDCYIHLKVSLDKGDRKERDLHEDLWFELSDETLCNWMMFVRPAQNHLEQNLVAYQYGH..HVYYTTIKNVEPKQELKVWYAASYAEFVNQK</span>IHDISEEERK.
YVCRECGRGFSVQSNLLSHQRTHTGEKL
  3DAL PRDM1                              <span style="color: #0066CC;">DGGTSVQAEASLPRNLLFKYATN.SEEVIGVMSK.EYIPKGTRFGPLIGEIY..TNDTVPKNANRKYFWRIYSR.GELHHFID.......GFNEEKSNWMRYVNPAHSPREQNLAACQNGM..NIYFYTIKPIPANQELLVWYCRDFAERL</span>HYPYPGELTMMNL.
YVCRECGRGFSQQSHLLRHQRTHTGEKP
  3JV0 PRDM2                              LAEV<span style="color: #0066CC;">PEHVLRGLPEEVR.LFPSAVDKTRIGVWAT.KPILKGKKFGPFVGDKK.....KRSQVKNNVYMWEVYYP.NLGWMCID.......ATDPEKGNWLRYVNWACSGEEQNLFPLEINR..AIYYKTLKPIAPGEELLVWYNGEDNPEIA</span>AAIEEERASARSK
YVCRecgrgfsqqshLLSHQRTHTGEKP
  3EP0 PRDM12                            S<span style="color: #0066CC;">GEVQKLSSLVLPAEVIIAQSSIPGEGL.GIFSK.TWIKAGTEMGPFTGRVI..APEHVDICKNNNLMWEVFNEDGTVRYFID.......ASQEDHRSWMTYIKCARNEQEQNLEV.VQIGT.SIFYKAIEMIPPDQELLVWYGNSHNTFLG</span>IPGVPGLEEDQKK
YVCRECGRGFSVKSSLLSHQRTHTGEKP
 
YVCRECGRGFSKQSHLLSHQRTHTGEKP
Phylogenetic variability of the knuckle-PR(SET) domain for PRDM7/9, shown below, is complicated by the various gene duplications of PRDM7. [http://genomewiki.ucsc.edu/index.php/Image:PRDMdifAlign.pdf Much less variability] occurs between the universally conserved patches in the other five genes with a comparable domain, namely PRDM11, PRDM4, PRDM10, PRDM15 and PRDM6. These genes did not experience duplications during placental evolution. The fact that the entire domain is strongly conserved -- with vary different amino acids in each protein -- implies strong selective pressure acts along the entire domain in these five proteins so the 3D structure is not floppy (indeterminate random coil) between the universally conserved patches, and that whatever functions these genes have remained constant during placental evolution.
YVCRECGRGFSQQSHLLSHQRTHTGEKP
 
YVCRECGRGFSQQSHLLRHQRTHTGEKP
Note knuckle region in PRDM7/9 has moderate variability. Assuming on analogy with the terminal array zinc fingers that the residues between the second and third zinc ligands contain the residues that provide recognition specificity, these are <span style="color: #990099;">QNFFIDS</span>. This region has little phylogenetic variability in PRDM7/9. However overall PRDM11, PRDM4, PRDM10, PRDM15 and PRDM6 have [http://genomewiki.ucsc.edu/index.php/Image:knucklePhylo.pdf even less variability]. These regions could bind dna, single stranded rna or another protein involved in regulation. Those these partners may differ, the type of macromolecule will likely be the same because of underlying homology and implausibility of type change. The phylogenetic alignment of non-pseudogenes in the PRDM7/9 group is quite conservative from calJac (new world monkey Callithrix) to human:
YVCRECGRGFSVKSSLLSHQRTHTGEKP
 
YVCRECGRGFSVKSSLLSHQRTHTGEKP
  PRDM9_homSap    Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span><span style="color: #0066CC;">QNFFIDS</span><span style="color: #FF0000;">C</span>AA<span style="color: #FF0000;">H</span>GPPTFVKDSAVDKGHPN<span style="color: #FF0000;">R</span>SAL<span style="color: #FF0000;">SLP</span>PGLRIGPSGIPQAGL<span style="color: #FF0000;">GV</span>WNEASDLPLGLH<span style="color: #FF0000;">FGP</span>YEGRITEDEEAANNGYS<span style="color: #FF0000;">WLI</span>TKGRNCYEY<span style="color: #FF0000;">VD</span>GKDKSWA<span style="color: #FF0000;">NWM</span>R<span style="color: #FF0000;">YV</span>NCARDDE<span style="color: #FF0000;">EQNL</span>VAFQYHRQ<span style="color: #FF0000;">IFY</span>RTCRV<span style="color: #FF0000;">I</span>RPGC<span style="color: #FF0000;">ELLVWY</span>GDE<span style="color: #FF0000;">Y</span>GQELGIKWGSKWKKELMAGR
YVCRECERGFSQQSHLLRHQRTHTGEKP
  PRDM9_panTro    .......................................................R.......P.....S.....Q.........S.............................E............S......S..........................................
YVCRECGRGFSRQSALLIHQRTHTGEKP
PRDM9_gorGor    ...................I.....................................................K........................................................................................................
VCREDE......................
PRDM9_ponAbe    ................................................................................K......................................W.......................................................P..
   
PRDM9_nomLeu    .....................I...T.G...........................................................................................W.......................................................P..
  >PRDM9_gorGor Gorilla gorilla (gorilla) CABD02290264 Prim gene -- cdh12 chr5 several contigs needed, most of ZNF domain missing
PRDM9_macMul    .....................I.....E..................................................Q...................................................................................................
0 MSPERSQEESPEEDTERTERKPM 0
PRDM9_papHam    ...........................N....................................................K.................................................................................................
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
PRDM7_homSap    .....................................................................................S......................S.....................................................................
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
PRDM7_ponAbe    .....................................T........................................K...................................................................................................
2 VKPPCMALRVEQRKHQK 0
PRDM7_calJac    ...I.............................HA.........................................V.......SS............................................................................................
0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
PRDM7_micMur    ...K.......................................K.R................E............QV........S....................D..............E...................Q.............................E..TIRQ
2 ELRKKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
PRDM7_otoGar    ...K.......N..V.........T..E.......V....S..G.RT.......F.........Q..........QV........S....................E.QG...........E....................................................T..Q
2 yCEMCQNFFIDSCAAHGPPIFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYKGRITEDEEAANNGYSWL 0
PRDM7_tupBel    ...K.........S.....I..........SL...V.........A.....E.......A.T.............Q.........S....................E.C..............................................E................S.WQ.E
0 ITKGRNCYEYVDGKDKSWANWMR 2
PRDM9_oryCun    ...K.....L....V....I...............V...............E.......................Q...E.....S....................R.............N............K.......Q..K..........................E..T...
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
PRDM7_oryCun    ...K.....L....V....I...............V...............E.......................Q...E.....S....................R.............N............K.......Q..K..........................E..T...
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARTLLQPENPCPGDQNQEQQYPDPRSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESR TGQKVNPGNTGKLFVGVGISRIAK
PRDM7_ochPri    ..........E...V..S..............H..V....S..........E........TT.............QV..E...T.S...........R........P.Q...........N.....................AV.Q.........................E..T...
VKYGECGQGFSVKSDVITHQRTHTGEKP
PRDM7_ratNor    ...K.........PN....V.....V..R....H.V...............E.............V.......K.Q.........S..................Q.E.Q.........................K............R.....................M..GFT...
YVC.........................
PRDM7_musMus    ...K.........PN....L.....M..R....H.V.........S.....E.............V.........Q.........S..................Q.E.Q.........................K..................................M..GFT...
   
PRDM7_musMol    ...K.........PN....L.....M..R....H.V.........S.....E.............V.........Q.........S..................Q.E.Q.........................K..................................M..GFT...
  >PRDM9_ponAbe Pongo abelii (orangutan) genome Prim gene 10 CDH12 chr5 frameshift extra a penultimate ZNF
PRDM7_dipOrd    ...Q......N..TV....I..R.NV.....YD..V.........RQ.S..E........E..............Q.....D...S....M........V........Q...........Y.......................KA.........................R..T...
  0 MSPERSQEESPkGDTERTERKPM 0
PRDM7_speTri    ..DK.....M...PV......I...V.N.D.S.H.T....L.......S..E.........T...........R.Q.........S....................E.Q.................................................................S...
0 VKDAFKDISIYFTKEEWTEMGDWEKTRYRNVKRNYKTLITI 1
PRDM9_bosTau    ..QE.........D.............E...A...V.T.....S.KL....E..........H............Q..D.K..I.S...........S........T.L...........HY...........G.......Q.V...............EK....CE.RG.SMFA...
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
PRDM9_oviAri    ..QE......N..D.............E...A.....T.....S.RL....E..........H............Q..D.K..V.S....................T.L....................L..QG.......Q.V................D....RD.SG.S..A...
2 VKPPWMAFRGEQSKHQK 0
PRDM9_munMun    ...E......N.............C..E...A.....T..H..S.RL....D.......KV...A........K.Q..DN.....S..A.................T..........................G.......Q.V................DF...RN.RG.S..A...
0 GMPKASFNNESSLKELSGTQNLLNTSGSEQAQKPVSPPGEASTSGQHSTLKI 1
PRDM7_turTru    ...K.............A.........E.........T.....S.R.....E.......................Q.........S....................T..............E.....................V..............S.....P...G..SQ.V...
2 ELRRKETEGKTYSLRERKGHAYKEVSEPQDDDYL 1
PRDM7_lamPac    ...K.................................T.......R.....E.........H.............QV........S..........K..........Y...............................................E................S.WQ.E
2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDKEAANNGYSWL 0
PRDM7_susScr    ...K.................................T.......R.....E.........H.............QV........S.........................................................V..............................T..I
0 ITKGRNCYEYVDGKDKSWANWMR 2
PRDM7_felCat    ...K..........V.........N..G.........T.......R..S..E...............T.......Q.........S....................N................................................................S..ST.K
1 YVNCAWDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMPGR 1
PRDM7_ailMel    ...K..........V...............Q......T.......R.............................Q.........S....................N..............E.................................................S..A..K
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNHEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
PRDM7_pteVam    ...K.............S.I.....E..IR.......T.............E................L......QV........S.....QG.............E.R..............................................................R..T...
VKYGECGQGFSDKSDVITHQRTHTGGRS
PRDM7_myoLuc    ...K..........V................A.....T.............E........EC...V...Y.....Q.....AI..S....................T.Q..................................V.K.........E...............T.PV...
YVCRECGRGFSRQSVLLIHQRTHTGEKP
PRDM7_equCab    ...N...............I.................T..L....R.....E.......................Q.........S....................I....................................V...........................R..T...
YVCRECGRGFSRRSVLLIHQRTHTGEKP
PRDM7_sorAra    ...N......NK.S...S.I....N..A...S.....T..H..........E....I..................Q..N......S..................V.E.L............Y....................I.K..........................S..T.DK
YVCRECGRGFSQQSVLLIHQRTHTGEKP
PRDM9_loxAfr    ...K.......T..V..A.M.....P..R....H...T..........S..K..........E............QV...K....S.........K..........E..............E....................T.Q.D.....................R.....TS..
YVCRECGRGFSRRSVLLIHQRTHTGEKP
PRDM7_choHof    ...K.....FEN........LL.....GQ.R.KH...V......L......E.......................QV......T.S......................C.................................A...............................T.EK
YVCRECGRGFSWKSVLLRHQRTHTGEKP
PRDM9_homSap    Y<span style="color: #FF0000;">C</span>EM<span style="color: #FF0000;">C</span><span style="color: #0066CC;">QNFFIDS</span><span style="color: #FF0000;">C</span>AA<span style="color: #FF0000;">H</span>GPPTFVKDSAVDKGHPN<span style="color: #FF0000;">R</span>SAL<span style="color: #FF0000;">SLP</span>PGLRIGPSGIPQAGL<span style="color: #FF0000;">GV</span>WNEASDLPLGLH<span style="color: #FF0000;">FGP</span>YEGRITEDEEAANNGYS<span style="color: #FF0000;">WLI</span>TKGRNCYEY<span style="color: #FF0000;">VD</span>GKDKSWA<span style="color: #FF0000;">NWM</span>R<span style="color: #FF0000;">YV</span>NCARDDE<span style="color: #FF0000;">EQNL</span>VAFQYHRQ<span style="color: #FF0000;">IFY</span>RTCRV<span style="color: #FF0000;">I</span>RPGC<span style="color: #FF0000;">ELLVWY</span>GDE<span style="color: #FF0000;">Y</span>GQELGIKWGSKWKKELMAGR
YVCRECGRGFSQQSVVFIHQRTHTGEKP
 
YVCRECGRGFSGKSVLFRHQRTHTGEKP
=== Central PR(SET) domain descended from PRDM11 ===
YVCRECGRGFSDKSGVCYHQRTHTRGEA
 
YVCRECGRGFSVKSNLLSHQRTHTEEKL
Various additional sequences are relevant to understanding the curated placental mammal PRDM7/9 set. For example, the neanderthal genome despite being very far from satisfactory coverage can provide a PRDM9 sequence derived from the human reference sequence using non-synonymous SNPs reported in the corresponding UCSC browser track. The changes reported in the zinc finger domain (R HDL S R) may be enough to have created somewhat of a species barrier, though this involves comparing a fossil sequence to a contemporary human (which are today themselves quite variable). Similarly, the bushman genome sequence might yield an intermediate outgroup, though that assembly (like so many others) remains elusive.
YVCREDE.....................
 
Terminal sequences for 9 additional species of murid rodents have been determined but these have limited value for comparative genomics because they do not even cover the entire terminal exon and their syntenic contexts (and thus homological relationships) were not established. The single individual sequenced may not be representative of the overall population in the zinc finger region (based on the extensive diversity observed in human), diminishing their utility for predicting species barriers. These genes are most likely PRDM7 orthologs only secondarily related to the catarrhine primate PRDM9 set, ie descended from the unique locus present in stem euarchontoglires whereas the latter duplicated from a stem old world monkey PRDM7. It is worth noting that the reported sequences are very orderly and lack the overall chaos of frameshifts and stop codons so often seen in this gene family. The protein accessions are [http://www.ncbi.nlm.nih.gov/protein/ADA68112,ADA68113,ADA68116,ADA68117,ADA68118,ADA68119,ADA68120,ADA68121,ADA68122 here].
  >PRDM9_nomLeu Nomascus leucogenys (gibbon) ADFV01015315 Prim gene 10 cdh12 ADFV01015317 ADFV01015319 no synteny CpG stop exon 6 in 6/6 traces
 
0 MSPERSQEESPEEDTERTEQKPT 0
A [http://www.uniprot.org/uniprot/Q6P2A1 zebrafish protein] put forward as an ortholog to placental mammal PRDM9 seems implausible given that birds, lizard and frog lack notable homologs. It lacks close counterparts in other species of fish with determined genomes and is not syntenic to mammalian gene locations. Thus it might represent an independent gene shuffle that resulted in a similar concatenation of domains (parallel evolution).
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
 
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
The protein lacks the KRAB and SSXRD domains but contains a standard knuckle, PR(SET), early ZNF finger and ZNF repeat domain (all in exons phased identically to human). Although back-blast restricted exons 3-5 to the human proteome has best matches to PRDM9, PRDM7 and the closely related PRDM11 (suggesting orthology of this region), the pre-zinc finger part of exon 6 does not give a clear signal despite its early C2H2 domain, perhaps because of few conserved residues after it. The same could be said for the pre-zinc finger of PRDM9 -- it is apparently just a fast evolving linker region not under selection for amino acid sequence.
2 VKPPWMALRMEQRKHQK 0
 
0 GMPKASFSNESSLKELSGAANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
While blastp of the zinc finger array is always a problematic exercise, here it gives closer resemblance to other zinc finger genes, notably ZNF658 and ZNF 585, than to any member of the PRDM family. The phase 12 intron here is moderately diagnostic in conjunction with the early zinc finger. The zebrafish terminal zinc finger array, while disorderly, does have several zinc fingers ending in the GEKP-like lockdown cap which supports a relationship with similar caps in PRDM7/9. Genes related to the zebrafish feature are found in salmon, trout, catfish and minnow but not stickleback, fugu, tetraodon or medaka. Transcripts are exceedingly common in contrast to mammals. The missing KRAB and SSXRD domains are believed  critical in recruiting other essential proteins to the hotspot in the only systems with experimental data (mouse and human) so this gene cannot fulfill the same functional role.
2 ELRRKETEGKMYSL*ERKGHAYKEVSEPQDDDYL 1
 
  2 YCEMCQNFFTDSCAAHGPPTFIKDSTVGKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
Thus only central PR(SET) exons are established as directly relevant to the history of PRDM7/9, ie that it was present in the common ancestor of mammals and fish. The terminal exon could represent orthology with extreme relative divergence but the evidence favors a chimeric origin with a different zinc finger terminal exon. The zebrafish gene is thus only a partially verifiable member of the PRDM family, one lacking a convincingly orthologous terminal exon as well as the final fusion with SSX1 as in PRDM7/9. Early diverging tetrapods need re-examination to see if they too have a gene with central PR(SET) exons of PRDM7/9 in a gene with a following phase 12 exon.
0 ITKGRNCYEYVDGKDKSWANWMR 2
 
1 YVNCARDDEEQNLVAFQYHRQIFYRTCQVIRPGCEPLVWYGDEYGQELGIKWGSKWKKELTAER 1
Absence in frog, lizard and bird genomes would require persistence through the common ancestor but multiple independent loss events in the descendent lineages. Here  frog still has a knuckle-PR(SET) domain most like that of PRDM7/9 but it is attached to a long BED domain and most resembles the human protein ZBED1 family overall.
2 EPKAEIHPCPSCCLAFSSQKFLSQHVARHHSSQNFPGPSARKFLQPENPCPGDQNQEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWQREISRAFSSSPKVQMGSCRVGKRIIEESRTGQKVNPGNTGQLFVGVGISRIAE
 
VKYGECGQGFSVKSDVITHQRTHTGEKL
Even more attractive is the hypothesis that nearest neighbor PRDM11 -- which is highly conserved and effortlessly located in all tetrapods including frog, birds, lizard and platypus -- gave rise to PRDM7/9 via gene duplication. The duplicated gene subsequently neofunctionalized by reciprocal translocation with SSXRD and a ZNF gene to acquire its current N- and C-termini. PRDM11 has hardly changed since the parenting event. Best-blast (of ancestral, consensus, or any individual species) to human proteins is far and away PRDM7/9. This scenario explains -- without multiple gene loss events -- why PRDM7/9 cannot be located in early diverging tetrapods.
YLCRECGRGFSVKSSLLSHQRTHTGEKP
 
YVCRECGRGFSKKSNLLSHQRTHTGEKP
[http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000753 Reported] PRDM9 orthologs in early diverging bilatera such as Lottia, Capitella and Nematostella can be dismissed as independent occurrences of common ancient domain combinations. None of these domains are mammalian innovations -- PR(SET) traces back to bacterial methylases and zinc fingers also have a long and complex history. Without conservation of all mammalian domains, exon phasing, syntenic chromosomal location and demonstration of descent from a single gene in the last common ancestor, there is no basis for calling such genes orthologous nor assuming they function similarly in meiosis or illuminate mammalian PRDM7/9 evolution. Widespread expression in testes is not supportive as it conflicts with the very restrictive mammalian expression pattern. How could such a fundamental capacity be lost (and replaced by a non-homologous system) so many times in so many other lineages -- all of which have obligatory meiosis?
YVCRECGRGFSDKSSLLRHQRTHTGEKP
 
YVCRECGRGFSQKSSLLSHQRTHTGEKP
>PRDM7_danRer Danio rerio (zebrafish) Q6P2A1 transcript BC064665 no KRAB SSXRD or exon 5 but <span style="color: #0066CC;">knuckle</span> <span style="color: #990099;">SET</span> <span style="color: #6699FF;">early ZNf</span> <span style="color: #FF0000;">C2H2 array</span>
YVCRECGRGFSQKSSLLSHQRTHTGEKP
0 MSLSP 1
YVCRECGRGFSDKSSLLRHQRTHTGEKP
2 DLPPSEEQNLEIQGSATNCYSVVIIEEQDDTFNDQPF 1
YVCRECGRGFSQKSSLLSHQRTHTGEKP
2 <span style="color: #0066CC;">YCEMCQQHFIDQCETHGPPSFTCDSPA</span>ALGTPQRALLTLP<span style="color: #990099;">QGLVIGRSSISHAGLGVFNQGQTVPLGMHFGPFDGEEISEEKALDSANSWV 0
YVCRECGRGFSVKSNLLSHQRTHTGEKP
0 ICRGNNQYSYIDAEKDTHSNWMK 2
YVCRECGRGFSDKSSLLRHQRTHTGEKP
1 FVVCSRSETEQNLVAFQQNGRILFRCCRPISPGQEFRVWYAEEYAQG</span>LGAIWDKIWDNKCISQ 1
2 GSTEEQATQN<span style="color: #6699FF;">CPCPFCHYSFPTLVYLHAHVKRTH</span>PNEYAQFTQTHPLESEAHTPITEVEQCLVASDEALSTQTQPVTESPQEQISTQNGQPIHQTENSDEPDASDIYTAAGEISDEI
>PRDM9_macMul Macaca mulatta (rhesus) genome Prim gene 9 CDH12 chr6 exon 4 lost to Ns
HA<span style="color: #FF0000;">C</span>VD<span style="color: #FF0000;">C</span>GRSFLRSCHLKR<span style="color: #FF0000;">H</span>QRTI<span style="color: #FF0000;">H</span>SKEKP
0 MSPERSQEESPEEDTERTERKPT 0
YC<span style="color: #FF0000;">C</span>SQ<span style="color: #FF0000;">C</span>KKCFSQATGLKR<span style="color: #FF0000;">H</span>QHT<span style="color: #FF0000;">H</span>QEQEKNIESPDRPSDI
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
YP<span style="color: #FF0000;">C</span>TK<span style="color: #FF0000;">C</span>TLSFVAKINLHQ<span style="color: #FF0000;">H</span>LKRH<span style="color: #FF0000;">H</span>HGEYLRLVESGSLTAETEEDHT
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
EV<span style="color: #FF0000;">C</span>FDKQDPNYEPPSRGRKSTKNSLKGRGCPKKVAVGRPRGRPPKNKNLEVEVQKIS
2  0
PI<span style="color: #FF0000;">C</span>TN<span style="color: #FF0000;">C</span>EQSFSDLETLKT<span style="color: #FF0000;">H</span>QCPRRDDEGDNVEHPQEASQ
0 GMPKASFNNESSLKEVSGMANLLNTSGSEQAQKPVSPPGEARTSGQHSRLKL 1
YI<span style="color: #FF0000;">C</span>GE<span style="color: #FF0000;">C</span>IRAFSNLDLLKA<span style="color: #FF0000;">H</span>ECIQQGEGS
2 ELRRKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
YC<span style="color: #FF0000;">C</span>PH<span style="color: #FF0000;">C</span>DLYFNRMCNLRR<span style="color: #FF0000;">H</span>ERTI<span style="color: #FF0000;">H</span>SKEKP
2 YCEMCQNFFIDSCAAHGPPTFIKDSAVEKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITQDEEAANNGYSWL 0
YC<span style="color: #FF0000;">C</span>TV<span style="color: #FF0000;">C</span>LKSFTQSSGLKR<span style="color: #FF0000;">H</span>QQS<span style="color: #FF0000;">H</span>LRRKSHRQSSALFTAAI
0 ITKGRNCYEYVDGKDKSWANWMR 2
FP<span style="color: #FF0000;">C</span>AY<span style="color: #FF0000;">C</span>PFSFTDERYLYK<span style="color: #FF0000;">H</span>IRR<span style="color: #FF0000;">H</span>HPEMSLKYLSFQEGGVLSVEKP
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
HS<span style="color: #FF0000;">C</span>SQ<span style="color: #FF0000;">C</span>CKSFSTIKGFKN<span style="color: #FF0000;">H</span>SCFKQGEKV
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSTQNFPGPSARRLFQPENLCSGDQNQEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWPKEISRAFSSPPKGQMGSSRVGERMMEEEYRTGQKVNPENTGKLFVGVGISRIAK
YL<span style="color: #FF0000;">C</span>PD<span style="color: #FF0000;">C</span>GKAFSWFNSLKQ<span style="color: #FF0000;">H</span>QRI<span style="color: #FF0000;">H</span>TGEKP
VKYGECGQGFSDKSDVIIHQRTHTGEKP
YT<span style="color: #FF0000;">C</span>SQ<span style="color: #FF0000;">C</span>GKSFVHSGQLNV<span style="color: #FF0000;">H</span>LRT<span style="color: #FF0000;">H</span>TGEKP
YLCRECGRGFSQKSSLRRHQRTHTGEKP
FL<span style="color: #FF0000;">C</span>SQ<span style="color: #FF0000;">C</span>GESFRQSGDLRR<span style="color: #FF0000;">H</span>EQK<span style="color: #FF0000;">H</span>SGVRP
YLCRECGRGFRDNSSLRYHQRTHTGEKP
CQ<span style="color: #FF0000;">C</span>PD<span style="color: #FF0000;">C</span>GKSFSRPQSLKA<span style="color: #FF0000;">H</span>QQL<span style="color: #FF0000;">H</span>VGTKL
YLCRECGRGFSNNSGLCYHQRTHTGEKP
FP<span style="color: #FF0000;">C</span>TQ<span style="color: #FF0000;">C</span>GKSFTRRYHLTR<span style="color: #FF0000;">H</span>HQKM<span style="color: #FF0000;">H</span>S* 0
YLCRECGRGFSDNSSLHRHQRTHTGEKP
YLCRECGRGFSNNSGLRYHQRTHTGEKP
YLCRECGRGFSNNSGLRHHQRTHTGEKP
YLCRECGRGFSQKANLLRHQRTHTGEKP
YLCRECGRGFSQKADLLSHQRTHTGEKP
VCRKDE......................
   
   
  >PRDM9_papHam Papio hamadryas (baboon) genome Prim gene 11 cdh12 contigs scattered
  >ZBED1_xenTro
  0  0  
  0 MQAAEEACAQLEDELL 1
  0  1
  2 <span style="color: #0066CC;">FCEDCRLYFRDSCPTHGAPTFILDTPV</span>PENVPSRALLSLPEGLVVKERP<span style="color: #990099;">QGGFGVWCTIPVIPRGCIFGPYEGDVIMDRSDCTVYSWA 0
1
  0 VRENGSYFYIDASDDSKSSWMR 2
  2 VKPPWMAFRVEQSKHQK 0
  1 YVACASTEEEHNLTVFQYRGKIYYRASQVIPTGTELLVWIGEEYARTLG</span>LKL 1
0 EMPKTSFSNESSLKELSGTPNLLSTSGSEQAQKPASPPGEASTSGQHSRLKL 1
  2 GEHFKYEFGEKELLMKLFQDLQLKPVDSISNHVSSQSQYMCNDMVTPVMQAHRTSYPLNNIGHTSSVFPLLEGTQNLVSLGRAQSRYWTFFGFQGDAYGRIIDKTK<span style="color: #6699FF;">IICKLCGVRLSYSGNTTNLRQHLIYK</span>HRRQYNDL
  2 ELRRKEAEGKMYSLRERKGHAYKEVSELQDDDYL 1
 
  2 ycEMCQNFFIDSCAAHGPPTFVKDSAVNKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDKEAANNGYSWL 0
  >PRDM11_conSeq consensus of 30 tetrapod PRDM11 orthologs
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  2 FCESCQEYFVDECPNHGPPVFVSDTPVPVGIPDRAALTIPQGMEVVKEASGENDVRCINEVIPKGHIFGPYEGQISTQDKSAGFFSWL 0
  1 1
  0 IVDKNNRYKSIDGSDETKANWMR 2
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSTQNFPGPSARRLLQPENLCSGDQNQEQQYSDPCSCNDKTKGQEIKERSKLLNKRTWQKEISRAFSSPPKGQMGSSRVGERMMEEESRTGQKVNPENIGKLFVEVGISRIAK
  1 YVVISREEREQNLLAFQHSERIYFRACRDIRPGERLRVWYSEDYMKRLHSMSQETIHRNLAR 1
VKYGECGQGFSGKSDVITHQRTHTEGKP
YLCRECGRGFSQKSNLLRHQRTHTGEKP
YLCRECGRGFRDNSSLRCHQRTHTGEKP
YLCRECGRGFRDNSSLRCHQRTHTGEKP
YLCRECGRGFSDNSSLRYHQRTHTGEKP
YLCRECGRGFRDNSSLRYHQRTHTGEKP
YLCRECGRGFSVKSNLLSHQRTHTGEKP
YVCRECGRGFSDNSSLRCHQRTHTGEKP
YLCRECGRGFSQMSHLRCHQRTHTGEKP
YLCRECGRGFSVKSNLLSHQRTHTGEKP
YVCRECGRGFSRKANLLSHQRTHTGEKP
   
   
  >PRDM7_homSap Homo sapiens (human) genome Prim gene 3 GAS8+ chr16 TUBB3+ DEFB+ AFG3L1+ DBNDD1- GAS8+ PRDM7- 92% id
  PRDM9_homSap YL Y..M..NF.I.S.AA....T..K.SA.DK.H.N.S..SL.P.LRIGPSGIPQAGLGVW..AL.L.LH......R.TEDEEA.NNY... .TKGR.C.EYV..K.KSW..... ..NCA.DDE....V...YHRQ.FY.T..V....CE.L...GDE.GQE.GIKWGSKWKKE.MA
0 MSPERSQEESPEGDTERTERKPM 0
  PRDM11_homSap FW FCESCQEYFVDECPNHGPPVFVSDTPVPVGIPDRAALTIPQGMEVVKDTSGESDVRCVNEVIPKGHIFGPYEGQISTQDKSAGFFSWL IVDKNNRYKSIDGSDETKANWMR YVVISREEREQNLLAFQHSERIYFRACRDIRPGEWLRVWYSEDYMKRLHSMSQETIHRNLAR
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKMNYNALITV 1
  PRDM11_panTro .. ........................................................................................ ....................... ..............................................................
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  PRDM11_rheMac .. .........................................................I.............................. ....................... ..............................................................
2 VKPPWMAFRGEQSKHQK 0
  PRDM11_calJac .. ........................................................................................ ....................... ....................C.........................................
0 GMPKASFNNESSLRELSGTPNLLNTSDSEQAQKPVSPPGEASTSGQHSRLKL 1
  PRDM11_otoGar .. ............................M..................EA...N....I.............................. ....................... ..A...............................R...........................
2 ELRRKETEGKMYSLRERKGHAYKEISEPQDDDYL 1
  PRDM11_musMus .. ................................................AG.......I.............................. ....................... ..................................R...........................
2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANSGYSWL 0
  PRDM11_ratNor .. ..............T................................EVG.......I...V.......................... ....................... ..................................R...........................
0 ITKGRNCYEYVDGKDKSSANWMR 2
  PRDM11_cavPor .. .............................................I.EAG.......I.............................. ...............D......- ..................................R...........................
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  PRDM11_speTri .. ...............................................EA........IS............................. ....................... ..........R.......G...............R......Q...R................
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQERQYSDPRCCNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
  PRDM11_oryCun .. ..........................................L...QEA........I.D.....R.........AA........... .....S................. ........Q.........N.H..........A..R......G....................
VKYGECGQGFSDKSDVITHQRTHTGGKP
  PRDM11_ochPri .. ............................M..A...............EA........LSD............................ ....................... ....................H.........Q...R...........................
YVCRECGRgFSRKSDLLSHQRTHTGEKP
  PRDM11_bosTau .. ...............................................EA...N....I.......R...................... ....................... ........S.........................R...........................
YVCRECERGFSRKSVLLIHQRTHRGDAP
  PRDM11_equCab .. ...............................................EA...N....I.......................T...... ....................... ..................................R...........................
VCRKDE......................
  PRDM11_canFam .. ...............................................EA...N....I.............................. ....................... ..................................R......................H....
  PRDM11_myoLuc .. ..............K....M..........L.................AN..N....I.............................. ....................... ....................H.......................................T.
>PRDM7_panTro Pan troglodytes (chimp) genome Prim pseu 2 GAS8+ chr16
  PRDM11_pteVam .. ................................................A...N...SI.............................. ................S...... ....................H.............R...........................
0 MSPERSQEESPEEDTERTERKPM 0
  PRDM11_eriEur .. ..............K...........................V....EA........I.............................. ......H.........S...... ....................H.............R...........................
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  PRDM11_loxAfr .. ...............................................EA...N....IS............................. ..........V............ .........................V........R......Q....................
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  PRDM11_echTel .. ............................M..................EG...N....IS....T-..LR......Y.RN......... ....................... ....C...............H.............R.....GQ..................T.
2 VKPPLMALRVEQRKHQK 0
  PRDM11_dasNov .. ...............................................EA...N....I.............................. ....................... .........................S........Q...............V...........
0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
  PRDM11_macEug .. ............................M...........P......EA..QN....M.............................. .............T...Q..... ..I..........M......K....V........R.....................Q...T.
2 ELKKKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
  PRDM11_monDom .. ............................M...........P......EA..Q.....M.............................. ......H......T......... .............M......K....V........R.....................Q...T.
2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYKGRITEDEEAANNGYSWL 0
  PRDM11_ornAna .. ........................................P.I....EA...N....M.............................. .............T......... .I.......................V........R.........................T.
0 ITKGRNCYEYVDGKDKSWANWMR 2
  PRDM11_galGal .. ........................................P.I....EP...N....M..................S........... .............T......... ..I..........M....................K.....................N...TT
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  PRDM11_taeGut .. ........................................P......EP...N....M..................S..R........ .............T......... ..I..........M................H...K....................MN.SFTS
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLQPENP PGDQNQERQYSDPRCCNDKTKGQEVKERSKLLNKWTWQREISRAFSSLPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
  PRDM11_anoCar .. ...................M.L..A...I.........V.P......EAN..R.....G.I....R.Y.....KL.S........... .............T...TS.... ..A..........M...........T........R.....................N...T.
VKYGECGQGFSVKSDVITHQRTHTGEKP
  PRDM11_xenTro .. ..............S....IL.P..L..I.M.E....SV.C.I.....S...R.....G.I....R.Y.....KL.S........... .............T...TS.... .............M......K....T....Q...K.....................N...TQ
YVCRECGQGFSRKSVLLIHQRTHRGEKP
 
VCRKDE......................
=== Structural considerations in C2H2 zinc fingers ===
 
High resolution structures of C2H2 zinc finger domains have been available for decades. As the name suggests, the divalent zinc atom locks the two cysteines and two histidines into a rigid geometry providing a core conformation that a small peptide of 28 residues could not otherwise stably assume. Note in the unbound state, finger tips must retain flexibility while the domain ensemble scans its genome for specific dna sequences appropriate to its function. Each finger binds a trinucleotide -- in effect making a zinc finger the protein counterpart to tRNA anticodon. However overall binding is not a simple read-off code because adjacent fingers alter each other's specificities in subtle ways.
 
The linker region TGEKP plays a key role when the correct DNA sequence is encountered, [http://www.ncbi.nlm.nih.gov/pubmed/10656784 snap-locking] its finger down onto its target by capping the C-terminus of its alpha helix. A hydrogen bond between the first threonine and middle glutamate is key to this binding-induced conformational shift. From comparative genomics, it appears that a serine in first position can also form this hydrogen bond. The role of the glycine is to stay out of the way; the lysine counterbalances the negative charge of the glutamate; the proline terminates any helical propensity, allowing a fresh start in the adjacent finger.
 
While this motif is immensely conserved within C2H2 zinc finger of PDRM9 homologs, exceptions do occur. It is important to understand these because these loss of dna lock-down could loosen or even eliminate trinucleotide binding specificity. Such steps might represent initial stages of pseudogenization. However many exceptions occur within the first or last fingers. It is also common for fragmentary and imperfect motifs to end the protein, sometimes continuing on in another reading frame past the current stop codon.
 
Note in aligning zinc finger motifs, the breaks should always be put at the end of the linker region. It is completely illogical to break at the first cysteine as some authors do because capping by the linker region is specific to its zinc finger, not the following one.
 
=== Predicting dna binding sites of zinc finger domains ===
 
[[Image:PRDM9onDNA.jpg|left]]
 
<br clear = all>
 
== Origin of Species and all that ==
 
The origin of species is an old and exceedingly complex topic. PRDM7/9 cannot provide a unified molecular basis for it because orthologs do not exist outside of mammals. Yet genetic mapping shows PRDM7 at the core of hybrid sterility in mice (a enticing proxy for speciation) and PRDM9 sites are key to meiotic recombination in humans.  
 
Although placental mammals very greatly in the specifics of PRDM7/9 gene expansion, some variation on the mouse/human might still be applicable. However that cannot be the sole explanation even here because some species such as dog lack any functional gene family member. An [http://genome.cshlp.org/cgi/pmidlookup?view=long&pmid=22006216 Oct 2011 paper] established that the PRDM7 gene of the boxer used for the genome project is in fact representative of dog breeds; wolves, jackals and foxes also have the same inactivating frameshifts. Other carnivora such as mink -- while possessing a seeminly intact PRDM7 gene -- lack a sufficiently long zinc finger array to specify hotspots. Some other mechanism is needed to mark the sites of double stranded breaks that initiate meiosis in these Carnivora.
 
It is problematic whether the PRDM7/9 mechanism extends to marsupials and monotremes and not an option for earlier amniotes such as birds which lack any semblance of the gene (though homologs for its parts occur). Conceivably, a zinc finger array from a different gene family steps in. However drosophila utilizes very different gene products to control meiosis (with other genes such as DMRT1 more universal). There cannot be a unified molecular basis for speciation within bilaterans based on zinc finger proteins.
 
Thus despite being an ancient core process, the meiotic machinery is unexpectedly not conserved at the gene family level, instead exhibiting discontinuities in some gene families utilized to accomplish it. That is not unlike SRY sex determination (which underwent abrupt changes in marsupials and placentals shortly after divergence from monotremes), or the sex chromosomes themselves (which are homologous to bird but with hetergametic XY males in platypus and taken from different autosomes in therans).
 
PRDM7/9 do affect an immense number of other important topics in mammalian evolution through their specification of meiotic recombination sites. Because the crossover bottleneck in pseudoautosomal regions, these influences become deeply intertwined with special aspects of sex chromosome evolution. Moving beyond the narrow perspective of PRDM7/9 evolution, the following issues can be explored:
 
* meiotic sex chromosome inactivation (MSCI)
 
* progressive chromosome Y degeneration or conversely maintainence
 
* gene dosage compensation for chromosome X
 
* sex determination via SOX3 evolving into SRY on chromosome Y after platypus divergence
 
* co-evolution with key meiotic regulatory genes such as DMRT1
 
* expansion and contraction of the pseudoautosomal region in placentals
 
* barriers to introgression during hominid history
 
* impacts on lineage sorting within great apes
 
* boundaries and persistence of haploblocks
 
* localization of gene conversion
 
* random X-inactivation in females
 
* XY bodies and chromatin structure during meiosis
 
* evolutionary strata in sex chromosomes due to inversions reducing recombining region
 
* translocations and other chromosomal rearrangements in evolution and disease
   
   
>PRDM7_gorGor Gorilla gorilla (gorilla) genome Prim pseu 3 GAS8+ chr15730 numerous frameshifts in terminal ZNF domain
These topics will be further developed in October.
  0 MSPERSQEESPEGDTERTERKPM 0
 
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
(to be continued)
  2 GLRATQPVFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
 
  2 0
== Supplemental information ==
  0 GMPKASFNNESSLKELSGTPNLLNTSGSEQAQKPVSPPGEASTSGQHSRRKL 1
 
  2 ELRRKETEGKMYSLRERKGHAYKEISKPQDDDYL 1
The sections below store data used above. This includes curated sequences from all available mammals for PRDM7 and PRDM9 and additional their partial paralogs in the PRDM gene family. These latter have extensive comparative genomics alignments readily available elsewhere (UCSC genome browser, under GeneSorter feature and ProteinFasta feature in gene details page) so that is not repeated here.
  2 yCEMCQNFFIDSCAAHGPPTFVKDSAVDKRHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDKEAANSGYSWL 0
 
  0 ITKGRNCYEYVDGKDKSWANWMR 2
While this topic has a long history in the peer-reviewed scientific literature, only the most recent articles are provided here because their reference sections satisfactorily summarize pre-2005 studies. Instead, the focus here is identifying free full text access to the recent articles, preferably as html which better supports copying snippets of text. The journal, google, and PubMed all provide forward citations to still other articles that cite the articles provided here.
  1 YVNCARDDEEQNLVALQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGR 1
 
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQERQYSDPRCCNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
=== Curated reference sequences ===
  VKYGECGQGFSWKSNLLRHQRTHTGGKP
 
  YVCRECGRGFSWKSDLLSHQRTHTGEKP
The sequences below have largely been compiled from genome projects -- only rarely do validating transcripts exist at GenBank. Sequences with a single frameshift or other glitch have been edited in some cases to show full length proteins on the theory that the error either reflects an atypical individual chosen for sequencing, sequencing error in low coverage projects within a difficult region, one allele in balanced polymorphism, or a mutant allele. However such sequences may instead reflect early stages of pseudogenization. Other sequences are in fact clearly pseudogenes; here recognizable exons are represented to allow determination of historic repeat number and rough dating of loss of function.
YVCRECGRGFSWKSNLLSHQRTHTGEKP
 
Chimp PRDM9 has a thoroughly garbled 11th repeat (3 frameshifts, nnnnn in the CGSC 2.1.3/panTro3 Oct 2010 assembly) followed by eight additional repeats. It is difficult to say if these are still in the initial reading frame. No data is currently available for Pan paniscus but despite minimal coverage, Pan troglodytes schweinfurthii has a long trace read in this region (ti|2009092447) that covers repeats 3-11 sharing the first frameshift in Pan troglodytes but soon degenerating into unmistakable pseudogene (ie the frameshifts in Pan troglodytes are not sequencing artifacts):
  >PRDM7_ponAbe Pongo abelii (orangutan) genome Prim gene 4 GAS8+ chr16
 
  0 MSPERSQEESPEDDTERTERKPT 0  
  PRDM9 Pan troglodytes schweinfurthii
                      THTGEKP 3
  YVCRECGRGFSVKSSLLSHQSTHTGEKP  4
  YVCRECGRGFSVKSSLLSHQRTHTGEKP 5
  YVCRECGRGFSVKSSLLSHQRTHTGEKP  6
  YVCRECGRGFSVKSSLLSHQRTHTGEKP  7
  YVCRECGRGFSQQSHLLSHQRTHTGEKP  8
  YVCRECGRGFSQQSHLLSHQRTHTGEKP  9
  YVCRECGRGFSQQSHLLSHQRTHTGEKL 10
  YVCRECGRGFSRAVTPPQTPETHTGEKL 11
  YVCRE<font color=magenta>c</font>GRGFSDK<font color=magenta>s</font>SLlSVTRVHTQGRA 12
  YVCRECGRGFSWQS              13
 
Gorilla, despite its importance, has a poor quality second assembly that is riddled with gaps and misplaced contigs. The PRDM9 gene terminates early in the zinc finger array with a small gap before a misplaced LINE element. The neighboring genes are not plausible though PRDM9 is correctly placed on chr5. PRDM7 in gorilla has four frameshifts in the last exon. Those are 'restored' below to reveal gene history (which in this case is 3.5 repeats with no trailing debris). Lower case letters indicate ends of correct reading frames.
 
Sumatran orangutan PRDM9 has a distal zinc finger array frameshift in contig ABGA01214983 (<font color = red>a</font>GGGGAGAAG CCCTATGTCT GCAGGGAGTG) which also appears in the July 2007 assembly provided by UCSC (WUGSC 2.0.2/ponAbe2). However there is no support whatsoever for this extra adenosine in the underlying raw Sanger trace reads used to make the contig -- all reads omit it and have the expected reading frame. Consequently, the assembly appears to be in error. The full length sequence is provided here. Orang PRDM9 has the expected syntenic location between CDH10 and CDH12.
 
Gibbon has a stop codon in exon 6 that is supported by all 6 of the available Sanger traces.
 
In the case of more intensively studied species such as human and mouse, the number of C2H2 repeats varies widely. Only the reference sequence representative is shown here. This variation likely occurs in all species with the individual animal chosen for sequencing not necessarily the most common allele. Many clades have independent histories of gene amplification and gene loss, making both orthologous and functional comparisons problematic at substantial divergence.
 
These sequences are under constant revision as anomalies surface and are resolved by re-examining the original Sanger trace reads. However when coverage is low, it is very difficult to distinguish read error from actual oddities. For example, the horse genome assembly shows a disabling frameshift in seventh exon. That is apparently based solely on trace ti|1206069852 and arises from a truncated homopolymer run error CCCC that is frame-preserving CCCCC in ti|1330418597, ti|1322386025 and ti|1288100157. These latter reads however later have problems of their own. Another issue is individual traces covering part of a zinc finger repeat -- these cannot always be assigned reliably to PRDM7/9 as many similar zinc finger repeats exist in these genomes.
 
Other useful sequences such as PRDM11, PRDM4 and zinc finger semi-homologs having similar exon and domain structures, are provide in the subsequent section along with syntenic markers such as GAS8.
 
  >PRDM9_homSap Homo sapiens (human) genome Prim gene 13 CDH12 chr5 10 exon size 18,301 bp KRAB SSXRD SET C2H2
  0 MSPEKSQEESPEEDTERTERKPM 0  
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 VKPPWMALRVEQRKHQK 0
  2 VKPPWMALRVEQRKHQK 0
  0 GMPKASFNNESSLKELSETANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
  0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL 1
  2 ELRSKETEGNTYSLRERKGHAYKEISEPQDDDYL 1
  2 ELRKKETERKMYSLRERKGHAYKEVSEPQDDDYL 1
  2 yCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALTLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITKDEEAANNGYSWL 0
  2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARHLLQAENPCPGDQNQEQQYSDPDCCNDKTKGQEIKERSKLLNKRTWQREISRAFSSSAKGQMGSSRVGERMMEEESGTGQKVNPGNTGKLFVGVGISRIAK
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
  VKYGECGQGFSVKSDVITHQRTHTGEKP
  VKYGECGQGFSVKSDVITHQRTHTGEKL
  YICRESGRGFTQKSGLLSHQRTHTGEKP
  YVCRECGRGFSWKSHLLIHQRIHTGEKP
  YVCRECGWGFSQKSNLLRHQRTHTGEKP
  YVCRECGRGFSWQSVLLTHQRTHTGEKP
  YVCRECGRGFSRKSVLLIHQRTHTGEKP
  YVCRECGRGFSRQSVLLTHQRRHTGEKP
  VCRKDE......................
  YVCRECGRGFSRQSVLLTHQRRHTGEKP
YVCRECGRGFSWQSVLLTHQRTHTGEKP
YVCRECGRGFSWQSVLLTHQRTHTGEKP
YVCRECGRGFSNKSHLLRHQRTHTGEKP
YVCRECGRGFRDKSHLLRHQRTHTGEKP
YVCRECGRGFRDKSNLLSHQRTHTGEKP
YVCRECGRGFSNKSHLLRHQRTHTGEKP
YVCRECGRGFRNKSHLLRHQRTHTGEKP
YVCRECGRGFSDRSSLCYHQRTHTGEKP
YVCREDE
   
   
  >PRDM7_nomLeu Nomascus leucogenys (gibbon) ADFV01125891 Prim pseu 5 gas8+ synteny implied by non-coding
  >PRDM9_panTro Pan troglodytes (chimp) 2010 assembly exon 8 in gap, 11th repeat 3 frameshifts, only 1 trace supports stop codon *VCREDE  ti|451784509
  0 0  
  0 MSPERSQEESPEEDTERTERKPM 0  
  0 1
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  2 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 IKSPWMAVRVEQSKHQK 0
  2 VKPPLMALRVEQRKHQK 0
  0 GMPKASFNNESGLKELSGTQNLLNTSG EQARKPVSPPGEASTSGQHSRQKL 1
  0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
  2 ELRRKETEGKMYSL ERKGHAYKEVSEPQDDDYL 1
  2 ELKKKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
  2 yCEMCQNFFTDSCAAHGPPTFVKDSAVDKGHPNHSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
  2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYKGRITEDEEAANNGYSWL 0
  0 ITKGRNCYEYVDGKDKS ANWMK 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARDHEEQNLVAFQYHRQIFYRTCQVIRPGCEPLVWYGDEYGQELGIKWGSKWKKELTAER 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  2 EPKPEIHPCPSCCLVFTSQKFLSQHVECNHSSQNFPGPSARKLLQRENPCPGDQNQEQQYSDSRSCNDKTKGQEIKERSKL NKRIWQRKISRAFSSLPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPRSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTAKLFVGVGISRIAK
  VKYGECGQGFSDKSDVIAHQGTHTGGKS
VKYGECGQGFSVKSDVITHQRTHTGEKP
  .ICRECGWGFSQESHLLIHQRTHTGEKL
YVCRECGRGFSWKSHLLSHQRTHTGEKP
  YVCRECGQGFSQKSDLLSHQRTHTGEKP
YVCRECGRGFSVKSSLLSHRTTHTGEKP
  YVRRECGRGFSQKSNLLSHQRTHTEEKP
YVCRECGRGFSVKSSLLSHQRTHTGEKP
  YVCRECGWGFSQKSHLLIHQRTHTGKKP
YVCRECGRGFSQQSNLLSHQRTHTGEKP
  VCRKDE......................
YVCRECGRGFSVKSSLLSHQRTHTGEKP
YVCRECGRGFSVKSSLLSHQRTHTGEKP
YVCRECGRGFSKQSHLLSHQRTHTGEKP
YVCRECGRGFSVQSNLLSHQRTHTGEKL
YVCRECGRGFSQQSHLLRHQRTHTGEKP
YVCR<font color=magenta>e</font>CGR<font color=magenta>g</font>FSV<font color=magenta>k</font>SSLLSHQRTHTGEKP
YVCRECGRGFSVKSSLLSHQRTHTGEKP
YVCRECGRGFSKQSHLLSHQRTHTGEKP
YVCRECGRGFSQQSHLLSHQRTHTGEKP
  YVCRECGRGFSQQSHLLRHQRTHTGEKP
  YVCRECGRGFSVKSSLLSHQRTHTGEKP
  YVCRECGRGFSVKSSLLSHQRTHTGEKP
  YVCRECERGFSQQSHLLRHQRTHTGEKP
  YVCRECGRGFSRQSALLIHQRTHTGEKP
  <font color = red>*</font>VCREDE
   
   
  >PRDM7_macMul Macaca mulatta (rhesus) genome Prim pseu 2 GAS8+ chr20 frameshifts exon 5 and 10, exon 10 a to aa restores frame
  >PRDM9_gorGor Gorilla gorilla (gorilla) CABD02290262 CABD02290264 cdh12 chr5 ZNF at end of contig Aug 2009 assembly poor quality
  0 0  
  0 MSPERSQEESPEEDTERTERKPM 0  
  0 1
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  2 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 VKPPWMAFRVEQSKHQK 0
  2 VKPPCMALRVEQRKHQK 0
  0 EMPKTSFNNESSLKELSGTPNLLSTSDSE AQKPASPPGEASTSGQHSRLKL 1
  0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
  2 ELRRKETEGKMYSLRERKRHAYKEASELQHDDYL 1
  2 ELRKKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
  2 YCEMCQNFFIDSCAAHGPPTFVKDNAVNKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPCEGRITEDKEAANSGYSWL 0
  2 YCEMCQNFFIDSCAAHGPPIFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYKGRITEDEEAANNGYSWL 0
  0 ITKGRNCYEYVDGKDKSWAKWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  2 EPKPEIYPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQSENPCPGDQNQEQQYSDPSSCNDKTKGQEIKERSKLLNKRTWQREILRAFTSPPKGQMGSSRVGERMMEEEFRTGQKANPGNTGKLFVGVEISRIAK
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARTLLQPENPCPGDQNQEQQYPDPRSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
  VKYGECGQGFSGKSDVITHQRTHTEGKP
  VKYGECGQGFSVKSDVITHQRTHTGEKP
  YVCRGCGRRFSQKSSLLRHQRTHTGEKP
  YVC
VCKKNE......................
 
  >PRDM9_ponAbe Pongo abelii (Sumatran orangutan) CDH10- PRDM9+ CDH12- distal frameshift aGGGG --> GGGG causing loss of 1.5 repeats in ABGA01214983
  >PRDM7_papHam Papio hamadryas (baboon) genome Prim pseu 2 gas8+ contigs scattered
  0 MSPERSQEESPEDDTERTERKPT 0  
  0 MSPERSQEESPEEDTERTEWKPM 0  
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 VKPPWMAVRVEQSKHQK 0
  2 VKPPWMALRVEQRKHQK 0
  0 GMPKASFNNESSLKEVSGMANLLNTSGSEQAQKPVSPPGEARTSGQHSRLKL 1
  0 GMPKASFNNESSLKELSETANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
  2 ELRRKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
  2 ELRSKETEGNTYSLRERKGHAYKEISEPQDDDYL 1
  2 YCEMCQNFFIDSCAAHGPPTFIKDSAVEKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITQDEEAANNGYSWL 0
  2 CEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALTLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITKDEEAANNGYSWL 0
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  2 EPKPEIYPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQSENPCPGDQNQEQQYSDPSSCNDKTKGQEIKERSKLLNKRTRQRQILRAFTSPPKGQMGSSRVGERMMKEEFRTGQKANPGNTGKLFVGVEISRIAK
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNHEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
  VKYGECGQGFSDKSDVVIHQRTHTREKP
  VKYGECGQGFSVKSDVITHQRTHTGEKP
  YVYRgCGQGFSIKSNLLRHQRIHTGEKP
  YVCRECGRGFSRQSVLLIHQRTHTGEKP
   
  YVCRECGRGFSRRSVLLIHQRTHTGEKP
  >PRDM7_calJac Callithrix jacchus (marmoset) genome Prim gene 12 GAS8+ chr20 one frameshift in repeat area chr20 terminus
  YVCRECGRGFSQQSVLLIHQRTHTGEKP
  0 MSPERSQEESPEGDTGRTEQKPM 0  
YVCRECGRGFSRRSVLLIHQRTHTGEKP
  0 VKDAFKDISMYFSKEEWAEMGDWEKTRYRNMKRNYNALITI 1
YVCRECGRGFSWKSVLLRHQRTHTGEKP
YVCRECGRGFSQQSVVFIHQRTHTGEKP
YVCRECGRGFSGKSVLFRHQRTHTGEKP
YVCRECGRGFSDKSGVCYHQRTHT<font color = magenta>g</font>EKP
YVCRECGRGFSVKSNLLSHQRTHTEEKL
YVCREDE*
>PRDM9_nomLeu Nomascus leucogenys (gibbon) ADFV01015315 Prim gene 10 cdh12 ADFV01015317 ADFV01015319 no synteny CpG stop exon 6 in 6/6 traces VCRKDE* in altered reading frame
  0 MSPERSQEESPEEDTERTEQKPT 0  
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 VKPPGMAFRVGQSKHQK 0
  2 VKPPWMALRMEQRKHQK 0
  0 GMPKASFGNESSLKKLSGTANVLNTSGPEQAQKPVSPPGEASTSGQHSRLKL 1
  0 GMPKASFSNESSLKELSGAANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
  2 ELRRKDTEEKMYSLRERKGLAYKEVSEPQDDDYL 1
  2 ELRRKETEGKMYSL<font color = red>*</font>ERKGHAYKEVSEPQDDDYL 1
  2 yCEICQNFFIDSCAAHGPPTFVKDSAVDKGHPNHAALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRVTEDEEAASSGYSWL 0
  2 YCEMCQNFFTDSCAAHGPPTFIKDSTVGKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCQVIRPGCEPLVWYGDEYGQELGIKWGSKWKKELTAER 1
  2 ESKPEIHPCPSCCLAFSSQKFLSHHVERNHSSQNFPGTSTRKLLQPENPCPGKQKEEQQYFDPCNSNDKTKGQETKERSKLLNIRTWQREMARAFSNPPKGQMGSSRVEERMMEEESRTGQKVNPVDTGKLFVGVGISRIAK
  2 EPKAEIHPCPSCCLAFSSQKFLSQHVARHHSSQNFPGPSARKFLQPENPCPGDQNQEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWQREISRAFSSSPKVQMGSCRVGKRIIEEESRTGQKVNPGNTGQLFVGVGISRIAE
  AKYGECGQGFSDMSDVTGHQRTHTGEKP
  VKYAECGQGFSDKSDVITHQRTDTGEKP
  YVCRECGRGFSQKSALLSHQRTHTGEKP
  YLCRECGRGFSVKSSLLSHQRTHTGEKP
  YVCRECGRGFSQKSHLLSHQRTHTGEKP
  YVCRECGRGFSKKSNLLSHQRTHTGEKP
  YVCTECGRGFSQKSVLLSHQRTHTGEKP
  YVCRECGRGFSDKSSLLRHQRTHTGEKP
  YVCTECGRGFSRKSNLLSHQRTHTGEKP
  YVCRECGRGFSQKSSLLSHQRTHTGEKP
  YVCRECGRGFSRKSALLSHQRTHTGEKP
  YVCRECGRGFSQKSSLLSHQRTHTGEKP
  YVCRKCGRGFSQKSNLLSHQGTHTGEKP
  YVCRECGRGFSDKSSLLRHQRTHTGEKP
  YVCTECGRGFSQKSHLLSHQRTHTGEKP
  YVCRECGRGFSQKSSLLSHQRTHTGEKP
  YVCRKCGRGFSQKSNLLSHQRTHTGEKP
  YVCRECGRGFSVKSNLLSHQRTHTGEKP
  YVCRECGRGFSFKSALLRHQRTHTGEKP
  YVCRECGRGFSDKSSLLRHQRTHTGEKP
  YVCRECGRGFSRKSHLLSHQGTHIGEKP
  <font color = red>*</font><font color = magenta>v</font>CRKDE
YVCRECGRGFSRKSNLLSHQRIHTGEKP
YVRREDE.....................
   
   
  >PRDM7_micMur Microcebus murinus (lemur) ABDC01433247 Prim gene 8 gas8+ weak coverage
  >PRDM9_macMul Macaca mulatta (rhesus) genome Prim gene 9 CDH12 chr6 exon 4 lost to Ns
0 MSPEKSQEESPEEDTERTERKPM 0
  0 MSPERSQEESPEEDTERTERKPT 0  
0 vKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPWMALRVEQRKHQK 0
0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL 1
2 ELRKKETERKMYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEKCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLKIRPSGIPQAGLGVWNEASELPLGLHFGPYEGQVTEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDDSWANWMR 2
1 YVNCARDEEEQNLVAFQYHRQIFYRTCQVIRPGCELLVWYGDEYGQELGIKWGSKWKEELTIRQ 1
2 EPKPEIHPCPSCSLAFSSQKFLSQHVKHTHSSQISPRTSGRKHLQPENPCPGDQNQEQQHSDPHSCNDKAKDQEVKERPKPFHKKTQQRGISRAFSSPPKGKMGSCREGKRIMEEEPRTGQKVGPGDTDKLCAAGGISRISR
VKYGDSGQSFSDKSNVIIHQRTHTGEKP
YVCRECGRGFSQKSDLLKHQRTHTGEKP
YVCRECGRGFSQKSHLLRHQRTHTGEKP
YVCRECGRGFSQKSDLLIHQRTHTGEKP
YVCRECGRGFSCKSHLLIHQRTHTGEKP
YVCRECGRGFSCKSSLLIHQRTHTGEKP
YVCRGVWGEALAESQTSSYTRGHTQGRS
PVFAGRVSKSLALNYISTATGGHLLTSH
LPTPALGGASKGSLLTLYISQECKETRN
>PRDM7_otoGar Otolemur garnettii (galago) genome Prim gene 7 GAS8+ good coverage
  0 MSPEKSQEESPEEDTERTERKPM 0  
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 VKHPWMAFRMEQSKRQK 0
  2 VKPPWMAVRVEQSKHQK 0
  0 ILKKCMLSFNMHLKELSGPASLPNISGSEQHQKHMSSPREASTSGQHSGRKS 1
  0 GMPKASFNNESSLKEVSGMANLLNTSGSEQAQKPVSPPGEARTSGQHSRLKL 1
  2 DLRIKEIEVRMYSLRERKGHAYKEVSEPQDDDYL 1
  2 ELRRKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
  2 yCEKCQNFFIDNCAVHGPPTFVKDTAVEKGHPNRSVLSLPSGLGIRTSGIPQAGFGVWNEASDLQLGLHFGPYEGQVTEDEEAANSGYSWL 0
  2 YCEMCQNFFIDSCAAHGPPTFIKDSAVEKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITQDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDESQGNWMR 2
1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGQ 1
2 EPKPEIHPCPSCSLAFSTQKFLSQHVERTHPSQISQGTSGRKNLRPQTPCPRDENQEQQHSDPNSRNDKTKGQEVKEMSKTSHKKTQQSRISRIFSCPPKGQMGSSREGERMIEEEPRPDQKVGPGDTEKFCVAIGISGIVK
VKNRECVQSFSNKS
NLRHQRTHTGEKP
YMCRDCGRGFSHKSSLFRHQRTHTGEKP
YVCRDCGRGFSLKANLLTHQRTHTGEKP
YVCRDCGQGFSQKAHLLRHQRTHTGEKP
YMCRDCGQGFSRKAYLLTHQRTHTGEKP
YVCRDCGQGFSQKAHLLTHQRTHTGEKP
YVCRDCGRGFSHKSSLFRHQRTHTGEKP
YICRDCG
>PRDM7_tarSyr Tarsius syrichta (tarsier) ABRT011082008 Prim pseu -- gas8+ double frameshift in exon 5, ABRT010499286
0  0
0  1
2 GLRAPRPAFMCHRKRAIKPLVDDTEDSDEEWTPRQQ 1
2  0
0 GMPRAPLSIVSSLKELSEMANLLNTSDSEQAWKPVSPSREASTSEQHSRKKL 1
2 EFRKKEIEVNMYSLRERKDCAYKEVNEPQDDDYL 1
2 YCEQCQNFFIDSCATHGIPTFINDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASELPLGLHFGPYEGQITDDEEAANSGYSWL 0
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRIIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  2  
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSTQNFPGPSARRLFQPENLCSGDQNQEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWPKEISRAFSSPPKGQMGSSRVGERMMEEEYRTGQKVNPENTGKLFVGVGISRIAK
VKYGECGQGFSDKSDVIIHQRTHTGEKP
YLCRECGRGFSQKSSLRRHQRTHTGEKP
YLCRECGRGFRDNSSLRYHQRTHTGEKP
YLCRECGRGFSNNSGLCYHQRTHTGEKP
YLCRECGRGFSDNSSLHRHQRTHTGEKP
YLCRECGRGFSNNSGLRYHQRTHTGEKP
YLCRECGRGFSNNSGLRHHQRTHTGEKP
YLCRECGRGFSQKANLLRHQRTHTGEKP
YLCRECGRGFSQKADLLSHQRTHTGEKP
<font color = red>*</font><font color = magenta>v</font>CRKDE
   
   
  >PRDM7_tupBel Tupaia belangeri (tree_shrew) AAPY01316756 noDet
  >PRDM9_macFas Macaca fascicularis (crab-eating macaque) CAEC01530962 CAEC01530970 frameshift exon 7 fragmentary array
  0 MRRYKSPEESPEGDAGRTEWKPT 0
  0 MSPERSQEESPEEDTERTERKPT 0  
  0 VKDAFKDISVYFSKEEWAQMGEWEKIRYRNVKRNYTTLIAI 1
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  2 GLRAPRPAFMCHRKLAVKPHMDDAEDSDEEWTPRQQ 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2  0
0 GMPKASFNNESSLKEVSGMANLLNTSGSEQAQKPVSPPGEARTSGQHSRLKL 1
2 ELRRKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFIKDSAVEKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHF<font color = magenta>g</font>PYEGRITQDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  2 EPKPEIHPCPSCCLAFSSQKFLSHHVERNHSTQNFRGPSARRLLQPENLcSGDQNQEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWQKEISRAFSSPPKGQMGSSRVGERMMKEEYRTGQKVNPENTGKLFVGVGISRIAQ
VKYGECGQGFSEKSDVIIHQRTHTGEKP
YLCRECGRGFSRKSNL
>PRDM9_papHam Papio hamadryas (baboon) genome Prim gene 11 cdh12 contigs scattered
0 0  
  0  1
  0  1
  2   KMYSLRERKCGTYKEVHEPQDDDYL 1
  2 1
  2 yCEKCQNFFIDSCSAHGPPIFVKDSAVDKGSLNRSVLSLPPGLRIAPSGIPEAGLGVWNAATDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
2 VKPPWMAFRVEQSKHQK 0
  0 ITKGRNCYEYVDGKDESCANWMR 2
0 EMPKTSFSNESSLKELSGTPNLLSTSGSEQAQKPASPPGEASTSGQHSRLKL 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGEEYGQELGIKWGSKWKKSLWQGE 1
2 ELRRKEAEGKMYSLRERKGHAYKEVSELQDDDYL 1
  2 EPRPEIHPCLSCSLAFSSQKFLNQHVEHNHSCQRSLRTS
  2 ycEMCQNFFIDSCAAHGPPTFVKDSAVNKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDKEAANNGYSWL 0
            QSSLIRHQRTHTGEKP
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  YLCGECGRGFSRQSHLIIHQRTHTGEKP
  1 1
  YVCRECGRGFSLQSNLIIHQRTHTGEKP
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSTQNFPGPSARRLLQPENLCSGDQNQEQQYSDPCSCNDKTKGQEIKERSKLLNKRTWQKEISRAFSSPPKGQMGSSRVGERMMEEESRTGQKVNPENIGKLFVEVGISRIAK
  YGCRECGRGFSQQSSLIRHQRTHTGEKP
VKYGECGQGFSDKSDVVIHQRTHTREKP
  YVCRECGRGFSRHSSLIIHQRTHTGEKP
YLCRECGRGFSQKSNLLRHQRTHTGEKP
  YLCGECGRGFSRQSHLIIHQRTHTGEKP
  YLCRECGRGFRDNSSLRCHQRTHTGEKP
  YVCRECGRGFSQQPQLIIHQRTHTGEKP
  YLCRECGRGFRDNSSLRCHQRTHTGEKP
  YVCRECGRGFRCQSHLIIHQRTHTGEKP
  YLCRECGRGFSDNSSLRYHQRTHTGEKP
  YVCRECGRGFSQQPHLIIHQRTHTGEKP*VCRKGE
  YLCRECGRGFRDNSSLRYHQRTHTGEKP
  YLCRECGRGFSVKSNLLSHQRTHTGEKP
  YVCRECGRGFSDNSSLRCHQRTHTGEKP
  YLCRECGRGFSQMSHLRCHQRTHTGEKP
  YLCRECGRGFSVKSNLLSHQRTHTGEKP
YVCRECGRGFSRKANLLSHQRTHTGEKP
<font color = red>*</font><font color = magenta>v</font>CRKDE
>PRDM7_homSap Homo sapiens (human) pseu chr16 TUBB3+ DEFB+ AFG3L1+ DBNDD1- GAS8+ PRDM7- 4 frameshifts
0 MSPERSQEESPEGDTERTERKPM 0
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKMNYNALITV 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPWMAFRGEQSKHQK 0
0 GMPKASFNNESSLRELSGTPNLLNTSDSEQAQKPVSPPGEASTSGQHSRLKL 1
2 ELRRKETEGKMYSLRERKGHAYKEISEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDKSSANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWSGDEYGQELGI<font color = magenta>k</font>WGSKWKKELMAGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQERQYSDPRCCNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
VKYGECGQGFSDKSDVITHQRTHTGGKP
YVCRECGR<font color = magenta>g</font>FSRKSDLLSHQRTHTGEKP
YVCRECERGFSRKSVLLIHQRT<font color = magenta>h</font>TGETP
  <font color = magenta>v</font>CRKDE
   
   
  >PRDM9_oryCun Oryctolagus cuniculus (rabbit) genome Glir gene 8 other Un0161 exon 2 ttt to tt restores frame; ZNF717+ DCAF4+ YAP1+ PRDM9- qTer
  >PRDM7_panTro Pan troglodytes (chimp) genome Prim pseu 2 GAS8+ chr16
  0 MSAAAPAEPSPGADAGQARGKPE 0  
  0 MSPERSQEESPEEDTERTERKPM 0  
  0 VQDAFRDISIYFSKEEWAEMGEWEKIRYRNVKRNYCALVAI 1
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  2 GLRAPRPAFMCHRRLAVRARADDTEDSDEEWTPRQQ 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 VKPPWMAFRTEHSKHQK 0
  2 VKPPLMALRVEQRKHQK 0
  0 GMPRLPVNNESSLKELSGTANLLKTTGSEEDQKPSFPPKETRTSGQHSTRKL 1
  0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
  2 GLRRKNIEVKMYSFRKRKSQAYKECSEPQDDDYL 1
  2 ELKKKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
  2 YCEKCQNFFLDSCAVHGPPIFVKDSAVDKGHPNRSVLSLPPGLRIGPSGIPEAGLGVWNEASDLPLGLHFGPYEGQITEEEEAANSGYSWL 0
  2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYKGRITEDEEAANNGYSWL 0
  0 ITKGRNCYEYVDGKDRSWANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARNDEEQNLVAFQYHKQIFYRTCQVIKPGCELLVWYGDEYGQELGIKWGSKWKEELTAGR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  2 EPKPEIHPCPSCSLAFSSHKFLSQHMERSHSSQIFPGAPARNHLQPANPCPGKEHQKLSDPQSWNDKNEGQDVKEKSRFSSKRTRQKAISRSFSSLPKGQVETSREGERMIEEEPRIGQELNPEDTGKSSVGAGLSRIAG
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLQPENP<font color = red>*</font>PGDQNQERQYSDPRCCNDKTKGQEVKERSKLLNKWTWQREISRAFSSLPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
VKYRDCRQGLSDKSHLINGQRAHTGEKP
  VKYGECGQGFSDKSDVITHQRTHTGGKP
YACRECERGFTVKSNLISHQRTHTGEKP
  YVCRECGQGFSRKSVLLIHQRTHRGEKP
YACRECGRGFTVKSALTTHQRTHTGEKP
  <font color = red>*</font><font color = magenta>v</font>CRKDE
YACRECGRGFTVKSHLISHQRTHTGEKP
YACRECGRGFTVKSALITHQRTHTGEKP
YACRECGQGFTVKSNLISHQRTHTGEKP
  YACRECGRGFTQKSHLINHLRAHTGEKP
  YACRECGRGFTVKSDLISHQRTHTGEKP
  YACRVDE.....................
   
   
  >PRDM7_oryCun Oryctolagus cuniculus (rabbit) genome Glir gene 4 other synteny novel
  >PRDM7_gorGor Gorilla gorilla (gorilla) genome Prim pseu 3 GAS8+ chr15730 four frameshifts in last exon
  0  0  
  0 MSPERSQEESPEGDTERTERKPM 0
  0  1
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  2 GLRAPRPAFMCHRRLAVRARADDTEDSDEEWTPRQQ 1
2 GLRATQPVFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 VKPPWMAFRTEHSKHQK 0
2  0
  0 GMPRLPVNNESSLKELSGIANLLNTTGSEEDQKPSFPPKETRTSGQHSTRKL 1
0 GMPKASFNNESSLKELSGTPNLLNTSGSEQAQKPVSPPGEASTSGQHSRRKL 1
  2 GLRRKNIEVKMYSFRKRKSQAYKECSEPQDDDYL 1
2 ELRRKETEGKMYSLRERKGHAYKEISKPQDDDYL 1
  2 YCEKCQNFFLDSCAVHGPPIFVKDSAVDKGHPNRSVLSLPPGLRIGPSGIPEAGLGVWNEASDLPLGLHFGPYEGQITEEEEAANSGYSWL 0
2 yCEMCQNFFIDSCAAHGPPTFVKDSAVDKRHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDKEAANSGYSWL 0
  0 ITKGRNCYEYVDGKDRSWANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARNDEEQNLVAFQYHKQIFYRTCQVIKPGCELLVWYGDEYGQELGIKWGSKWKEELTAGR 1
1 YVNCARDDEEQNLVALQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGR 1
  2 EPKPEIHPCPSCSLAFSSHKFLSQHMECSHSSQIFPGAPARNHLQPANPCPGKEHQKLSDPQSWNDKNEGQDVKEKSRFSSKRTRQKAISRSFSSLPKGQVETSREGERMIEEEPRIGQELNPEDTGKSSVGAGLSRIAG
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQERQYSDPRCCNDKTKGQEIKERSKLLNK<font color = magenta>r</font>TWQR<font color = magenta>e</font>ISRAFSSPPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
  VKYRDCRQGLSDKSHLINGQRAHTGEKP
YGECGQGFSWKSNLLRHQRTHTGGKP
  YACRECGQSFTVKSNLISHQRTHTGEKP
  YVCRECGRGFSWKSDLLSHQRTHTGEKP
  YACRECGRGFTQKSHLIRHQRTHTGEKP
YVCRECGRGFSWKSNLLSHQRTHT<font color = magenta>g</font>EKP
  YACRECGQSFTWKSNLISHQRTHTGEKP
<font color = red>*</font><font color = magenta>v</font>CRKDE
  YACRVDE.....................
>PRDM7_ponAbe Pongo abelii (Sumatran orangutan) genome-blat same late stop codon as chimp *VCRKDE* no cryptic repeats, adjacent GAS8 
0 MSPERSQEESPKGDTERTERKPM 0  
  0 VKDAFKDISIYFTKEEWTEMGDWEKTRYRNVKRNYKTLITI 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 VKPPWMAFRGEQSKHQK 0
  0 GMPKASFNNESSLKELSGTQNLLNTSGSEQAQKPVSPPGEASTSGQHSTLKI 1
  2 ELRRKETEGKTYSLRERKGHAYKEVSEPQDDDYL 1
  2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDKEAANNGYSWL 0
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCAWDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMPGR 1
  2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARHLLQAENPCPGDQNQEQQYSDPDCCNDKTKGQEIKERSKLLNKRTWQREISRAFSSSAKGQMGSSRVGERMMEEESGTGQKVNPGNTGKLFVGVGISRIAK
  VKYGECGQGFSDKSDVITHQRTHTGGRS
  YICRESGRGFTQKSGLLSHQRTHTGEKP
  YVCRECGWGFSQKSNLLRHQRTHTGEKP
  YVCRECGRGFSRKSVLLIHQRTHTGEKP
  <font color = red>*</font><font color = magenta>v</font>CRKDE
   
   
  >PRDM7_ochPri Ochotona princeps (pika) AAYZ01312269 Glir gene -- noDet dubious fragment, no orthologous terminal exon
  >PRDM7_nomLeu Nomascus leucogenys (gibbon) ADFV01125891 pseu gas8+ synteny implied by non-coding
  0  0  
  0  0  
  0  1
  0  1
  2  1
  2  1
  2  0
  2 IKSPWMAVRVEQSKHQK 0
0 GMPKASFNNESGLKELSGSQnLLNTSG<font color =red>*</font>EQARKPVSPPGEASTSGQHSRQKL 1
2 ELRRKETEGKMYSL<font color =red>*</font>ERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFTDSCAAHGPPTFVKDSAVDKGHPNHSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKS<font color =red>*</font>ANWMK 2
1 YVNCARDHEEQNLVAFQYHRQIFYRTCQVIRPGCEPLVWYGDEYGQELGIKWGSKWKKELTAER 1
2 EPKPEIHPCPSCCLVFTSQKFLSQHVECNHSSQNFPGPSARKLLQRENPCPGDQNQEQQYSDSRSCNDKTKGQEIKERSKL<font color = magenta>n</font>KRIWQRKISRAFSSLPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
VKYGECGQGFSDKSDVIAHQGTHTGGKS
<font color =red>*</font>ICRECGWGFSQESHLLIHQRTHTGEKL
YVCRECGQGFSQKSDLLSHQRTHTGEKP
YVRRECGRGFSQKSNLLSHQRTHTEEKP
YVCRECGWGFSQKSHLLIHQRTHTGKKP
<font color =red>*</font><font color = magenta>v</font>CRKDE
>PRDM7_macMul Macaca mulatta (rhesus) pseu GAS8+ stop codon exon 5 in 6 of 6 trace reads, frameshift in exon 10
0 0  
  0  1
  0  1
  2  1
  2  1
  2 yCEMCQNFFIESCAVHGSPTFVKD    GHPHRSVLSLPSGLRIGPSGIPEAGLGVWNETTDLPLGLHFGPYEGQVTEEEEATNSGYSWL 0
  2 VKPPWMAFRVEQSKHQK 0
  0 ITKGRNRYEYVDGKDPSQANWMR 2
  0 EMPKTSFNNESSLKELSGTPNLLSTSDSE<font color =red>*</font>AQKPASPPGEASTSGQHSRLKL 1
  1 YVNCARNDEEQNLVAFQYHRQIFYRTCRAVRQGCELLVWYGDEYGQELGIKWGSKWKEELTAGR 1
2 ELRRKETEGKMYSLRERKRHAYKEASELQHDDYL 1
  2  
2 YCEMCQNFFIDSCAAHGPPTFVKDNAVNKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPCEGRITEDKEAANSGYSWL 0
0 ITKGRNCYEYVDGKDKSWAKWMR 2
1  1
2 EPKPEIYPCPSCCLAFSSQKFLS<font color = magenta>q</font>HVERNHSSQNFPGPSARKLLQSENPCPGDQNQEQQYSDPSSCNDKTKGQEIKERSKLLNKRTWQREILRAFTSPPKGQMGSSRVGERMMEEEFRTGQKANPGNTGKLFVGVEISRIAK
VKYGECGQGFSGKSDVITHQRTHTEGKP
YVCRGCGRRFSQKSSLLRHQRTHTGEKP
<font color =red>*</font><font color = magenta>v</font>CKKNE
>PRDM7_macFas Macaca fascicularis (crab-eating macaque) CAEC01352986 CAEC01352983 4 frameshifts 1 stop codon
0  0
0  1
2 1
  2  0
0 EMPKTSFNNESSLKELSGTPNLLSTSDSE<font color = red>*</font>AQKPASPPGEASTSGQHSRLKL 1
2 ELRRKETEGKMYSLRERKRHAYKEVSELQHDDYL 1
  2 YCEMCQNFFIDSCAAHGPPTFVKDNAVNKGHPNRSALSLPPGG<font color = magenta>l</font>RIGPSGIPQAGLGVWNEASDLPLGLHFGPCEGRITEDKEAANSGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1  1
2 EPKPEIYPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQSENPCPGDQNQEQQYSDPSSCNDKTKGQEIKE<font color = magenta>r</font>SKLLNKRTWQREILRAFTSPPKGQMGSSRVGERMMEE<font color = magenta>e</font>FRTGQK<font color = magenta>a</font>NPGNTGKLFVGVEISRIAK
VKYGECGQGFSGKSDVITHQRTHTEGKP
YVCRGCGRRFSQKSSLLRHQRTHTG<font color = magenta>e</font>KP
<font color = red>*</font><font color = magenta>v</font>CKKNE
   
   
  >PRDM7_ratNor Rattus norvegicus (rat) P0C6Y7 Glir gene 10 PDCD2 chr1 FM103467 single transcript from body fat
  >PRDM7_papHam Papio hamadryas (baboon) genome Prim pseu 2 gas8+ contigs scattered
  0 MNTNKPEENSTEGDAGKLEWKPK 0  
  0 MSPERSQEESPEEDTERTEWKPM 0  
  0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
  0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
  2 GLRAPRPAFMCYQRQAIKPQINDNEDSDEEWTPKQQ 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 VSSPWVPFRVKHSKQQK 0
  2 VKPPWMAVRVEQSKHQK 0
  0 ETPRMPLSDKSSVKEVFGIENLLNTSGSEHAQKPVCSPEEGNTSGQHFGKKL 1
  0 GMPKASFNNESSLKEVSGMANLLNTSGSEQAQKPVSPPGEARTSGQHSRLKL 1
  2 KLRRKNVEVNRYRLRERKDLAYEEVSEPQDDDYL 1
  2 ELRRKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
  2 YCEKCQNFFIDSCPNHGPPVFVKDSVVDRGHPNHSVLSLPPGLRIGPSGIPEAGLGVWNEASDLPVGLHFGPYKGQITEDEEAANSGYSWL 0
  2 YCEMCQNFFIDSCAAHGPPTFIKDSAVEKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITQDEEAANNGYSWL 0
  0 ITKGRNCYEYVDGQDESQANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRKIFYRTCRVIRPGRELLVWYGDEYGQELGIKWGSKMKKGFTAGR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  2 ELRTEIHPCFLCSLAFSSQKFLTQHVEWNHRTEIFPGASARINPKPGDPCPDQLQEHFDSQNKNDKASNEVKRKSKPRHKWTRQRISTAFSSTLKEQMRSEESKRTVEEELRTGQTTNIEDTAKSFIASETS
  2 EPKPEIYPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQSENPCPGDQNQEQQYSDPSSCNDKTKGQEIKERSKLLNKRTRQRQILRAFTSPPKGQMGSSRVGERMMKEEFRTGQKANPGNTGKLFVGVEISRIAK
RIERQCGQCFSDKSNVSEHQRTHTGEKP
  VKYGECGQGFSDKSDVVIHQRTHTREKP
YICRECGRGFSQKSDLIKHQRTHTEEKP
  YVYRgCGQGFSIKSNLLRHQRIHTGEKP
YICRECGRGFTQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSDLIKHQRTHTGEKP
YICRECGRGFTQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSSLIRHQRTHTGEKP
YICRECGLGFTQKSNLIRHLRTHTGEKP
YICRECGLGFTRKSNLIQHQRTHTGEKP
  YICRECGQGLTWKSSLIQHQRTHTGEKP
  YICRECGRGFTWKSSLIQHQRTHTVEK.
   
   
  >PRDM7_musMus Mus musculus (mouse) Q96EQ9 Glir gene 12 PDCD2 chr17 CN723438 eight transcripts, four from retina
  >PRDM7_calJac Callithrix jacchus (marmoset) genome Prim gene 12 GAS8+ chr20 one frameshift in repeat area chr20 terminus
  0 MNTNKLEENSPEEDTGKFEWKPK 0  
  0 MSPERSQEESPEGDTGRTEQKPM 0  
  0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
  0 VKDAFKDISMYFSKEEWAEMGDWEKTRYRNMKRNYNALITI 1
  2 GLRAPRPAFMCYQRQAMKPQINDSEDSDEEWTPKQQ 1
  2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
  2 VSPPWVPFRVKHSKQQK 0
  2 VKPPGMAFRVGQSKHQK 0
  0 ESSRMPFSGESNVKEGSGIENLLNTSGSEHVQKPVSSLEEGNTSGQHSGKKL 1
  0 GMPKASFGNESSLKKLSGTANVLNTSGPEQAQKPVSPPGEASTSGQHSRLKL 1
  2 KLRKKNVEVKMYRLRERKGLAYEEVSEPQDDDYL 1
  2 ELRRKDTEEKMYSLRERKGLAYKEVSEPQDDDYL 1
  2 YCEKCQNFFIDSCPNHGPPLFVKDSMVDRGHPNHSVLSLPPGLRISPSGIPEAGLGVWNEASDLPVGLHFGPYEGQITEDEEAANSGYSWL 0
  2 yCEICQNFFIDSCAAHGPPTFVKDSAVDKGHPNHAALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRVTEDEEAASSGYSWL 0
  0 ITKGRNCYEYVDGQDESQANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRKIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKMKKGFTAGR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  2 ELRTEIHPCLLCSLAFSSQKFLTQHMEWNHRTEIFPGTSARINPKPGDPCSDQLQEQHVDSQNKNDKASNEVKRKSKPRQRISTTFPSTLKEQMRSEESKRTVEELRTGQTTNTEDTVKSFIASEIS
  2 ESKPEIHPCPSCCLAFSSQKFLSHHVERNHSSQNFPGTSTRKLLQPENPCPGKQKEEQQYFDPCNSNDKTKGQETKERSKLLNIRTWQREMARAFSNPPKGQMGSSRVEERMMEEESRTGQKVNPVDTGKLFVGVGISRIAK
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  AKYGECGQGFSDMSDVTGHQRTHTGEKP
  YVCRECGRGFTQNSHLIQHQRTHTGEKP
  YVCRECGRGFSQKSALLSHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFSQKSHLLSHQRTHTGEK<font color=magenta>p</font>
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCTECGRGFSQKSVLLSHQRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  YVCTECGRGFSRKSNLLSHQRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  YVCRECGRGFSRKSALLSHQRTHTGEKP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCRKCGRGFSQKSNLLSHQGTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCTECGRGFSQKSHLLSHQRTHTGEKP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCRKCGRGFSQKSNLLSHQRTHTGEKP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCRECGRGFSFKSALLRHQRTHTGEKP
  YVCRECGRGFTQKSNLIKHQRTHTGEKP
  YVCRECGRGFSRKSHLLSHQGTHIGEKP
  YVCRECGWGFTQKSDLIQHQRTHTREK.
  YVCRECGRGFSRKSNLLSHQRIHTGEKP
YVRREDE
>PRDM7_saiBol Saimiri boliviensis (squirrel_monkey) AGCE01149118/AGCE01147692/AGCE01012341/AGCE01145199 fragments no synteny but not in cadherin 10/12 complex
MSPERSQEESP GDTGRTEQKPM
VKDAFKDVAIYFSKEEWAEMGDWEKTRCRNVQRNYNALITI
GLRATQPAFMCHRRQASKLQVDDTEDSDEEWTPRRQ
  RPVSPPGEASTSGQHSRVKP
YVNCARDDEEQNLVAFQYHRQIFYRTCQVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR
EPKPEIHPCPSCCLAFSSQKFLSRHVERNHSSQNFPGTSTRKLLQPENPCPGKQKEEQRYFDPCNSNDKTKGQEIKERSKLLNTRTWQREIARAFSYPPKGQMGSSRVEERMMEGESRTGQKVKPVDTGKLFVGVGISRIAK
ANYGECGQGFSGMSDVTAQQRIHTGEKP
YVCRECGRGFGHKSTLLSHQRTHTGEKP Y
   
   
  >PRDM7_musMol Mus molossinus (wild_mouse) GU216230 Glir gene 11 noDet full length deposit
  >PRDM7_tarSyr Tarsius syrichta (tarsier) ti|1493610848 ABRT011082008 ti|1633244849 ABRT010499286 ABRT010929713 ti|1646504284 pseu gas8? double frameshift in exon 5 single trace ti|1623660607
  0 MNTNKLEENSPEEDTGKFEWKPK 0  
  0 MSPDRSPEDSPEGDTGRTECKSA 0  
  0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
  0 VKDAFKDISIYFTKEEWAEMGDWEKIRYRNVKRNYNTLIAI 1
  2 GLRAPRPAFMCYQRQAMKPQINDSEDSDEEWTPKQQ 1
  2 GLRAPRPAFMCHRKRAIKPLVDDTEDSDEEWTPRQQ 1
  2 VSPPWVPFRVKHSKQQK 0
  2 VKPPWMAFRVEQNKHQK 0
  0 ESSRMPFSGESNVKEGSGIENLLNTSGSEHVQKPVSSLEEGNTSGQHSGKKL 1
  0 GMPRAPLSIVSSLKELSEMANLL<font color=magenta>n</font>TSDSEQAWKPVSPS<font color=magenta>r</font>EASTSEQHSRKKI 1
  2 KLRKKNVEVKMYRLRERKGLAYKEVSEPQDDDYL 1
  2 EFRKKEIEVNMYSLRERKDCAYKEVNEPQDDDYL 1
  2 YCEKCQNFFIDSCPNHGPPLFVKDSMVDRGHPNHSVLSLPPGLRISPSGIPEAGLGVWNEASDLPVGLHFGPYEGQITEDEEAANSGYSWL 0
  2 YCEQCQNFFIDSCATHGIPTFINDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASELPLGLHFGPYEGQITDDEEAANSGYSWL 0
  0 ITKGRNCYEYVDGQDESQANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRKIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKMKKGFTAGR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRIIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
  2 ELRTEIHPCLLCSLAFSSQKFLTQHMEWNHRTEIFPGTSARINPKPGDPCSDQLQEQHVDSQNKNDKASNEVKRKSKPRQRISTTFPSTLKEQMRSEESKRTVEELRTGQTTNTEDTVKSFIASEIS
  2 ETKPKILPCSSCSLALSSQKFFSQHVKCNHPPQIFPGTSARKYVQPENPCPEDLNQEQQQSDPHSWNDKSKCQEAKERSKPMHKRTQQRESSRSLSNPPTEQTESSREKERMMKEEPSTSQKVHLGDTGYEFHHIGASAAR
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTEKSSLIKHQRTHTGEKP
YVCRECGWGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSSLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGWGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTR.EK
   
   
  >PRDM7_dipOrd Dipodomys ordii (kangaroo_rat) genome Glir gene -- noDet dubious fragment, no orthologous terminal exon
  >PRDM7_micMur Microcebus murinus (lemur) ABDC01433247 ABDC01371462 gas8+ weak coverage last exon has two frameshifts
  0 0  
  0 MSPNKSQEESPEVDAGRTGWKPT 0  
  0 1
  0 DKDAFKDISIYFSKEEWAQMGDWEKIRYRNVKRNYNVLITI 1
  2 GLKAPRPVFMCHRRQAIKPQVDDTDDSDEEWTPGRQ 1
  2 GLRAPRPAFMCHRRQAIKHQVDDTEDSDEEWTPRQQ 1
  2  0
  2  0
  0  1
  0  1
  2 elRTKEVKMRMYSLRERKSYAYEEISEPQDDDYL 1
  2 SEPQDDDYL 1
  2 yCEQCQNFFINSCTVHGPPIFVRDNVVDKGHYDRSVLSLPPGLRIRQSSIPEAGLGVWNEESDLPLGLHFGPYEGQITEDEDAANSGYSWM 0
2 YCEKCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLKIRPSGIPQAGLGVWNEASELPLGLHFGPYEGQVTEDEEAANSGYSWL 0
  0 ITKGRNCYVYVDGKDKSQANWMR 2
0 ITKGRNCYEYVDGKDDSWANWMR 2
  1 YVNCARYDEEQNLVAFQYHRQIFYRTCRVIKAGCELLVWYGDEYGQELGIKWGSKWKRELTAgr 1
1 YVNCARDEEEQNLVAFQYHRQIFYRTCQVIRPGCELLVWYGDEYGQELGIKWGSKWKEELTIRQ 1
  2  
2 EPKPEIHPCPSCSLAFSSQKFLSQHVKHTHSSQISPRTSGRKHLQPENPCPGDQNQEQQHSDPHSCNDKAKDQEVKERPKPFHKKTQQRGISRAFSSPPKGKMGSCREGKRIMEEEPRTGQKVGPGDTDKLCAAGGISRISR
VKYGDSGQSFSDKSNVIIHQRTHTGEKP
YVCRECGRGFSQKSDLLKHQRTHTGEKP
YVCRECGRGFSQKSHLLRHQRTHTGEKP
YVCRECGRGFSQKSDLLIHQRTHTGEKP
YVCRECGRGFSCKSHLLIHQRTHTGEKP
YVCRECGRGFSCKSSLLIHQRTHTGEKP
YVCR<font color = magenta>e</font>CG<font color = magenta>r</font>GFSRKSDLLIHQRTHTGEKP
CVCRKGE
>PRDM7a_otoGar Otolemur garnettii (galago) AAQR03189271 (43912 bp) adjacent ARFGEF1 not GAS8
0 MSPNRSQEESPE 0
0 VRGAFKDTYKYFSMEELAEMGDWEKIHHGNVERNYDVLIDR 1
2 GLRAPQPAFMGHRRQAIKYQVDDTEDSDEEWTPRQQ 1
2 GKHSLMAFRMQPRKRQK 0
0 GMPRAPLSHDSILQDLSGPANSLNISDSEQHQNCVSLPGEANASGQNSRRKS 1
2 ALRRKEIEARSYNLRERTDRSYEEVSEPQNDDYL 1
  2 YCEMCQDYFIDRCDVHGPPTFVKDIAVDKGHPNRAALTLPPGLSIRQSGIPQAGDGVWNEACELPLGLHFGPYEGQVLEDEEAARSGYAWK 0
  0 ITKGRNCYEYVDGKDQSQGNWMR 2
  1 YVNCARDDEEQNLVAFQYHSQIFYRTCRVIRPGCELLVWYGTEYGKKLGIMWTSKRKKELTGQ 1
  2 DPKPENHPCPSCSLAFSSQKSLSQHVEGTHSSQIFPGTSVRKHCRPEHLYPGDQNQEQQLSDPHDQNDKTKGQEMNEISKTSQEKTQQSSISGISSHTPEGQMGNSRDSERMVEPGQNMGPGETGKLCVKVEISRIVK
VANGQCGQEFSQTSNLHTHQRTHTGEKP
YVCSQCGHGFRYKSNLLTHQRIHTGEKP
YICTECGQQFRQTSNLLAHQRIHTGEKP
YVCSDCGKGFSQKSNLRTHQKTHTGEKA
YVCSECGKGFTRKENLLIHHRTHTGEKP
YICSDCGKRFSQKSNFLTHQKTHTGEKA
CVCRECGKGFSRKATLLIHQRTHKGE<font color=magenta>k</font>P
YVYRSCGQIFIHKSNLNRREKTHTGEKS
   
   
  >PRDM7_speTri Spermophil tridecemlin (squirrel) AAQQ01308561 Glir gene -- noDet plus exon by exon traces
  >PRDM7b_otoGar Otolemur garnettii (galago) AAQR03144890 (36951 bp) adjacent GAS8+ pseudogene
  0  0  
  0  0
  0  1
  0  1
  2 GFRAPRPAFMCHQRQTIKLQMDDTEDSDEEWTPRQQ 1
  2 GLRAPRPAFMCHRRQATKYKVDDTEDSDEEWTPRQQ 1
2 VKHPWMAFRMEQSKRQK 0
0 ILKKCMLSFNMHLKELSGPASLPNISGSEQHQKHMSSPREASTSGQHSGRKS 1
2 DLRIKEIEVRMYSLRERKGHAYKEVSEPQDDDYL 1
2 yCEKCQNFFIDNCAVHGPPTFVKDTAVEKGHPNRSVLSLPSGLGIRTSGIPQAGFGVWNEASDLQLGLHFGPYEGQVTEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDESQGNWMR 2
1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGQ 1
2 EPKPEIHPCPSCSLAFSTQKFLSQHVERTHPSQISQGTSGRKNLRPQTPCPRDENQEQQHSDPNSRNDKTKGQEVKEMSKTSHKKTQQSRISRIFSCPPKGQMGSSREGERMIEEEPRPDQKVGPGDTEKFCVAIGISGIV
KVKNRECVQSFSNKSNLRHQRTHTGEKP
YMCRDCGRGFSHKSSLFRHQRTHTGEKP
YVCRDCGRGFSLKANLLTHQRTHTGEKP
YVCRDCGQGFSQKAHLLRHQRTHTGEKP
YMCRDCGQGFSRKAYLLTHQRTHTGEKP
YVCRDCGQGFSQKAHLLTHQRTHTGEKP
YVCRDCGRGFSHKSSLFRHQRTHTGEKP
YICRDCG<font color=red>*</font>SFRDRSNLLRHQRTHTGEKL
YVCRECGQGFNLKVTLLTHQRTHTGEKP
YVCRDLG<font color=red>*</font>SFHNRSNLLTH<font color=magenta>q</font>RTHIGEKP
YVCRDFGRGFSQKAHLLTHQR
>PRDM7_tupBel Tupaia belangeri (tree_shrew) AAPY01316756 ti|1061183379 ti|1061388949 ti|1076935836 AAPY01523531 ti|1074533669 AAPY01523530 no synteny QVTSDKTYFSGQMEDKSGHHTPP* runout
0 MRRYKSPEESPEGDAGRTEWKPT 0
0 VKDAFKDISVYFSKEEWAQMGEWEKIRYRNVKRNYTTLIAI 1
2 GLRAPRPAFMCHRKLAVKPHMDDAEDSDEEWTPRQQ 1
  2  0
  2  0
  0 LKPEVLLSNESSLKELSGTANLLNTSGSEQVQKPVSPLREASASRQHSRRKL 1
  0 1
  2 ELRTKEVEVKMYSLRERKGHAYKEVSEPQDDDYL 1
  2         GKMYSLRERKCGTYKEVHEPQDDDYL 1
  2 yCDKCQNFFMDSCPVHGPPTFIKDSVVNKDHSNHSTLSLPLGLRIGPSSIPEAGLGVWNEATDLPLGLHFGPYRGQITEDEEAANSGYSWL 0
  2 yCEKCQNFFIDSCSAHGPPIFVKDSAVDKGSLNRSVLSLPPGLRIAPSGIPEAGLGVWNAATDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
  0 ITKGRNCYEYVDGKDESQANWMR 2
  0 ITKGRNCYEYVDGKDESCANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELSAGR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGEEYGQELGIKWGSKWKKSLWQGE 1
  2 EPKPEIHPCPSCSLAFSSQKFLSQHVDRSHPSQIFPGTSMRKKLIPGDSSPRDQLQEQQHPDPHGWNDKARGQEVQGSLKPTHKGTRQRGISSPPKGQMGRSEESERMMEDDLKADQEINPEDTDKILVGVEMSRI
  2 EPRPEIHPCLSCSLAFSSQKFLNQHVEHNHSCQRVPETSARKHLHPEHTHPGDEIQEQHHSDPQHCSDKADYEKVKERSKPSQERTRQRTMSRTFCSPCKGQMENAREGERMTGQRTDQKVGAEDTGKLLVRVGSSRIAG
  -
VKYGECGQGLINKSNASRHQRTHTGEKP
YGCRECGRGFSQQSDLIRHQRTHTGEKP
YLCGECGRGFSLQSSLIRHQRTHTGEKP
YLCGECGRGFSRQSHLIIHQRTHTGEKP
YVCRECGRGFSLQSNLIIHQRTHTGEKP
YGCRECGRGFSQQSSLIRHQRTHTGEKP
YLCGECGRGFSRQSHLIIHQRTHTGEKP
YVCRECGRGFSLQSNLIIHQRTHTGEKP
YGCRECGRGFSQQSSLIRHQRTHTGEKP
YVCRECGRGFSRHSSLIIHQRTHTGEKP
YLCGECGRGFSRQSHLIIHQRTHTGEKP
YVCRECGRGFSQQPQLIIHQRTHTGEKP
YVCRECGRGFRCQSHLIIHQRTHTGEKP
YVCRECGRGFSQQPHLIIHQRTHTGEKP
  <font color=red>*</font>VCRKGE
   
   
  >PRDM9a_bosTau Bos taurus (cattle) NW_003053109 Laur gene 7 noDet chr1
  >PRDM7_oryCun Oryctolagus cuniculus (rabbit) genome Glir gene 8 other Un0161 exon 2 ttt to tt restores frame; ZNF717+ DCAF4+ YAP1+ PRDM9- qTer
  0 MSQNRSPEERTKGDAGRTEWKLT 0  
  0 MSAAAPAEPSPGADAGQARGKPE 0  
  0 AKDAFKDISIYFSKEEWAEMGEWEKTGYRNVKRNYEVLIAI 1
  0 VQDAFRDISIYFSKEEWAEMGEWEKIRYRNVKRNYCALVAI 1
  2 GLRATQPAFMHHRRQVIKPQGDDTEDSDEEWTPQHQ 1
  2 GLRAPRPAFMCHRRLAVRARADDTEDSDEEWTPRQQ 1
  2 GKPSRKAFRMEHRKHQK 0
  2 VKPPWMAFRTEHSKHQK 0
  0 GKSRGPLSKVSSLKKLQGAAKLLNTSGSKWAQKPANPPRETRTLEQHSRQKV 1
  0 GMPRLPVNNESSLKELSGTANLLKTTGSEEDQKPSFPPKETRTSGQHSTRKL 1
  2 ELRRKETDMKRYSLRERKGHVYQEVSEPQDDDYL 1
  2 GLRRKNIEVKMYSFRKRKSQAYKECSEPQDDDYL 1
  2 YCQECQNFFIDSCDAHGPPTFVKDSAVEKGHANRSVLTLPPGLSIKLSGIPEAGLGVWNEASHLPLGLHFGPYEGQITDDKEAINSGYSWL 0
  2 YCEKCQNFFLDSCAVHGPPIFVKDSAVDKGHPNRSVLSLPPGLRIGPSGIPEAGLGVWNEASDLPLGLHFGPYEGQITEEEEAANSGYSWL 0
  0 ITKGRNSYEYVDGKDTSLaNWMR 2
  0 ITKGRNCYEYVDGKDRSWANWMR 2
  1 YVNCARHYEEQNLVAFQYHGQIFYRTCQVVRPGCELLVWYGDEYGEKLGIKCESRGKSMFAAGr 1
  1 YVNCARNDEEQNLVAFQYHKQIFYRTCQVIKPGCELLVWYGDEYGQELGIKWGSKWKEELTAGR 1
  2 ESKPKIHPCASCSLAFSSQKFLSQHVQHNHPSQTLLRPSARDYLQPEDPCPGSQNQQQRYSDPHSPSDKPEGREVKDRPQPLLKSIRLKRISRASSYSPRGQMGASGVHERITEEPSTSQKPNPEDTGKLFMGAGVSGIIK
  2 EPKPEIHPCPSCSLAFSSHKFLSQHMERSHSSQIFPGAPARNHLQPANPCPGKEHQKLSDPQSWNDKNEGQDVKEKSRFSSKRTRQKAISRSFSSLPKGQVETSREGERMIEEEPRIGQELNPEDTGKSSVGAGLSRIAG
  VKYGECGQGSKDRSSLITNQRTHTGEKP
VKYRDCRQGLSDKSHLINGQRAHTGEKP
  YVCGECGQSFNQKSTLITHQRTHTGEKP
  YACRECERGFTVKSNLISHQRTHTGEKP
  YVCGECGRSFNQKSTLITHQRTHTGEKP
  YACRECGRGFTVKSALTTHQRTHTGEKP
  YVCGECGRSFSQKSTLIKHQRTHTGEKP
  YACRECGRGFTVKSHLISHQRTHTGEKP
  YVCGECGQSFNQKSTLITHQRTHTGEKP
  YACRECGRGFTVKSALITHQRTHTGEKP
  YVCGECGQSFNQKSTLITHQRTHTGEKP
  YACRECGQGFTVKSNLISHQRTHTGEKP
  YVCGECGRSFSRKSTLITHQRTHRGEKL
  YACRECGRGFTQKSHLINHLRAHTGEKP
  CLQGV......................
  YACRECGRGFTVKSDLISHQRTHTGEKP
   
  YACRVDE
  >PRDM9b_bosTau Bos taurus (cattle) DAAA02065087 Laur gene 5 noDet chrU aaaaa fixed to aaaaaa in exon 2 KRAB SSXRD SET C2H2
   
  0 MSPNRSPENSTEGDAGRTEWKPM 0  
  >PRDM7_ochPri Ochotona princeps (pika) ti|1534455888 AAYZ01312269 AAYZ01242582 no synteny
  0 AKDAFKDISIYFTKEEWAEMGEWEKIQYRNVKRNYEALIAI 1
  0 0  
  2 GFRATQPGFMHHGRQVLKSQVDDTEDSDEEWTPRQQ 1
  0 VPDAFRDICVYFSRAEWAEMSESEKLRYRDVKRNYSALRAI 1
  2 GKPSGMAFRGEPSKHPK 0
  2 GFRAPRPAFMCRRRLAGRAREEDTDDSDEECTLRPQ 1
  0 RLSRGPLNKVSSLKKLPGAAKLLKKSGSKQAQKPVPPPREARTPGKHPRHKV 1
  2 VKPPWMAFRTEHSKHQK 0
  2 ELRRKETEVKRYSVRERKGHVYQEVSEPQDDDYL 1
  0 GIPKVPTHHESSVTEAPRTAPFLRPAGSQQGRKPAFPPEEASASGQHSTRRL 1
  2 YCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQIIYNEEDSNSGYCWL 0
  2 EGRRRKTDLKIYSLRKRKSRTYKECSEPQDDDYL 1
  0 VTKGRNSYEYVDGKDTSLANWMR 2
  2 YCEMCQNFFIESCAVHGSPTFVKDNPVGKGHPHRSVLSLPSGLRIGPSGIPEAGLGVWNETTDLPLGLHFGPYEGQVTEEEEATNSGYSWL 0
  1 YVNCARDDEEQNLVALQYHGQIFYRTCRVVRPGCELLVWYGDEYGEELGIKQDKRGKSKLSAQR 1
  0 ITKGRNRYEYVDGKDPSQANWMR 2
  2 AKMHPCASCSLAFSSQKFLSQHVQRNHPSQTLLRPSARDHLQPEDPCPGNQNQQQRYSDPHSPSDKPEGRKAKDRPQPLLKSIKLKRISRASSYSPRGQVGRSGVHERITEEPSTSQKLNPEDTGKLFMGAGVSGIIK
  1 YVNCARNDEEQNLVAFQYHRQIFYRTCRAVRQGCELLVWYGDEYGQELGIKWGSKWKEELTAGR 1
VKYRECGQGSKDRSSLITHERTHRAEAL
  2 EPKPEIHPCPSCSLAFSSHKFLSRHTERSHSSQVFPKTSPRRLQPVNPCRGTEHREPLDPHSWNDTAEGQEVIENSSSVSTRTRQRQISAAFCSLRKGQVEASREGERKAEESPRINQEVNAQDTAKSSVRAGLPSRVT
CLRRVWAKLQSEVPLLVMHQRTHTGEKL
  VKCGDCRQDL
YVCGECGKSFSQKSPLIRHQRTHTGEKP
YVCGECGKSFSQKSPLIRHQRTHTGKKP
YVCRECGRSFSDKSH.HTPEYTHRGEAL
  HLRGVWA.....................
   
   
  >PRDM9c_bosTau Bos taurus (cattle) XM_002699750 Laur gene -- noDet chrX GO353654 4-cell embryo transcript no zinc downstream despite 43k bp
  >PRDM7_ratNor Rattus norvegicus (rat) P0C6Y7 Glir gene 10 PDCD2 chr1 FM103467 single transcript from body fat
  0 MSPNRSPENSTEGDAGRTEWKPM 0  
  0 MNTNKPEENSTEGDAGKLEWKPK 0  
  0 AKDAFKDISIYFTKEEWAEMGEWEKIRYRNVKRNYEALIAI 1
  0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
  2 GFRATQPGFMHHRRQVLKPQVDDTEDSDEEWTPRQQ 1
  2 GLRAPRPAFMCYQRQAIKPQINDNEDSDEEWTPKQQ 1
  2 GKPSGMAFRGERSKHQK 0
  2 VSSPWVPFRVKHSKQQK 0
  0 RLSRGPLNKVSSLKKLPGAAKLLKKSGSKQAQKPVPPPREARTPGKHPRHKV 1
  0 ETPRMPLSDKSSVKEVFGIENLLNTSGSEHAQKPVCSPEEGNTSGQHFGKKL 1
  2 ELRRKETKVKRYSVRERKGHVYQEVSEPQDDDYL 1
  2 KLRRKNVEVNRYRLRERKDLAYEEVSEPQDDDYL 1
  2 YCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQIIYNEEDSHSGYCWL 0
  2 YCEKCQNFFIDSCPNHGPPVFVKDSVVDRGHPNHSVLSLPPGLRIGPSGIPEAGLGVWNEASDLPVGLHFGPYKGQITEDEEAANSGYSWL 0
  0 VTKGRNSYEYVDGKDTSLANWMR 2
  0 ITKGRNCYEYVDGQDESQANWMR 2
  1 YVNCARDDEEQNLVALQYHGQIFYRTCRVVRPGCELLVWYGDEYGEELGIKQDKRGKSKLSAQR 1
  1 YVNCARDDEEQNLVAFQYHRKIFYRTCRVIRPGRELLVWYGDEYGQELGIKWGSKMKKGFTAGR 1
  2  
  2 ELRTEIHPCFLCSLAFSSQKFLTQHVEWNHRTEIFPGASARINPKPGDPCPDQLQEHFDSQNKNDKASNEVKRKSKPRHKWTRQRISTAFSSTLKEQMRSEESKRTVEEELRTGQTTNIEDTAKSFIASETS
RIERQCGQCFSDKSNVSEHQRTHTGEKP
YICRECGRGFSQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSDLIKHQRTHTGEKP
YICRECGRGFTQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSSLIRHQRTHTGEKP
YICRECGLGFTQKSNLIRHLRTHTGEKP
YICRECGLGFTRKSNLIQHQRTHTGEKP
YICRECGQGLTWKSSLIQHQRTHTGEKP
YICRECGRGFTWKSSLIQHQRTHTVEK
   
   
  >PRDM9d_bosTau Bos taurus (cattle) genome Laur gene 9 noDet chrX proximal tandem
  >PRDM7_musMus Mus musculus (mouse) genomic strain C57BL/6J 12 repeats 12 PDCD2 chr17 CN723438 eight transcripts, four from retina
  0 MRPNTSPEESTERDAGRTEWKPT 0  
  0 MNTNKLEENSPEEDTGKFEWKPK 0  
  0 AKDAFKDISVYFSKEEWEEMGEWEKIRYRNVKRNYEALIAI 1
  0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
  2 GFRATRPAFMHHRRQVIKLQADDTEDSDEEWTPRQQ 1
  2 GLRAPRPAFMCYQRQAMKPQINDSEDSDEEWTPKQQ 1
  2 GKLSSMAFRVEHNKHQN 0
  2 VSPPWVPFRVKHSKQQK 0
  0 TMSRAPLSKEFSLKELPGAAKLLKTSGSKQAQKLVPPPGKARTPGQHPRQKV 1
  0 ESSRMPFSGESNVKEGSGIENLLNTSGSEHVQKPVSSLEEGNTSGQHSGKKL 1
  2 ELRRKETEVKRYSLRERKGHVYQEVSEPQDDDYL 1
  2 KLRKKNVEVKMYRLRERKGLAYEEVSEPQDDDYL 1
  2 YCEECQSFFIDSCAAHGPPIFVKDCAVEKGHANRSALTLPPGLSIRESSIPEAGLGVWNEVSDLPLGLHFGPYEGQITDDEEAANSGYSWL 0
  2 YCEKCQNFFIDSCPNHGPPLFVKDSMVDRGHPNHSVLSLPPGLRISPSGIPEAGLGVWNEASDLPVGLHFGPYEGQITEDEEAANSGYSWL 0
  0 ITKRRNCYEYVDGKDTSLANWMR 2
  0 ITKGRNCYEYVDGQDESQANWMR 2
  1 YVNCARDDEEQNLVALQYHGQIFYRTCQVVRPGCELLVWYGDEYGQDLGIKRESSRKSELAGPR 1
  1 YVNCARDDEEQNLVAFQYHRKIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKMKKGFTAGR 1
  2 EPKPKIYPCASCCLSFSSQKFLSQHVQRNHPSQILLRPSIGDHLQPEDPCPGSQNQQQRYSDPHSLSDKPEGREPKERPHPLLKGPKLCIRPKRISTASSYPPKGQMGGSEVHERMTEEPSTSQKLNPEDTGKLFMEAGVSGIVR
  2 ELRTEIHPCLLCSLAFSSQKFLTQHMEWNHRTEIFPGTSARINPKPGDPCSDQLQEQHVDSQNKNDKASNEVKRKSKPRQRISTTFPSTLKEQMRSEESKRTVEELRTGQTTNTEDTVKSFIASEIS
  VNYGDHEQGSKDRSSLITHEKIHTGEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  YVCKECGKSFNGRSDLTKHKRTHTGEKP
  YVCRECGRGFTQNSHLIQHQRTHTGEKP
  YACGECGRSFSFKKNLITHKRTHTREKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRSFNEKSRLTIHKRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCGDCGQSFSLKSVLITHQRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  YVCGECGRSFNEKSRLTIHKRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  YVCGDCGQSFSLKSVLITHQRTHTGEKP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCGECGQSFNEKSRLTIHKRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YACGDCGQSFSLKSVLITHQRTHTGEKP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCMECE.....................
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK
   
   
  >PRDM9e_bosTau Bos taurus (cattle) genome Laur gene 9 noDet chrX distal tandem
  >PRDM7_musMol Mus molossinus (wild_mouse) GU216230 Glir gene 11 noDet full length deposit
  0 MRPNRSPEESTEGDAGRTEWKPM 0  
  0 MNTNKLEENSPEEDTGKFEWKPK 0  
  0 AKDAFKDISIYFSKEEWEEMGEWEKIRYRNVKRNYEVLITI 1
  0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
  2 GFRAARPAFMHHRRQVIKPQVNDIKDSDEEWTPRQQ 1
  2 GLRAPRPAFMCYQRQAMKPQINDSEDSDEEWTPKQQ 1
  2 GKPFSMAFRVEHSKHQK 0
  2 VSPPWVPFRVKHSKQQK 0
  0 GMSRAPLSKESSLKELPGAAKLLKTSGCKQAQKLVPPPRKARTPEQHPRQKV 1
  0 ESSRMPFSGESNVKEGSGIENLLNTSGSEHVQKPVSSLEEGNTSGQHSGKKL 1
  2 ERRRKETGVKRYSLREREGLVYQEVSEPLDDDYL 1
  2 KLRKKNVEVKMYRLRERKGLAYKEVSEPQDDDYL 1
  2 YCEECQSFFIDICAAHRPPTFVKDCAVEKGHANCSALTLPPGLSIRLSGIPEAGLGVWNEASDLPLGLHFGPYEGQITDDKEAAHSRYSWL 0
  2 YCEKCQNFFIDSCPNHGPPLFVKDSMVDRGHPNHSVLSLPPGLRISPSGIPEAGLGVWNEASDLPVGLHFGPYEGQITEDEEAANSGYSWL 0
  0 ITKGRNCYEYVDGKDTSLANWMR 2
  0 ITKGRNCYEYVDGQDESQANWMR 2
  1 YVNCARDDEEQNLVALQYQGQIFYRTCQVVRPGCELLVWYGDEYGWDLSIKQDSRGKNKLAAGR 1
  1 YVNCARDDEEQNLVAFQYHRKIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKMKKGFTAGR 1
  2 EPKPKIYPCASCCLSFSSQKFLSQHVQRNHPSQILLRPSIGDHLQPEDPCPGSQNEQQRYSDPHSLSDKPEGREPKERPHPLLKGPKLCIRLKRISTASSYPPKGQMGGSEVHERMTEEPSTSQKLNPEDTGKLFMEAGVSGIVR
  2 ELRTEIHPCLLCSLAFSSQKFLTQHMEWNHRTEIFPGTSARINPKPGDPCSDQLQEQHVDSQNKNDKASNEVKRKSKPRQRISTTFPSTLKEQMRSEESKRTVEELRTGQTTNTEDTVKSFIASEIS
  VKYGEHEQDSKDKSSLITHEKIHTGEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  YVCTECGKSFNWKSDLTKHKRTHSEEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YACGECGRSFSFKKNLIIHQRTHTGEKP
  YVCRECGRGFTQKSVLIQHQRTHTGEKP
  YVCGECGRSFSEKSNLTKHKRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YACGECGQSFSFKKNLITHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCGECGRSFSEKSRLTTHKRTHTGEKP
  YVCRECGRGFTEKSSLIKHQRTHTGEKP
  YVCGDCGQSFSLKSVLITHQRTHTGEKP
  YVCRECGWGFTAKSNLIQHQRTHTGEKP
  YVCRECGRSFSVISNLIRHQRTHTGEKP
  YVCRECGRGFTQKSSLIKHQRTHTGEKP
  YVCRECEQSFREKSNLVRHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCMECE.....................
  YVCRECGWGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK
   
   
  >PRDM9e_oviAri Ovis aries (sheep) genome Laur pseu -- noDet chr 18 cow has PDRM7 pseudogene; sheep GAS8 is on sheep chr14
  >PRDM7_criGri Cricetulus griseus (hamster) AFTD01086355 no out-of-frame continuation, no synteny information in contig, no PRDM9
  0 0  
  0 MSCTRNTNKQEGNSPAGDAERLEWKPK 0  
  0 1
  0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
  2 GLRAP PPFMYHRRQVIKPQVDDIEDSDEEWTPRQQ 1
  2 GLKAPRPAFMCYQRQAFKPQMDDSEDSDEEWTPKQQ 1
  2 0
  2 GSPPWVPFRVKHTKKQK 0
  0 1
  0 ETQRIPLNKESNVKEVSGSENLLSTSGSEHVQKTVFSPGEGNASGQHTGQKP 1
  2 ELRRKETEMKIYSLQKRKGHMYQEVSDPQDDNYL 1
  2 ELRRKNVEVKMYSLRERKDLAYEEVNEPQDDDYL 1
  2 ycEKCQNF INSCAAHGPPTFVKDCVVEKGHASCSALtLSPGLSIRPSGIPEAGLRVWNEASDLPLGLHFGPYKGQITDDEEVANSRYFWL 0
  2 YCEKCQNFFINSCPSHGPPIFVKDSMVDRGHPNCSVLSLPPGLRIGPSGIPEAGLGVWNEASDLPVGLHFGPYKGQITDDEEAANSGYSWL 0
  0 2
  0 ITKGRNCYEYVDGQEESQANWMR 2
  1 YVNCAQDDEEQNLVAFQYHRQIFS TCWVVRPGCELLVWYRDEYGQELSIK GSRHKSELTVRR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVINPGCELLVWYGDEYGQELGIQWGRKNKKGFATGR 1
  2  
  2 ELRTEIHPCLLCSLAFSSPKFLSQHVQWNHRTQIFPGASSTINSKPGDPHPDQLQEQQHFNSHNKNDKARSLEVKGKSKPMHKWTRQISTAFPSTLKGHMRSEENKKTMEVLRTGQKTNTEDTIKSFIGSEIS
RIERKCGQYFSDKSNVNEHQRTHTGEKP
YVCRECGRGFTQKSHLIRHQRTHTGEKP
YVCRECGRGFTQKSNLIRHQRTHTGERP CVCLFKKDKKASVNKTTPQQSQKDKCSL* 0
   
   
  >PRDM9d_oviAri Ovis aries (sheep) genome Laur gene -- noDet chr1 near end chr1
  >PRDM7_dipOrd Dipodomys ordii (kangaroo_rat) genome Glir gene -- noDet dubious fragment, no orthologous terminal exon
  0  0  
  0  0  
  0  1
  0  1
  2 GLRATRLAFMHHCRQVIKPQVDDIEDSDEEWTPRQQ 1
  2 GLKAPRPVFMCHRRQAIKPQVDDTDDSDEEWTPGRQ 1
  2  0
  2  0
  0  1
  0  1
  2 1
  2 elRTKEVKMRMYSLRERKSYAYEEISEPQDDDYL 1
  2 0
  2 yCEQCQNFFINSCTVHGPPIFVRDNVVDKGHYDRSVLSLPPGLRIRQSSIPEAGLGVWNEESDLPLGLHFGPYEGQITEDEDAANSGYSWM 0
  0 ITKGRNCYEYVDGKDTSLANWMR 2
  0 ITKGRNCYVYVDGKDKSQANWMR 2
  1 YVNCARDDEEQNLVALQYQGQIFYRTCQVVRPGCELLVWYGDEYGQDLGIKRDSSGKSELAAGR 1
  1 YVNCARYDEEQNLVAFQYHRQIFYRTCRVIKAGCELLVWYGDEYGQELGIKWGSKWKRELTAgr 1
  2  
  2  
   
   
  >PRDM9c_oviAri Ovis aries (sheep) genome Laur pseu 4 noDet chr5 middle of 108,514,869 bp
  >PRDM7_speTri Spermophilus tridecemlineatus (squirrel) AAQQ01308561 Glir gene -- noDet plus exon by exon traces
  0  0  
  0  0  
  0  1
  0  1
  2 GLRATRLAFMHHCRQVIKPQVDDIEDSDEEWTPRQQ 1
  2 GFRAPRPAFMCHQRQTIKLQMDDTEDSDEEWTPRQQ 1
  2  0
  2  0
  0 GMSKALVSNKSSLKEMPGASKLLKTRGPKQAQIPVPAPREPSTSEQHPRQKV 1
  0 LKPEVLLSNESSLKELSGTANLLNTSGSEQVQKPVSPLREASASRQHSRRKL 1
  2 1
  2 ELRTKEVEVKMYSLRERKGHAYKEVSEPQDDDYL 1
  2               HGLPTLVKDCAVEKGHANHSALSLSPGSSIRPSGIPEAGLGVWNKVSDLLLGLHFGSYVGQITDDEEAAKSGYSWL 0
  2 yCDKCQNFFMDSCPVHGPPTFIKDSVVNKDHSNHSTLSLPLGLRIGPSSIPEAGLGVWNEATDLPLGLHFGPYRGQITEDEEAANSGYSWL 0
  0 2
  0 ITKGRNCYEYVDGKDESQANWMR 2
  1 YVNGAQD KEQNLVAFLTHRQIFY TCRVVRPGCELLVWYRDTYSQELSIKCGSRWKSELTASR 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELSAGR 1
  2 PMCSCSLAFSSQKFLSQHVKCNHPSQILLKTSARDRLQPEDPCPGNPNQQQQYSDLHSWSDKPESRESKEKPQPLLKSIRLRRISRASSYSSRGQMGGFRVHKRMREEPSTGKEVSPEDAGKLFMGEGVSRIMR
  2 EPKPEIHPCPSCSLAFSSQKFLSQHVDRSHPSQIFPGTSMRKKLIPGDSSPRDQLQEQQHPDPHGWNDKARGQEVQGSLKPTHKGTRQRGISSPPKGQMGRSEESERMMEDDLKADQEINPEDTDKILVGVEMSRI
  VKYGDCG
   
  GSKDRSSLMTHQRTHTGENP
  >PRDM7_bosTau Bos taurus (cow) pseudogene on chr18 main Gas8 URAH synteny block not qTer not old, splice sites preserved
  YVCREYE.SFSEKSSLIKHQRTHTGEKP
  0 MSPNRSPEESIEGDTGRTEWKPT 0
  YVCRECWQSFGRKSTLITHQRMHTREKP
  0 AKDAFKDISIYFCKEEWAQMG*WekA*YRNVKRNYEALITL 1
CVCRECGRSFSKKSTLITHQRTHTGQKP
   
   
  >PRDM9b_oviAri Ovis aries (sheep) genome Laur pseu 2 noDet chrX not tandem: 62 mbp separation
  >PRDM7L1_bosTau Bos taurus (cattle) chrX:85801132 active gene 21.3 repeats formerly PRDM9b_bosTau, adjacent URAH pseudogene
  0 MSPNRSPENSTEGDAGRTEWKPM 0  
  0 MSPNRSPENSTEGDAGRTEWKPM 0  
  0 AKDAFKDISIYFTKEEWAEMGEWEKIRYRNVKRNYEALIAI 1
  0 AKDAFKDISIYFTKEEWAEMGEWEKIQYRNVKRNYEALIAI 1
  2 GFRATQPAFMHHHRQVIKPQVDDTEDSEEEWTPRQQ 1
  2 GFRATQPGFMHHGRQVLKSQVDDTEDSDEEWTPRQQ 1
  2 GKPSGMAFRGERSKHQK 0
  2 GKPSGMAFRGEPSKHPK 0
  0 RLSRGPLNKVSSLKKLPGAAKLLKKTGSKQAQKPVPPPREARTPGQHPRHKV 1
  0 RLSRGPLNKVSSLKKLPGAAKLLKKSGSKQAQKPVPPPREARTPGKHPRHKV 1
  2 ELRRKETEVKRYSLRERKGHVYQEVSELQDDDYL 1
  2 ELRRKETEVKRYSVRERKGHVYQEVSEPQDDDYL 1
  2 yCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQVIYNEEASHSGYSWL 0
  2 YCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQIIYNEEDSNSGYCWL 0
  0 VTKGRNSYEYVDGKDTSLANWMR 2
  0 VTKGRNSYEYVDGKDTSLANWMR 2
  1 YVNCARDDEEQNLVALQYHGQIFYRTCQVVRPGCELLVWYGDEYGEELGIKQDSRGKSKLSAQR 1
  1 YVNCARDDEEQNLVALQYHGQIFYRTCRVVRPGCELLVWYGDEYGEELGIKQDKRGKSKLSAQR 1
  2 ELKPKIHPCASCSPAFSSQKFLSQYVQPNHPSQILLRPSARDHLQPEDPCPGNQNEQQ YSDPHSPSDKPEGCKAKERPPWLLKSMSVRISMASSYSPKGQMRGSETHYRMTEEPSTSQKLNPEDIGKLFMGTGVSGIIK
  2 EPKPKIYPCASCCLSFSSQKFLSQHVQRNHPSQILLRPSIGDHLQPEDPCPGSQNQQQRYSDPHSLSDKPEGREPKERPHPLLKGPKLCIRPKRISTASSYPPKGQMGGSEVHERMTEEPSTSQKLNPEDTGKLFMEAGVSGIVR
  IKYEECGQVSKDRSSLITHEGTHTREQS
  VNYGDHEQGSKDRSSLITHEKIHTGEKP
  YVCRECGQSFSVKSSLIRLQRTHTGEKP
  YVCKECGKSFNGRSDLTKHKRTHTGEKP
  Y...........................
  YACGECGRSFSFKKNLITHKRTHTREKP
YVCRECGRSFNEKSRLTIHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCGECGRSFNEKSRLTIHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCGECGQSFNEKSRLTIHKRTHTGEKP
YACGDCGQSFSLKSVLITHQRTHTGEKP
YVCGECGQSFNEKSRLTIHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCGDCGQSFSFKSVLITHQRTHTGEKP
YACGECGRSFSGKSNLTKHKRTHTGEKP
YVCGECGRSFSEKSNLTKHKRTHTGEKP
YVCGDCGQSFSFKSVLITHQRTHTGEKP
YVCGECGRSFSEKSNLTKHKRTHTGEKP
YACGECGRSFSFKKNLITHQRTHTGEKP
YVCRECGRSFSEKSRLTIHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCRECGRSFSVMSNLIRHQRTHTGEKP
YVCRECGRSFRVKSNLVRHQRTHTGEKP
YVCMECE* 0
   
   
  >PRDM9a_oviAri Ovis aries (sheep) genome Laur gene 9 noDet chrX not tandem
  >PRDM7L2_bosTau Bos taurus (cattle) appears intact KRAB SSXRD SET C2H2
  0 MSPNRSPENSTEGDAGRTEWKPM 0  
  0 MSPNRSPENSTEGDAGRTEWKPK 0  
  0 AKDAFKDISIYFTKEEWAEMGEWEKIRYRNVKRNYEALIAI 1
  0 AKDAFKDISIYFTKEEWAEMGEWEKIRYRNVKRNYEALIAI 1
  2 GFRATQPAFMHHHRQVIKPQVDDTEDSEEEWTPRQQ 1
  2 GFRATQPGFMHHRRQVLKPQVDDTEDSDEEWTPRQQ 1
  2 GKPSGMAFRGERSKHQK 0
  2 GKPSGMAFRGERSKHQK 0
  0 GMSRGPLSKVSSLKKLPGTTKLLKTSGSKQAQKPVPSSREARTSG HTRQKV 1
  0 RLSRGPLNKVSSLKKLPGAAKLLKKSGSKQAQKPVPPPREARTPGKHPRHKV 1
  2 ELGRKETDMKRYSLRERKGHVYQEVSEPQDDDYL 1
  2 ELRRKETKVKRYSVRERKGHVYQEVSEPQDDDYL 1
  2 yCQECQNFFINSCDAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRLSGIPEAGLGVWNEASHLPLGLHFGPYEGQITDDKEAVNSGYSWL 0
  2 YCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQIIYNEEDSHSGYCWL 0
  0 2
  0 VTKGRNSYEYVDGKDTSLANWMR 2
  1 YVNCARHYEEQNLVAFQYHGQIFYRTCQVVRPGCELLVWYGDEYGEKLGIRCESRGKSMLAAGR 1
  1 YVNCARDDEEQNLVALQYHGQIFYRTCRVVRPGCELLVWYGDEYGEELGIKQDKRGKSKLSAQR 1
  2 EPKPKIHPCASCSLSFSSQKFLSQHVQRSHPSQILLRPSPRDHLQPEDPCPGKQNQQQRYSDPHSPSDKPEGQEPKERPHPLLKGPKLCIRLKRISTASSYTPKGQMGGSEVHEKMTEEPSTSQKLNPENTGKLFMEAGVSGIVR
  2 EPKPKIYPCASCCLSFSSQKFLSQHVQRNHPSQILLRPSIGDHLQPEDPCPGSQNEQQRYSDPHSLSDKPEGREPKERPHPLLKGPKLCIRLKRISTASSYPPKGQMGGSEVHERMTEEPSTSQKLNPEDTGKLFMEAGVSGIVR
  VKYGEHEQGSKDKSSLITHERIHTGEKP
  VKYGEHEQDSKDKSSLITHEKIHTGEKP
  YVCKECGKSFNGRSNLTRHKRTHTGEKP
  YVCTECGKSFNWKSDLTKHKRTHSEEKP
  YVCRECGQSFSLKSILITHQRTHTGEKP
  YACGECGRSFSFKKNLIIHQRTHTGEKP
  YVCGECGQSFSEKSNLTRHKRTHTGEKP
  YVCGECGRSFSEKSNLTKHKRTHTGEKP
  YVCRECGQSFSLKSILITHQRTHTGEKP
  YACGECGQSFSFKKNLITHQRTHTGEKP
  YVCRECGRSFSVKSNLTRHKMTHTGEKP
  YVCGECGRSFSEKSRLTTHKRTHTGEKP
  YVCGECGQSFSQKPHLIKHQRTHTGEKP
  YVCGDCGQSFSLKSVLITHQRTHTGEKP
  YVCRECGRSFSAMSNLIRHQRTHTGEKP
  YVCRECGRSFSVISNLIRHQRTHTGEKP
  YVCRECGRSFSAMSNLIRHQRTHTGEKP
  YVCRECEQSFREKSNLVRHQRTHTGEKP
  YVCREC......................
  YVCMECE* 0
   
   
  >PRDM9d_munMun Muntiacus muntjak (muntjac) AC216498 Laur gene 4 noDet frameshift exon 9 no syntenic loci; identities: 92%b 89%a 90%c
  >PRDM7L3_bosTau Bos taurus (cattle) appears intact KRAB SSXRD SET C2H2 probable assembly stutter also has URAHps
  0 MRPNRSQEESTEGNAGRTERKPT 0  
0 MSPNRSPENSTEGDAGRTEWKPK 0
  0 GKDAFKDISVYFSKEEWEEMGEWEKIRYRNMKRNYEALIAI 1
0 AKDAFKDISIYFTKEEWAEMGEWEKIRYRNVKRNYEALIAI 1
  2 GFRATQPTFMHHRRQVIKSQVDDTEDSDEEWTPRQQ 1
2 GFRATQPGFMHHRRQVLKPQVDDTEDSDEEWTPRQQ 1
  2 GKPSSMAFRVEHSKNQK 0
2 GKPSGMAFRGERSKHQK 0
  0 RMSRAPLSNESGLKELPGAAKSLKTSDSKQARNPVPHHRKARTPGQLPRQKV 1
0 RLSRGPLNKVSSLKKLPGAAKLLKKSGSKQAQKPVPPPREARTPGKHPRHKV 1
  2 ELRRKETGVKRYSLRERKGHVYQEVSEPQDDDYL 1
2 ELRRKETKVKRYSVRERKGHVYQEVSEPQDDDYL 1
  2 YCEECQNFFINSCAAHGPpTFVKDCAVEKGHANRSALTLPHGLSIRLSGIPDAGLGVWNKVSDLALGLHFGPYKGQITDNEEAANSGYAWL 0
2 YCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQIIYNEEDSHSGYCWL 0
  0 ITKGRNCYEYVDGKDTSWANWMR 2
0 VTKGRNSYEYVDGKDTSLANWMR 2
  1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVVRPGCELLVWYGDEYGQDFGIKRNSRGKSELAAGR 1
1 YVNCARDDEEQNLVALQYHGQIFYRTCRVVRPGCELLVWYGDEYGEELGIKQDKRGKSKLSAQR 1
  2 EPKPKIHPCASCSLTFSSQKFLSQHIQCSHPPQTLLRPSERDLLQPEDPCPGNQNQQQRYSDPHSPSDKPEGHEAKDRPQPLLKSIRLKRISRASSCSPRGQMGGSGVHERMTEEPSTSQKLNPGDTGTLLTGAGVSGIMK
2 EPKPKIYPCASCCLSFSSQKFLSQHVQRNHPSQILLRPSIGDHLQPEDPCPGSQNEQQRYSDPHSLSDKPEGREPKERPHPLLKGPKLCIRLKRISTASSYPPKGQMGGSEVHERMTEEPSTSQKLNPEDTGKLFMEAGVSGIVR
  VKYGECGQGSKDRSSLSTHERTHTGEKP
VKYGEHEQDSKDKSSLITHEKIHTGEKP
  YVCRECGQSFSGKPVLIRHQRTHTGEKP
YVCTECGKSFNWKSDLTKHKRTHSEEKP
  YVCMECGRSFSAKSVLMTHHRTHTGEKP
YACGECGRSFSFKKNLIIHQRTHTGEKP
  YICRECGQSFSQKIHLIRHQRIHTGE.P
YVCGECGRSFSEKSNLTKHKRTHTGEKP
  SVFRECE.....................
YACGECGQSFSFKKNLITHQRTHTGEKP
YVCGECGRSFSEKSRLTTHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCRECGRSFSVISNLIRHQRTHTGEKP
YVCRECEQSFREKSNLVRHQRTHTGEKP
YVCMECE* 0
>PRDM7L4_bosTau Bos taurus (cattle) chr21 distal frameshift, stop codon, deletion: pseudogene adjacent to URAHL3 pseudogene
  0 MNPYRSPEESTEGDAGRTEWRWR 0  
  0 1
  2 1
  2 GKPSWMTFRVKHSKHQK 0
  0 gMSRALVSNKSSLKELPGASKLLKTSGPKQAQIQCPLPEKQVPLNSTLDKKW 1
  2 GPIQKETEVKMYSLRERASHVYQEVSEPQDDDYL 1
  2 YCEKCENF IKSCAVHGLPTFVKDCAVEKGHVNRLALSVPAGLSIRPSGIPEAVLGVWNEVSDLPLALHFGSYKGQIIDDEEAANSGYSWL 0
  0 ITKGRNCYEYVDGKDTSWAKWMR 2
  1 YVNCARDDKEQNLVAFLSHRQIFYQTCPVVRPGCELLVWYGDKYSQELSIKCGSRWKSELMASR 1
  2 EPKPKIYPCASCSLAFSSQKFLSQHAEHNHPSQILLRTSARDRLQTKDSCPGNQNHQQQYSDPHSWRDKPEDREVKERPQPLLQSVRLRRVSRASSYSPKGQMGDTWVSERMMQEPSTGQKVNTEDTGKLCMGAGVLTIIR
  VKSveCGQDSKDRSSLITHQRIHTGEKP
  YACRECGRNFSEKSPLIRPQRTHIGEKP
  FVCRECE*GFSH    IKHQRTHTGEKP
  YVCRECEQSFSEKSTLIRHQTTHTGEKP
  YVCGEVE*
   
   
  >PRDM9c_munMun Muntiacus muntjak (muntjac) AC154919 Laur gene 15 noDet no syntenic loci AC204173 99% identical
  >PRDM7L5_bosTau Bos taurus (cattle) intact somewhat diverged chr1:161387010- no URAH
  0 MRPNRSPEESTEGDAGRTEQKPT 0  
0 MRPNTSPEESTERDAGRTEWKPT 0
  0 AKDAFKDISVYFSKEEWEEMGDWEKIRYRNMKRNYEVLIAI 1
0 AKDAFKDISVYFSKEEWEEMGEWEKIRYRNVKRNYEALIAI 1
  2 GFRATRPDFMHHRRQVIKPQVDDTEDSDEEWAPRQQ 1
2 GFRATRPAFMHHRRQVIKLQADDTEDSDEEWTPRQQ 1
  2 GKPSSVAFRVEHSKHQK 0
2 GKLSSMAFRVEHNKHQN 0
  0 RMSRAPLSNESGLKELPGAAKPLKTSGSKQAQNPVPHHRKARTPGQLPRQKV 1
0 TMSRAPLSKEFSLKELPGAAKLLKTSGSKQAQKLVPPPGKARTPGQHPRQKV 1
  2 ELRRKETGVKRYSLRERKGHVYQEVSKPQDDDYL 1
2 ELRRKETEVKRYSLRERKGHVYQEVSEPQDDDYL 1
  2 YCEKCQNFFIDSCAAHGPPTFVKDCAVEKGHANRSLLTLPPGLSIRLSGIPDAGLGVWNEASDLPLGLHFGPYEGQITDDEEAANSGYAWL 0
2 YCEECQDFFIDSCAAHGPPIFVKDCAVEKGHANRSALTLPPGLSIRESSIPEAGLGVWNEVSDLPLGLHFGPYEGQITDDEEAANSGYSWL 0
  0 ITKGRDCYQYVDGKDTSWANWMR 2
0 ITKRRNCYEYVDGKDTSLANWMR 2
  1 YVNCARDDEEQNLVAFQYHGQIFYQTCQVVRPGCELLVWCGDEYGQDLGIKRNSRGKSELVAGR 1
1 RYVNCARDDEEQNLVALQYHGQIFYRTCQVVRPGCELLVWYGDEYGQDLGIKRESSRKSELAGPR 1
  2 EPKPKIHPCASCSLAFSSQKFLSQHIQRSHPSQTLLRPSERDLLQPEDPCPGNQNQRFSDPHRPSDRPQPLLKSIRLKRISRASSYSPRGQMGGSGVHELMTEEPSTSHKLNPEDTGTLLMGAGVSGIMR
1 ESKPKIHPCASCSLAFSSQKFLSQHVQHNHPSQTLLRPSARDYLQPEDPCPGSQNQQQRYSDPHSPSDKPEGREVKDRPQPLLKSIRLKRISRASSYSPRGQMGASGVHERITEEPSTSQKPNPEDTGKLFMGAGVSGIIK
  VTYGECGQGSKDRSSLTTHERTYTGEKP
VKYGECGQGSKDRSSLITNQRTHTGEKP
  YVCGECGRSFCQKAHLITHQRTHTGEKP
YVCGECGQSFNQKSTLITHQRTHTGEKP
  YVCRECGQSFSRNSLLIRHQRIHTGEKP
YVCGECGRSFNQKSTLITHQRTHTGEKP
  YVCGECGRSFRDKSNLISHRRTHTGEKP
YVCGECGRSFSQKSTLIKHQRTHTGEKP
  YVCGECGQSFSDKSNLIRHQRTHAGEKP
YVCGECGQSFNQKSTLITHQRTHTGEKP
  YVCGECGRSFNRKSHLITHQRTHTGEKP
YVCGECGQSFNQKSTLITHQRTHTGEKP
  YACRECGQSFSQKSILITHQRTHTGEKP
YVCGECGRSFSRKSTLITHQRTHRGEAL CLQGV*
  YACRECG.SFSQKSILITHQRTHTGEKP
  YVCGECGRSFSQKSLLITHQRTHTGEKP
>PRDM7_oviAri Ovis aries (sheep) original PRDM7 pseudogene adjacent to GAS8 URAH on chr14, first two exons only (as in cow)
  YVCMECGRSFSQKTHLITHQRTHTGEKP
0 MSPNRFP*ESTGGDPGRTEWKPM 0
  YVCGECGRSFSQKSLLITHQRTHTGEKP
0 AKDAFKDISIYFSKEEWAEMR*W    1
  YVCGECGRSFSQKSLLITHQRTHTGEKP
  YICMECGRSFSQKTHLITHQRTHTGEKP
>PRDM7L1_oviAri Ovis aries (sheep) active gene ChrX:5148004 frameshift exon 2 may be read error; translocated with URAH2 pseudogene to ChrX both minus strand
  YVCGKCGQSFSDKSNLISHKRTHTGEKP
  0 MSPNRSPEKSTEGDAGRTEWKPM 0  
  YVCRECGRSFNRKSLLITHQRTHT.E.P
  0 AKDAFKDISIYFTKEEWAEMGEWekVQYRNVKRNYKALIAI 1
  YVCRECE.....................
  2 GFRATQPAFMHHHRQVIKPQVDDTEDSEEEWTPRQQ 1
  2 GKPSGMAFRGEPSKHQK 0
  0 RLSRGPLNKVSSLKKLPGAAKLLKKTGSKQAQKPVPPPREARTPGQHPRHKV 1
  2 ELRRKETEVKRYSLRERKGHVYQEVSELQDDDYL 1
  2 yCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQVIYNEEASHSGYSWL 0
  0 VTKGRNSYEYVDGKDTSLANWMR 2
  1 YVNCARDDEEQNLVALQYHGQIFYRTCQVVRPGCELLVWYGDEYGEELGIKQDSRGKSKLSAQR 1
  2 EPKPKIHPCASCSLSFSSQKFLSQHVQRSHPSQILLRPSPRDHLQPEDPCPGKQNQQQRYSDPHSPSDKPEGQEPKERPHPLLKGPKLCIRLKRISTASSYTPKGQMGGSEVHEKMTEEPSTSQKLNPENTGKLFMEAGVSGIVR
VKYGEHEQGSKDKSSLITHERIHTGEKP
YVCKECGKSFNGRSNLTRHKRTHTGEKP
YVCRECGQSFSLKSILITHQRTHTGEKP
YVCGECGQSFSEKSNLTRHKRTHTGEKP
YVCRECGQSFSLKSILITHQRTHTGEKP
YVCRECGRSFSVKSNLTRHKMTHTGEKP
YVCGECGQSFSQKPHLIKHQRTHTGEKP
YVCRECGRSFSAMSNLIRHQRTHTGEKP
YVCRECGRSFSAMSNLIRHQRTHTGEKP
  YVCRECGRQVSSHTRGHTQGRSPMFAGSVGEASV*
   
  >PRDM7L2_oviAri  Ovis aries (sheep) OARX:67135299 not tandem, two frameshifts and internal stop: pseudogene
0 0
0 1
  2 1
  2 0
  0 GMSRGPLSKVSSLKKLPGTTKLLKTSGSKQAQKPVPSSREARTSG*HTRQKV 1
  2 eLRRKETEVKRYSL*ERKGHVYQVVSEPQNDNYL 1 67134368
  2 ycEECQNFFMNSCAAQVPPTFVKDSAVGKGHANCSALTLPPGLSIRLSGIPEARLGVWNEVSDLPLGLHFGpyEGQITDDEEAAHSGDSWL 0
  0 ITKGRNSFEYVDGKDMSLANWMR 2 67133322
  1 CVKCTQDNKEQNLVALQYHRQIFYRICQVVRPGcqLLVWYGDEYAVELGIKWDNRGKSEFTARR
  2 ELKPKIHPCASCSPAFSSQKFLSQYVQPNHPSQILLRPSARDHLQPEDPCPGNQNEQQ*YSDPHSPSDKPEGCKAKERPPWLLKSMSVRISMASSYSPKGQMRGSETHYRMTEEPSTSQKLNPEDIGKLFMGTGVSGIIK
  IKYEECGQVSKDRSSLITHEGTHTREQS
  YVCRECGQSFSVKSSLIRLQRTHTGEKP
  YT ESVGKASVRTPISSHTRGHTQERSP
  MVAGRVGKASVRTQFSSDNRGHTQGRSP
  MFSGSVGKASVRSPSSSHTRGHAPE
   
   
  >PRDM9b_munMun Muntiacus muntjak (muntjac) AC218859 Laur gene 13 noDet no syntenic loci
  >PRDM7L3_oviAri Ovis aries (sheep) chrX:67,417,035+ 2 internal stops: pseudogene
  0 MRPNTSPEESTEGDAGRTERKPT 0  
0 MS*NRSPQERTEGDAGRTEWKLM 0
  0 AKDAFKDISVYFSKEEWEEMGDWEKSRYRNMKRNYEVLIAI 1
0 ANGAFKNISIYFSKEEWAEMGEWEKI*YGNVKRNCEALIAI 1
  2 GFRATRPDFMHHRRQVIKPQVDDTEDSDEEWAPRQQ 1
2 GFRATRPAFMHHRRQVIKPQGNDTEDSDEEWTPWQQ 1
  2 GKPSSMAFRVEHSKHQK 0
2 0
  0 RMSRAPLSNESGLKELPGAAKPLKTSGSKQAQNPVPHHRKARTPGQLPRQKV 1
0 GKSRGPLSKASSLKKLPGAAKLLKKSGSKWAQEPVKPPRETRTPGQHSRQKV 1
  2 ELRRKETGVKRYSLRERKGHVYQEVSKPQDDDYL 1
2 ELGRKETDMKRYSLRERKGHVYQEVSEPQDDDYL 1
  2 YCEECQNFFIDSCAAHGPPTFVKDCAVEKGHANRSALTLPPGLSIRLSGIPDAGLGVWNETSDLPLGLHFGPYEGQITDDEEAANSGYAWL 0
2 yCQECQNFFINSCDAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRLSGIPEAGLGVWNEASHLPLGLHFGPYEGQITDDKEAVNSGYSWL 0
  0 ITKGRNCYQYVDGKDTSWANWMR 2
0 ITKGRKSYEYVDGKDTSLANWMR 2
  1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVIRPGCELLVWYGDEYGQDLGIKRNSRGKSELATGR 1
1 YVNCARHYEEQNLVAFQYHGQIFYRTCQVVRPGCELLVWYGDEYGEKLGIRCESRGKSMLAAGR 1
  2 EPKPKIHPCASCSLAFSSQKFLSQHIQRSHPSQTLLRPSERDLLQPEDPCPGSQNQRYSDPHSPSDKPEGQEAKDRPQQLLKSIRLKRISRASSYSPGGQMGGSGVHERMTEEPSTSQKLNPEDTGTLLTGAGVSGIMR
2 * 0
  VTYGECWKGSKDRSSLTTHERTHTGEKP
  YVCGECGQSFHHGSVLIRHQRTHTGEKP
>PRDM7L4_oviAri  Ovis aries (sheep) OAR18:28239884-one frameshift, one stop codon pseudogene paired with URAH3 pseudogene
  YVCGECGRSFSQKSVLIRHQRTHTGEKP
  0 MNPYISPEESTEGDAERTEWKPM 0  
  YVCGECGRSFSQKSVLIRHQRTHTGEKP
  0 AKDAFKDISIYFSKEECAEMGEWGKICYRNAKRNCEALITI 1
  YVCGECGRSFSQKAHLITHQRTHTGEKP
  2 GLRATRLAFMHHCRQVIKPQVDDIEDSDEEWTPRQQ 1
  YVCGECGRSFSQKTHLISHKRTHTGEKP
  2 0
  YVCGECGRSFCQKSALIRHQRAHTGEKP
  0 EGMSKALVSNKSSLKEMPGASKLLKTRGPKQAQIPVPAPREPSTSEQHPRQKV 1
  YVCGECGRSFIQKSDFIRHQRTHTGEKP
  2 1
  YVCRECGQSYSDKTVLITHERTHTGEKP
  2             CCHGLPTLVKDCAVEKGHANHSALSLSPGSSIRPSGIPEAGLGVWNKVSDLLLGLHFGSYVGQITDDEEAAKSGYSWL 0
  YVCGECGRSYSDKTVLITHERTHTGEKP
  0 ITKGRNCYEYVDGKQRSWANWIr 2
  YVCGECGRSFLWKSALIRHQRTHTGEKP
  1 YVNGAQD KEQNLVAFLTHRQIFY*TCRVVRPGCELLVWYRDTYSQELSIKCGSRWKSELTASR 1
  YACGDCGRSFNQKSNFIRHQRTHTGEKP
  2 EPKPKIHPCVSCSLsfSSQKFLRQHVERNHPSQILLRTSARDRLQTKDSCPGNQNHEQQYCDPHSWSDKPEDGEVRERPQPLLKSIRLRRVSRASSYSPKGQMGDSWVSEKMMEEPSTGQKLNTEGTGKLCMGAGVLRIIR
  YVCGECWRSFSQKSSSSDTRGHTQGRRP
  VKHGECGQGSKDRSSLITHQRIHNGEKP
  VCRECG..SFSQKSHLISHQRTHTEEKP
  YVCRECGQSFSEKSILIRHQRTHTGEKP
  YVCRECE.....................
  FVCRECERGFSQKSYLIRHQKTHTGEKS
  YVCREVE*
   
  >PRDM7L5_oviAri  Ovis aries (sheep) OAR5:40765355+ 1 frameshift and 4 internal stops: pseudogene
  0 MSSNRSLKERTEGDARRTEWKPMV 0
  0 AKDAFKDISI*FSKEEWAEMGE*EKI*YRNVKRNYEALITTI 1
  2 GLRAP*PPFMYHRRQVIKPQVDDIEDSDEEWTPRQQ 1
  2 0
  0 GMSRVPLSN ESMKELLGAAKLLT SGSKQAQKPVPPPREASTSEQHPRKKV 1
  2 ELRRKETEMKIYSLQKRKGHMYQEVSDPQDDNYL 1
  2 0
2 ycEKCQNF INSCAAHGPPTFVKDCVVEKGHASCSALtlSPGLSIRPSGIPEAGLRVWNEASDLPLGLHFGPYKGQITDDEEVANSRYFWL 0
  0 2
0 ITKGRNCYEYVDGRD
1 2
1 YVNCAQDDEEQNLVAFQYHRQIFS*TCWVVRPGCELLVWYRDEYGQELSIK*GSRHKSELTVRR 1
2 PMCSCSLAFSSQKFLSQHVKCNHPSQILLKTSARDRLQPEDPCPGNPNQQQQYSDLHSWSDKPESRESKEKPQPLLKS----IRLRRISRASSYSSRGQMGGFRVHKRMREEPSTGKEVSPEDAGKLFMGEGVSRIM
  VKYGDCG*GSKDRSSLMTHQRTHTGENP
   
   
  >PRDM9a_munMun Muntiacus muntjak (muntjac) AC225653 Laur gene 7 noDet unordered contigs htgs; no synteny tag stop instead of aag K
  >PRDM9d_munMun Muntiacus muntjak (muntjac) AC216498 Laur gene 4 noDet frameshift exon 9 no syntenic loci; identities: 92%b 89%a 90%c
  0 MRPNRSPEESTEGDAGRTEQKPT 0  
  0 MRPNRSQEESTEGNAGRTERKPT 0  
  0 AKDAFKDISVYFSKEEWEEMGEWEKIRYRNVKRNYEALIAI 1
  0 GKDAFKDISVYFSKEEWEEMGEWEKIRYRNMKRNYEALIAI 1
  2 GFRATRPDFMHHCRQVIKPQVDDTEDSDEEWTPRQQ 1
  2 GFRATQPTFMHHRRQVIKSQVDDTEDSDEEWTPRQQ 1
  2 GKPSSMAFRVKHSKHQK 0
  2 GKPSSMAFRVEHSKNQK 0
  0 GMSRAPLIKESSLKELLGAAKLMKTSGSKQAQNPVPHPRKARTPGQHPRQKV 1
  0 RMSRAPLSNESGLKELPGAAKSLKTSDSKQARNPVPHHRKARTPGQLPRQKV 1
  2 ELTRKETGVKRYSLRERKGHVYQEVSEPQDDDYL 1
  2 ELRRKETGVKRYSLRERKGHVYQEVSEPQDDDYL 1
  2 YCEECQNFFIDSCAAHGLPTFVKDCAVEKGHANRSALTLPPGLSIRLSGIPDAGLGVWNEESDLPLGLHFGPYEGQITDDEEAANSGYAWL 0
  2 YCEECQNFFINSCAAHGPpTFVKDCAVEKGHANRSALTLPHGLSIRLSGIPDAGLGVWNKVSDLALGLHFGPYKGQITDNEEAANSGYAWL 0
  0 ITKGRNCYQYVDGKDTSWANWMR 2
  0 ITKGRNCYEYVDGKDTSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVIRPGCELLVWYGDEYGQDLGIKRNSRGKSELAAGR 1
  1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVVRPGCELLVWYGDEYGQDFGIKRNSRGKSELAAGR 1
  2 EPKPKIHPCASCSLAFTSQKFLSQHIQRSHPAQTLLRPSERNLLQPEHPCPGSQNQRYSDPHSLSDKPEGQEAKDRPQPLLKSIRLKRISRASSYSPGGQMGGSGVHERMKDEPSTSQKLNPEDTGTLLTGAGVSGIMR
  2 EPKPKIHPCASCSLTFSSQKFLSQHIQCSHPPQTLLRPSERDLLQPEDPCPGNQNQQQRYSDPHSPSDKPEGHEAKDRPQPLLKSIRLKRISRASSCSPRGQMGGSGVHERMTEEPSTSQKLNPGDTGTLLTGAGVSGIMK
VTYGECGKGSKDRSSLTTHERTHTGEKP
  VKYGECGQGSKDRSSLSTHERTHTGEKP
YACRECGRSFRQKSDFITHQRTHTGEKP
  YVCRECGQSFSGKPVLIRHQRTHTGEKP
YVCGQCGRSFGRKFALIRHQRIHTGEKP
  YVCMECGRSFSAKSVLMTHHRTHTGEKP
  YVCRECGQSFSQKTHLSSHQRTHTGEKP
  YICRECGQSFSQKIHLIRHQRIHTGE.P
  YVCGECGRSFSQKSVLIRHQRTHTGEKP
  SVFRECE
  YVCQECGRSFSDKSNLISHKRTHMGEKP
  YVCRECGRSFIRKSVLIRHQRTHTGE.P
  YVCRECE.....................
   
   
  >PRDM7_bosTau Bos taurus (cattle) genome Laur pseu -- GAS8+ missing C2H2
  >PRDM9c_munMun Muntiacus muntjak (muntjac) AC154919 Laur gene 15 noDet no syntenic loci AC204173 99% identical
  0 MSPNRSPEESIEGDTGRTEWKPT 0  
  0 MRPNRSPEESTEGDAGRTEQKPT 0  
  0 AKDAFKDISIYFCKEEWAQMG WEKIRYRNVKRNYEALITL 1
  0 AKDAFKDISVYFSKEEWEEMGDWEKIRYRNMKRNYEVLIAI 1
  2 1
  2 GFRATRPDFMHHRRQVIKPQVDDTEDSDEEWAPRQQ 1
  2 0
  2 GKPSSVAFRVEHSKHQK 0
  0 1
  0 RMSRAPLSNESGLKELPGAAKPLKTSGSKQAQNPVPHHRKARTPGQLPRQKV 1
  2 1
  2 ELRRKETGVKRYSLRERKGHVYQEVSKPQDDDYL 1
  2 0
  2 YCEKCQNFFIDSCAAHGPPTFVKDCAVEKGHANRSLLTLPPGLSIRLSGIPDAGLGVWNEASDLPLGLHFGPYEGQITDDEEAANSGYAWL 0
  0 2
  0 ITKGRDCYQYVDGKDTSWANWMR 2
  1 1
  1 YVNCARDDEEQNLVAFQYHGQIFYQTCQVVRPGCELLVWCGDEYGQDLGIKRNSRGKSELVAGR 1
  2  
  2 EPKPKIHPCASCSLAFSSQKFLSQHIQRSHPSQTLLRPSERDLLQPEDPCPGNQNQRFSDPHRPSDRPQPLLKSIRLKRISRASSYSPRGQMGGSGVHELMTEEPSTSHKLNPEDTGTLLMGAGVSGIMR
VTYGECGQGSKDRSSLTTHERTYTGEKP
YVCGECGRSFCQKAHLITHQRTHTGEKP
YVCRECGQSFSRNSLLIRHQRIHTGEKP
YVCGECGRSFRDKSNLISHRRTHTGEKP
YVCGECGQSFSDKSNLIRHQRTHAGEKP
YVCGECGRSFNRKSHLITHQRTHTGEKP
YACRECGQSFSQKSILITHQRTHTGEKP
YACRECG.SFSQKSILITHQRTHTGEKP
YVCGECGRSFSQKSLLITHQRTHTGEKP
YVCMECGRSFSQKTHLITHQRTHTGEKP
YVCGECGRSFSQKSLLITHQRTHTGEKP
YVCGECGRSFSQKSLLITHQRTHTGEKP
YICMECGRSFSQKTHLITHQRTHTGEKP
YVCGKCGQSFSDKSNLISHKRTHTGEKP
YVCRECGRSFNRKSLLITHQRTHT.E.P
YVCRECE
   
   
  >PRDM7_turTru Tursiops truncatus (dolphin) ABRN01441536 Laur gene 9 gas8+ no useful synteny
  >PRDM9b_munMun Muntiacus muntjak (muntjac) AC218859 Laur gene 13 noDet no syntenic loci
  0 MSTDRWPEDSTEGDAGRTAWKPT 0  
  0 MRPNTSPEESTEGDAGRTERKPT 0  
  0 VKDAFKDISIYFSKEEWTEMGEWEKIRYRNVKKNYEALVTL 1
  0 AKDAFKDISVYFSKEEWEEMGDWEKSRYRNMKRNYEVLIAI 1
  2 GLRAPRPAFMCHRRQAIKAQVGDPEDSDEEWTPRQQ 1
  2 GFRATRPDFMHHRRQVIKPQVDDTEDSDEEWAPRQQ 1
  2 VKPSWVAFRVEHSKHQK 0
  2 GKPSSMAFRVEHSKHQK 0
  0 AVPPVPLSNESSLKKLPGAAQLQKASGPAQAQSPAPPPGAASTSAWHTRQKL 1
  0 RMSRAPLSNESGLKELPGAAKPLKTSGSKQAQNPVPHHRKARTPGQLPRQKV 1
  2 ERRAKQIEVKMYSLRERKGHVYQEVSEPQDDDYL 1
  2 ELRRKETGVKRYSLRERKGHVYQEVSKPQDDDYL 1
  2 yCEKCQNFFIDSCAAHGAPTFVKDSAVEKGHPNRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
  2 YCEECQNFFIDSCAAHGPPTFVKDCAVEKGHANRSALTLPPGLSIRLSGIPDAGLGVWNETSDLPLGLHFGPYEGQITDDEEAANSGYAWL 0
  0 ITKGRNCYEYVDGKDTSWANWMR 2
  0 ITKGRNCYQYVDGKDTSWANWMR 2
  1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVVRPGCELLVWYGDEYSQELGIPWGSGWKSQLVaGR 1
  1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVIRPGCELLVWYGDEYGQDLGIKRNSRGKSELATGR 1
  2 DPKPKIQPCGSCSLAFSSQKILSQHVECSHPSQVLPRTSARDRVQPEDPCPGYQNRQQQYSDPHSWSNKPECQEVKERSKPLLKRIRLGRISRAFSSSPKGQMGSSRAHERMMEAGPSTGQKVNPEATGKLLIGAGVSRVVK
  2 EPKPKIHPCASCSLAFSSQKFLSQHIQRSHPSQTLLRPSERDLLQPEDPCPGSQNQRYSDPHSPSDKPEGQEAKDRPQQLLKSIRLKRISRASSYSPGGQMGGSGVHERMTEEPSTSQKLNPEDTGTLLTGAGVSGIMR
  VKYRSSGQGSKDRSSLTKHQRTHTGEKP
  VTYGECWKGSKDRSSLTTHERTHTGEKP
  YVCGECGRDFSLKSDLIRHQRTHTGEKP
  YVCGECGQSFHHGSVLIRHQRTHTGEKP
  YVCGECGRDFSLKSGLISHQRTHTGEKP
  YVCGECGRSFSQKSVLIRHQRTHTGEKP
  YVCGECGRDFSQKSGLIRHQRTHTGEKP
  YVCGECGRSFSQKSVLIRHQRTHTGEKP
  YVCGECGRDFSLKSGLISHQRTHTGEKP
  YVCGECGRSFSQKAHLITHQRTHTGEKP
  YVCGECGRDFSQKSGLIRHQRTHTGEKP
  YVCGECGRSFSQKTHLISHKRTHTGEKP
  YVCGECGRDFSLKSGLITHQRTHTGEKP
  YVCGECGRSFCQKSALIRHQRAHTGEKP
  YVCGECGRDFSQKSNLITHQRTHTGEKP
  YVCGECGRSFIQKSDFIRHQRTHTGEKP
  YVCGECGRDFSRKSSYI...........
  YVCRECGQSYSDKTVLITHERTHTGEKP
YVCGECGRSYSDKTVLITHERTHTGEKP
YVCGECGRSFLWKSALIRHQRTHTGEKP
YACGDCGRSFNQKSNFIRHQRTHTGEKP
YVCGECWRSFSQKSSSSDTRGHTQGRRP
VCRECG  SFSQKSHLISHQRTHTEEKP
YVCRECE
   
   
  >PRDM7_lamPac Lama pacos (llama) scaffolds traces
  >PRDM9a_munMun Muntiacus muntjak (muntjac) AC225653 Laur gene 7 noDet unordered contigs htgs; no synteny tag stop instead of aag K
  0 0  
  0 MRPNRSPEESTEGDAGRTEQKPT 0  
  0 TFKDISIYFSKEEWTEMGEWEKIRYRNVKRNYEALITI 1
  0 AKDAFKDISVYFSKEEWEEMGEWEKIRYRNVKRNYEALIAI 1
  2 GLRAPRPAFMCHRRKAIKPQVDDTEDSDEEWTPRQQ 1
  2 GFRATRPDFMHHCRQVIKPQVDDTEDSDEEWTPRQQ 1
  2 0
  2 GKPSSMAFRVKHSKHQK 0
  0 GMPRGPLSNQSSLKELSGTAKPLKTSGSGQAQKPFPPLGEASTSGRHSRQKL 1
  0 GMSRAPLIKESSLKELLGAAKLMKTSGSKQAQNPVPHPRKARTPGQHPRQKV 1
  2 ELRRKESQVKMYSLRERKGHAYQEVSEPQDDDYL 1
  2 ELTRKETGVKRYSLRERKGHVYQEVSEPQDDDYL 1
  2 0
  2 YCEECQNFFIDSCAAHGLPTFVKDCAVEKGHANRSALTLPPGLSIRLSGIPDAGLGVWNEESDLPLGLHFGPYEGQITDDEEAANSGYAWL 0
  0 ITKGRKCYEYVDGKDKYWANWMR 2
  0 ITKGRNCYQYVDGKDTSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGEEYGQELGIKWGSKWKKSLWQGE 1
  1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVIRPGCELLVWYGDEYGQDLGIKRNSRGKSELAAGR 1
  2 EPKIYLCPSCSLAFSSQKFLSQHVKHNHPSQILPRTAAGRHLEPEDPCPGNQNEQQQHSDQHSWNDKPEGQEAKERSKPFLKRIRLRRISGAFSYSHKGQMGNSRVHDRMIEEEPSTGQKVNPKDTGKLFTWAGVSRTVE
  2 EPKPKIHPCASCSLAFTSQKFLSQHIQRSHPAQTLLRPSERNLLQPEHPCPGSQNQRYSDPHSLSDKPEGQEAKDRPQPLLKSIRLKRISRASSYSPGGQMGGSGVHERMKDEPSTSQKLNPEDTGTLLTGAGVSGIMR
  VNYGEYGQGCKDTSHLTTHQRTHTGEKP
VTYGECGKGSKDRSSLTTHERTHTGEKP
  YVCRECGRGFTRKSNLTIHQREHTTGEK
YACRECGRSFRQKSDFITHQRTHTGEKP
YVCGQCGRSFGRKFALIRHQRIHTGEKP
YVCRECGQSFSQKTHLSSHQRTHTGEKP
YVCGECGRSFSQKSVLIRHQRTHTGEKP
YVCQECGRSFSDKSNLISHKRTHMGEKP
  YVCRECGRSFIRKSVLIRHQRTHTGE.P
  YVCRECE
   
   
  >PRDM7_susScr Sus scrofa (pig) FP476134 Laur gene 9 GAS8+ unordered HTGS not wgs misassembly or inversion; not in genome browser
  >PRDM9a_odoVir Odocoileus virginianus (deer) AEGZ01043838/AEGZ01024932/AEGZ01044038/AEGY01012861/AEGZ01038568/AEGZ01003977/AEGY01011331/AEGZ01039403/AEGY01006151 possibly chimeric, frameshifts possibly errors in low coverage assembly
  0 MRPDRRPEESPDPAAGSTERKAA 0  
  0 MTVSRSLEESTGGDAGRTEWKPT 0  
  0 ATDAFKDISIYFSKEEWTEMGEWEKIRYRNVKRNYEALTTI 1
  0   AFKDISKYFSKEEWARLGYSEKISYVYMKRNYETMTRL 1
  2 GLRAPRPAFMCHRRQAIKPQVDDTEDSDEEWTPRQQ 1
  2 GFRATRPAFMHHRRQVIKPQVDDTEDSDEEWTPRQQ 1
  2 VKPCRVAFRVEHNKHQK 0
  2 GKPSRMALREEHIKHQK 0
  0 SDSRVPLSNKSSLKELLTTAEVPETSGSEQAQEPVSPPGEASTSRRRSGQEL 1
  0 RMSRAPLSKESSLKELPGAAKSLKTSGSKQAQKPVPHPRKARTPGQHPRQKV 1
  2 ARRRKDTEARMYSLRERKGHAYQEVGEPQDDDYL 1
  2 ELRRKETGVKRYSLRERKGHVYQEVSEPQDDDYL 1
  2 yCEKCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALTLPPGLRIRPSGIPEAGLGVWNEAHDLPLGLHFGPYEGQVTEDEEAANSGYSWL 0
  2 yCEECQNFFIDSCAAHGPPTFVKDSVVKRGHANRSALTLPPGLSIRLSGIPDAGLGVWNEASDLPRGLHFGPYEGQITDDEEAANSGYAWL 0
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  0 ITKGRNCYEYVDGKDTSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVVRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGI 1
  1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVVRPGCELLVWYGDEYGQFLGIKRDSR<font color=magenta>g</font>KSKLAAGR 1
  2 EPKPKIHPCPSCSLAFSSQRFLSQHVERSHPSQSLPRASARRGLQPEGPCPDNQQQQQPYPDPHSWDGTSESQDVKEGSKPFLERRRLRKTSRASSYAPEGQMRSSRVRERMTEEEPSAGQKVNPEDTGTLFTVAGES
  2 EPKPKIHPCASCSLAFSSQKFLSQHIQCSHPSQTPP<font color=magenta>r</font>PSERDLLQPEDPCPGNQNQRYSDPHSPSDKPEGQEAKDRPQPLLKSIRLKRISRASSYSPGGQMGGSGVHE
GILRVENRGYGPDSGLTRHPRTHTGEKP
HVCSECGRGFSVKSHLIRHQRTHTGEKP
YVCRECGRGFSVKSHLIRHQRTHTGEKP
YVCRECGRGFSVKSSLITHQRTHTGEKP
YVCRECGRGFSVKSHLIRHQRTHTGEKP
YVCRECGRGFSEKSSLVTHQRTHTGEKP
FVCRECGRGFSVKSSLVTHQRTHTGEKP
YVCRECGRGFSVKSNFITHQRTHTGEKP
YVCRECGRGFSEKSSLVTHQRTHTGEKP
YVCREGE.....................
   
   
  >PRDM7_canFam Canis familiaris (dog) genome Laur pseu 5 GAS8+ frameshift fixed to 6 ZNF; synteny MNS1 K1F1B intervening CDH3 oddity
  >PRDM7_bosTau Bos taurus (cattle) genome Laur pseu -- GAS8+ missing C2H2
  0  0  
  0 MSPNRSPEESIEGDTGRTEWKPT 0
0 AKDAFKDISIYFCKEEWAQMG WEKIRYRNVKRNYEALITL 1
2  1
2 0
  0  1
  0  1
  2  1
  2  1
  2 VKPSWVAFRMEQSKHQK 0
  2  0
  0 GIPRVPLSNKSSLKELSETAKLLNTSSPEQGQKSVSLPGKASTSGHHTRQKL 1
  0  2
  2 ELRRKDVEVKMYSLQERKGLAYQEVSEPQDDDYL 1
  1 1
2 yCEK QTFFIDSCTVHGPPTFVKDSEVDKGQPNHSALTLPPGLRIRTSSIPQAGLGVWN ASDLPLGLHFGPYKGQITEDEEAANSGYSCL 0
  2  
  0 ITKGRNCYEYVDGKDkSWANWMR 2
  1 YMNCARDDEEQS LVAFQYHRQIFYRTPGHQASCELLVWYGDEYSQELGIKWGSKWKSELTAGK 1
  2 EPNPEIHPCPSCSL AFSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
VKYRGCGRGFNDRSHLSRHQRTHTGENP
YVCRECGRGFIHRTNLIIHQRTHTGEKP
YVCRECGtGFIQRSNLSIHQRTHTGEKP
YVCRECGRGFTQRSTLNEHQRTHTEEKP
YVCRECGRSFTRRSTLITHQRTHTGEKP
YVCRECGRSFT.................
KRSTWDPWVAQRFGACLWP.........
   
   
  >PRDM7_felCat Felis catus (cat) genome Laur gene 11 GAS8+ two contigs GAS8 implied by downstream CAD1
  >PRDM7_turTru Tursiops truncatus (dolphin) ABRN01441536 Laur gene 9 gas8+ no useful synteny
  0 MEPSPASESARGQPGGPGTTSPLRFPEQSAERGSRKARWKPT 0  
  0 MSTDRWPEDSTEGDAGRTAWKPT 0  
  0 AKDAFKDISIYFSKEEWTEMGDWEKIRYRNVKRNYEALMTI 1
  0 VKDAFKDISIYFSKEEWTEMGEWEKIRYRNVKKNYEALVTL 1
  2 gLRAPRPAFMCHRRQAIKPQVDVTEDSDEEWTPRQQ 1
  2 GLRAPRPAFMCHRRQAIKAQVGDPEDSDEEWTPRQQ 1
  2 VKPSWVASRVDQNKQHK 0
  2 VKPSWVAFRVEHSKHQK 0
  0 GTHRVPLSKESSLKDFSETAKLLNTSGSEQGQKPVSLPGEASTSGHHSRRKL 1
  0 AVPPVPLSNESSLKKLPGAAQLQKASGPAQAQSPAPPPGAASTSAWHTRQKL 1
  2 ELRRKEIGVKMYSLRERKGFAYQEVSEPQDDDYL 1
  2 ERRAKQIEVKMYSLRERKGHVYQEVSEPQDDDYL 1
  2 yCEKCQNFFIDSCAVHGPPTFVKDNAVGKGHPNRSALTLPPGLRIRPSSIPEAGLGVWNEASDLPLGTHFGPYEGQITEDEEAANSGYSWL 0
  2 yCEKCQNFFIDSCAAHGAPTFVKDSAVEKGHPNRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
  0 ITKGRNCYEYVDGKDNSWANWMR 2
  0 ITKGRNCYEYVDGKDTSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKSELSTGK 1
  1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVVRPGCELLVWYGDEYSQELGIPWGSGWKSQLVaGR 1
  2 EPQPDIHRCPSCSLAFSSQKFLSQHVECKHSSQSLPQISARKHFQPENPCPGDQNQQQQQHSDPHSWNDKAKCQEVKERSRPLLKSIKQRRISRAFSTPCKGQMGSSRVCEGMVEEGPSMGQNLNSEDTGKLFMGVGMSRIVR
  2 DPKPKIQPCGSCSLAFSSQKILSQHVECSHPSQVLPRTSARDRVQPEDPCPGYQNRQQQYSDPHSWSNKPECQEVKERSKPLLKRIRLGRISRAFSSSPKGQMGSSRAHERMMEAGPSTGQKVNPEATGKLLIGAGVSRVVK
  IKNRGCEQGFNDRSHFSRHQRTHKEEKP
  VKYRSSGQGSKDRSSLTKHQRTHTGEKP
  SVCNEFRRDFSHKSALITHQRTHTGEKP
  YVCGECGRDFSLKSDLIRHQRTHTGEKP
  YVCRECGRGFTQRSNLFRHQRTHTGEKP
  YVCGECGRDFSLKSGLISHQRTHTGEKP
  YVCRECGRGFTQRSDLFTHQRTHTGEKP
  YVCGECGRDFSQKSGLIRHQRTHTGEKP
  YVCRECGRGFTRRSNLFTHQRTHTGEKP
  YVCGECGRDFSLKSGLISHQRTHTGEKP
  YVCRECGRGFTRRSHLFTHQRTHTGEKP
  YVCGECGRDFSQKSGLIRHQRTHTGEKP
  YVCRECGRGFTQRSNLFTHQRTHTGEKP
  YVCGECGRDFSLKSGLITHQRTHTGEKP
  YVCRECGRGFTQRSDLFRHQRTHTGEKP
  YVCGECGRDFSQKSNLITHQRTHTGEKP
  YVCRECGRGFTQRSHLFTHQRTHTGEKP
  YVCGECGRDFSRKSSYI
YVCRECGRGFTQRSNLFRHQRTHTGEKP
YVCRECGRGFTWRSNLFTHQRTHTGEKP
YVCRKDGQGFTNKLHLSYQRT
NVATTHSIPQL
   
   
  >PRDM7_ailMel Ailuropoda melanoleuca (panda) GL193502 Laur gene 6 GAS8+ first three exons from different contig ACTA01106867
  >PRDM7_susScr Sus scrofa (pig) FP476134 Laur gene 9 GAS8+ unordered HTGS not wgs misassembly or inversion; not in genome browser
  0 MGPLPASESEQSLPGGPSTMSLNTSPEETPERDSGRTGWKPT 0  
  0 MRPDRRPEESPDPAAGSTERKAA 0  
  0 AKDAFKDISIYFSKEEWTEMGDWEKIRYRNVKRNYEALITI 1
  0 ATDAFKDISIYFSKEEWTEMGEWEKIRYRNVKRNYEALTTI 1
  2 GLRAPRPAFMCHRRQAIKPQVDDTEDSDEEWTPRRQ 1
  2 GLRAPRPAFMCHRRQAIKPQVDDTEDSDEEWTPRQQ 1
  2 VRPSWVAFRMEQSKHQR 0
  2 VKPCRVAFRVEHNKHQK 0
  0 GIPRAPLRNESSLKELSETAKLLNTSGSELGQKPVSLPGEASTSGHDSLQKL 1
  0 SDSRVPLSNKSSLKELLTTAEVPETSGSEQAQEPVSPPGEASTSRRRSGQEL 1
  2 GFRRKDVEVKMYSLRERKSLAYQEVSEPQDDDYL 1
  2 ARRRKDTEARMYSLRERKGHAYQEVGEPQDDDYL 1
  2 yCEKCQNFFIDSCAVHGPPTFVKDSAVDKGQPNRSALTLPPGLRIRPSGIPQAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
  2 yCEKCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALTLPPGLRIRPSGIPEAGLGVWNEAHDLPLGLHFGPYEGQVTEDEEAANSGYSWL 0
  0 ITKGRNCYEYVDGKDNSWANWMR 2
  0 ITKGRNCYEYVDGKDKSWANWMR 2
  1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKSELAAGK 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVVRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGI 1
  2 EPKPEIHPCPSCSLAFSSQKFLSQHLEHNHPSQILSRKSASEHFQQEDPCPGHQNQQQQQHSDPHRWNDKAKGQEVKERFKPLLKSIRQRRISRAFSSPCKGQTRSSTVCEGMVEEEPSAGQKLNPEETGKLFMGVGMSGIIR
  2 EPKPKIHPCPSCSLAFSSQRFLSQHVERSHPSQSLPRASARRGLQPEGPCPDNQQQQQPYPDPHSWDGTSESQDVKEGSKPFLERRRLRKTSRASSYAPEGQMRSSRVRERMTEEEPSAGQKVNPEDTGTLFTVAGES
  VKYRGCGRDFSDRSHQSGHQRRHQKKP
  GILRVENRGYGPDSGLTRHPRTHTGEKP
  SVCKKVKREFSHKSVLITHQRTHTGEKP
  HVCSECGRGFSVKSHLIRHQRTHTGEKP
  YVCRECGRGFTQRSNLIRHQRTHTGEKP
  YVCRECGRGFSVKSHLIRHQRTHTGEKP
  YVCRECGRGFTQRSNLIRHQRTHTGEKP
  YVCRECGRGFSVKSSLITHQRTHTGEKP
  YVCRECGRGFTQRSSLIRHQRTHTGEKP
  YVCRECGRGFSVKSHLIRHQRTHTGEKP
  YVCRECGRGFTLRPNLIGHQRTHTEALP
  YVCRECGRGFSEKSSLVTHQRTHTGEKP
  INYISTTKEQM
  FVCRECGRGFSVKSSLVTHQRTHTGEKP
YVCRECGRGFSVKSNFITHQRTHTGEKP
YVCRECGRGFSEKSSLVTHQRTHTGEKP
YVCREGE
   
   
  >PRDM7_musPut Mustela putorius (ferret) AEYP01035076 AEYP01035077 terminates early in C2H2
  >PRDM7_lamPac Lama pacos (llama) scaffolds traces
  0 MRPRTASESEQGLPGGPSTGSVSGPPEETPERDSGRTGRKPP 0  
  0 0  
  0 AQDAFKDISVYFSKEEWTEMGDWEKIRYRNVKRNYEALITI 1
  0 TFKDISIYFSKEEWTEMGEWEKIRYRNVKRNYEALITI 1
  2 GLRAPRPAFMCHRRQATIPRVDDTEDSDEEWTPRQQ 1
  2 GLRAPRPAFMCHRRKAIKPQVDDTEDSDEEWTPRQQ 1
  2 VRPSWVAFKMEQSKHQK 0
  2 0
  0 GVPRAPLSNESSLKELSETAKLLNTSGSEHDQKPVSHPGEASTSGHHSLRKL 1
  0 GMPRGPLSNQSSLKELSGTAKPLKTSGSGQAQKPFPPLGEASTSGRHSRQKL 1
  2 ELRRKDVEVKMYSLRERKSLAYQEVSEPQDDDYL 1
  2 ELRRKESQVKMYSLRERKGHAYQEVSEPQDDDYL 1
  2 YCEKCQNFFIDSCAVHGPPTFVKDSAVDKGQPNRSALTLPPGLRIRPSGIPQAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0  
  2 0
  0 ITKGRNCYEYVDGKDNSWANWMR 2
  0 ITKGRKCYEYVDGKDKYWANWMR 2
  1 YVNCARDDEEQNLVAFQYRRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKSELTAEK 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGEEYGQELGIKWGSKWKKSLWQGE 1
  2 EPKPEIHPCPSCTLAFSSQKFLSQHLERNHPSQILPRISAGEHFQPEDPCPGEQNHQQQQHSDPQNWNDKAKGQDVKESFKPLLESIRQRKNSRAFPIPCEGQTGYEGIVEEEPSTGQKLNPEETGKLFMGVGMSRIIR
  2 EPKIYLCPSCSLAFSSQKFLSQHVKHNHPSQILPRTAAGRHLEPEDPCPGNQNEQQQHSDQHSWNDKPEGQEAKERSKPFLKRIRLRRISGAFSYSHKGQMGNSRVHDRMIEEEPSTGQKVNPKDTGKLFTWAGVSRTVE
VKYRGSGQGFDDRSHLSRHQRTHKEEKP
  VNYGEYGQGCKDTSHLTTHQRTHTGEKP
  SVGKEPRREFIHKSVLVTHQRTHTGEKP
  YVCRECGRGFTRKSNLTIHQREHTTGEK
  YVCRECGRGFTQRSHLIRHQR
   
   
  >PRDM9_pteVam Pteropus vampyrus (bat) ABRP01232219 Laur pseu 15 noDet frameshift ttt to tttt fixed in last zinc finger; no blastx synteny
  >PRDM7_canFam Canis familiaris (dog) genome Laur pseu 5 GAS8+ frameshift fixed to 6 ZNF; synteny MNS1 K1F1B intervening CDH3 oddity
  0  0  
  0  0  
  0 1
  0 AFKDISKYFSKEEWAKLGYSDKITYVYMKRNYDTMTGL 1
  2 1
  2 GLRATLPAFMCPKKRAIKSK<font color=green>  </font>RHDSDENENHRNQ 1
  2 vQPSWVAFGVEQSKHQK 0
  2 VKPSWVAFRMEQSKHQK 0
  0 AMPRVPLSNESSLKELSVIANPLKASGSEQNQQPVFPPGKASASRQHSRRKL 1
  0 GIPRVPLSNKSSLKELSETAKLLNTSSPEQGQKSVSLPGKASTSGHHTRQKL 1
  2 eLRRKGVEVKMDSLRERMGRVYQEVSEPQDDDYL 1
  2 ELRRKDVEVKMYSLQERKGLAYQEVSEPQDDDYL 1
  2 yCEKCQNFFIDSCAAHGSPIFVKDSEVDIGHPNHSALTLPPGLRIGPSGIPEAGLGVWNEASNLPLGLLFGPYEGQVTEDEEAANSKYSwM 0
  2 yCEK<font color=red>*</font>QTFFIDSCTVHGPPTFVKDSEVDKGQPNHSALTLPPGLRIRTSSIPQAGLGVWN<font color=red>*</font>ASDLPLGLHFGPYKGQITEDEEAANSGYSCL 0
  0 spKGETAEYV DGKDESRANWMR 2
  0 ITKGRNCYEYVDG<font color=blue>KD</font>KSWANWMR 2
  1 YVNCARDDEDQNLVAFQFRRQIFYRTCRVIMPGCELLVWYGDEYGQGLGIKWGSKWKREFTAGR 1
  1 YMNCARDDEEQ<font color=magenta>s</font>LVAFQYHRQIFYR<font color=magenta>t</font>PGHQASCELLVWYGDEYSQELGIKWGSKWKSELTAGK 1
  2 EPKPEIHPCPSCSLAFSSRKFLSQHMKRSHPSQSLPGISARKHLQSKEPHPEDQSQQQQQQQHTDPCSWNDKAEGQEVKERSKPMLERNGQRKISRAFSKPPKGQMGSPRECERMMEAEPSTSQKVNPENTGKSSVGVGASRIVR
  2 EPNPEIHPCPSCSL<font color=magenta>a</font>FSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
  VKYGGCGHGFDDGSHFIRHQRTHSGEKP
VKYRGCGRGFNDRSHLSRHQRTHTGENP
  FVCRECERGFNEKSSLTMHQRTHSGEKP
YVCRECGRGFIHRTNLIIHQRTHTGEKP
  FVCREC.EGFSVKSSLIRHQRTYSGEKP
YVCRECG<font color=magenta>r</font>GFIQRSNLSIHQRTHTGEKP
  FVCRECEQGFNEKSSLTMHQRTHSGEKP
YVCRECGRGFTQRSTLNEHQRTHTEEKP
  FFCRECEGFSVK.SSLIRHQRTHSGQKP
YVCRECGRSFTRRSTLITHQRTHTGEKP
  FVCRECKRGFTQKSHLITHQRTHSGEKP
YVCRECGRSFT
  FCRECER.GFTQKSHLIKHQRTHSGEKP
  FVCRECA.....................
>PRDM7_canLup Canis lupus (gray_wolf) JF750654 first frameshift: 1 bp del ggcctt to gcctt; second frameshift 1 bp del ggaca to ggacGa
ePNPEIHPCPSCSL<font color=magenta>a</font>FSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
VKYRGCGRGFNDRSHLSRHQRTHTGENP
YVCRECGRGFIHRTNLIIHQRTHTGEKP
YVCRECG<font color=magenta>r</font>GFIQRSNLSIHQRTHTGEKP
YVCRECGRGFTQRSTLNEHQRTHTEEKP
YVCRECGRSFTRRSTLITHQRTHTGEKP
  YVCRECGRSFTKRS
   
  >PRDM7_canAur Canis aureus (golden_jackal) JF750659
  EPNPEIHPCPSCSL<font color=magenta>a</font>FSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
  VKYRGCGRGFNDRSHLSRHQRTHTGENP
  YVCRECGRGFIHRTNLIIHQRTHTGEKP
  YVCRECGRGFTQRSTLNEHQRTHTEEKP
  YVCRECGRSFTKRST
   
   
  >PRDM7_pteVam Pteropus vampyrus (bat) ABRP01250178 Laur gene 7 GAS8+ 4 distal exons of GAS8+-; unique F sweep in zinc finger; 15 ZNF dotplot no CAD1
  >PRDM7_lycPic Lycaon pictus (painted_dog) F750657
  0 MRPDRSPEEAPEGDTRRTGCKPK 0
EPNPEIHPCPSCSL<font color=magenta>a</font>FSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWSDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIM<font color=magenta>r</font>
  0 AKDAFKDISIYFSKEEWTEMGDWEKIRYRNVKRNYDALQAI 1
VKYRGCGRGFNDRSHLSRHQRTHTGENP
  2 GLRAPRPAFMCRRRQAIKPQVDDSEDSDEEWTPRQQ 1
  YVCRECGRGFTHRTNLIIHQRTHTGEKP
  2 0
  YVCRECG<font color=magenta>r</font>GFIQRSNLSIHQRTHTGEKP
  0 AMPRVPLSNEPSLKELSVIANLLKASGSEQDQKPVFPPGKASASRQHSRQKL 1
  YVCRECGRGFTQRSTLNEHQRTHTEEKP
  2 GLRRKGVEVKMYSLRERTGRVYQEVSEPQDDDYL 1
  YVCRECGRSFTRRSTLITHQRTHTGEKP
  2 yCEKCQNFFIDSCAAHGSPIFVKDSEVDIRHPNRSALTLPPGLRIGPSGIPEAGLGVWNEASDLPLGLLFGPYEGQVTEDEEAANSGYSWL 0
  YVCRECGRSFTKRST
  0 QGKGRNCYEYVDGKDESRANWMR 2
 
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKRELTAGR 1
  >PRDM7_canMes Canis mesomelas (black-backed_jackal) JF750658
  2 EPKPAIHPCPSCSLAFSGQKFLSQHMKRSHPSQSLPGISARKHLQSKEPHPEDQSQQQHNDPRSWNDKAEGQEVKERSKPLLERNRQRKIFRAFSKPPKGQMGSPREYERMMEAEPSTSQKVNPENTGKSSVGVGASRIVI
  EPNPEIHPCPSCSL<font color=magenta>a</font>FSSQKFLSQHLEHNHPSQILPQISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
  VKYGGCEHGFDDGSHLIMHQRTHSGEKP
  VKYRGCGRGFNDRSHLSRHQRTHTGENP
  FVCRECERGFSKKSNLITHQRTHSGEKP
  YVCRECGRDFTHRTNLIIHQRTHTGEKP
  FVCRECERGFTRKSSLITHQRTHSGEKP
  YVCRECG<font color=magenta>r</font>GFIQRSNLSIHQRTHTGEKP
  FVCRECERGFTQKSHLITHQRTHSGEKP
  YVCRECGRGFTQRSTLNEHQRTHTEEKP
  FVCRECERGFSEKSSLIKHQRTHSGEKP
  YVCRECGRSF<font color=magenta>t</font>RRSTLITHQRTHTGEKP
  FVCRECERGFTRKSSLITHQRTHSGEKP
  YVCRECGRSFTKRST
  FVCRECERGFTQKSSLIKHQRTHSGEKP
   
  FVCRECERGFTQKSSLIKHQRTHSGEKP
  >PRDM7_speVen Speothos venaticus (bush_dog) JF750656
  FVCRECERGFTQKSSLIKHQRTHSGEKP
  EPNPEIHPCPSCSL<font color=magenta>a</font>FSSQKFLSQHLEHNHPSQILP<font color=red>*</font>ISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKRIRQRRISRAFSTPCKGQTTCEGIVKEEPSASSQKLNPEDTGKLFKGVGMTRIIR
  FVCRECERGFTQKSSLITHQRTHSGEKP
  VKYRGCGRGFNDRSHLSRHQRTHTGENP
  FVCRECERGFTQKSHLITHQRTHSGEKP
  YVCREC<font color=magenta>g</font>RGFTHRTNLIIHQTTHTGEKP
  FVCRECERGFSKKSNLITHQRTHSGEKP
  YVCRECG<font color=magenta>r</font>GFIQRSNLSIHQRTHTGEKP
  FVCRECERGFTRKSLLITHQRTHSGEKP
  YVCRECGRSFT<font color=red>*</font>RSTFSThQRTH
  FVFRECERGFTQKSSLITHQRTHSGEKP
   
  FVCRECERGFTRKSYLITHQRTHSGEKP
  >PRDM7_vulVul Vulpes vulpes (red_fox) JF750655 more distal frameshif
  FVGRECE.....................
  EPNPEIYPCPSCSLSFSSQKFLSQHLEHNHPSQILPRISIREHFQPKDPCPGCQNQQQQQHSDPQCWNDRAKGQEGKERFKPLP<font color=magenta>k</font>SIRQRKISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
  VKYRGCGRGFNDRSHLSRHQRTHMGENP
  YVCRECGRGFTHRTNLIIHQRTHTGEKP
  YVSWECGRSFTRRSNLITHQRTHTGEKP
  YVCRECGRGFTKRSTLSTHQRTHL
   
   
  >PRDM7_myoLuc Myotis lucifugus (bat) AAPE02062260 Laur gene 6 gas8+ TGA stop codon; CpG hotspot for R CGA; SXXRD implies missing KRAB no CAD1
  >PRDM7_neoVis Neovison vison (mink) JF288183 anomalous array, contig terminates
  0  0  
  0  0  
  0  1
  0  1
  2  1
  2  1
  2 0
  2 VRPSWVAFRMEQSKHQK 0
  0 AKSRAPLSNESSLKELSGTANLLTTSGSEQTQKTVPPPGEASTSGQHPRSKL 1
  0 GIPRAPLSNESSLKELSETAKLLNTSGSEQGQKPVSHPGEASTSGHHSLRKL 1
  2 dLRRKEIEVKMYSLRERKCRVYQEISEPQDDDYL 1
  2 ELRRKDVEVKMYSLRERKSLAYQEVSEPQDDDYL 1
  2 YCEKCQNFFIDSCAVHGPPTFVKDSAVDKGHANRSALTLPPGLRIGPSGIPEAGLGVWNEECDLPVGLHYGPYEGQITEDEAIANSGYSWL 0
  2 YCEKCQNFFIDSCAVHGPPTFVKDSAVDKGQPNRSDLTLPPGLRIRPSGIPQAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL
  0 ITKGRNCYEYVDGKDTSQANWMR 2
  0 ITKGRNCYEYVDGKDNSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVVRKGCELLVWYGEEYGQELGIKWGSKWKTEPVAGR 1
  1 1
  2 EPKPEIHPCPSCSVAFSSQTFLSQHGKRNHPSEILPGAPAGNHLQSEEPGPERQNQQQQQQTGPHGWNDKAEGQEVKGRSKPLLKRIRQRGTSRASFKPPNRHMGSSSERERIREEEPSTGQNVNHKNTGKLFVGVKRSKSVT
  2 EPKPEIHPCPSCTLAFSSQKFLSQHLKCNHPSQILPRISAGEHFQPEDPCPGEQNHQQQQHSDPQSWNDKAKGQEVKESFKPLLESIRQRRNSRAFPTPCKGQTGYEGMVEEESSTGQKLNPEETEKLFMGVGMSRMIR
IKHGGCGQGFNDGSHIDTHQRTHSGEKP
  VKYRGSGQGFDDRSHLSRHQRTHKEEKP
YICRECGGFTHKSDL.IRHQRTHSQENP
  SVGKELRREFIHKSVLVTHQRTHTEALP
YVCRECGRGFRDRSTLITHQRTHSGEKP
  YVCRECGRGLTEKSTLITHQRTHSGEKP
  YVCRECGRGFTRKSTLITHQRTHSGEKP
   
   
  YVCRECGRGSRVKSNLIRHQRTHSGEK
  >PRDM7_musPut Mustela putorius (ferret) AEYP01035076 AEYP01035077 AEYP01035078:GAS8- HUIH+ CAD1L+ distal PRDM7+
  SGVCIEGE....................
  0 MRPRTASESEQGLPGGPSTGSVSGPPEETPERDSGRTGRKPP 0
0 AQDAFKDISVYFSKEEWTEMGDWEKIRYRNVKRNYEALITI 1
2 GLRAPRPAFMCHRRQATIPRVDDTEDSDEEWTPRQQ 1
2 VRPSWVAFKMEQSKHQK 0
0 GVPRAPLSNESSLKELSETAKLLNTSGSEHDQKPVSHPGEASTSGHHSLRKL 1
2 ELRRKDVEVKMYSLRERKSLAYQEVSEPQDDDYL 1
2 YCEKCQNFFIDSCAVHGPPTFVKDSAVDKGQPNRSALTLPPGLRIRPSGIPQAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDNSWANWMR 2
1 YVNCARDDEEQNLVAFQYRRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKSELTAEK 1
2 EPKPEIHPCPSCTLAFSSQKFLSQHLERNHPSQILPRISAGEHFQPEDPCPGEQNHQQQQHSDPQNWNDKAKGQDVKESFKPLLESIRQRKNSRAFPIPCEGQTGYEGIVEEEPSTGQKLNPEETGKLFMGVGMSRIIR
VKYRGSGQGFDDRSHLSRHQRTHKEEKP
SVGKEPRREFIHKSVLVTHQRTHTGEKP
YVCRECGRGFTQRSHLIRHQRthtgEKP
YVCRECGRGFTQRSNLITHHRTHTGEKP
YVCRECGRGFTRRSNLIRHHRTHTGEKP
YVCRECGRGFTWRSHLITHQRTHTGEKP
YVCRECGRGFTWRSHLIRHQRTHTGEKP
YVCRECGRGFTRRSNLITHQRTHTEALP INCISMTRGKM*
   
   
  >PRDM7_equCab Equus caballus (horse) genome Laur gene 4 GAS8+ missing front exons, pre-terminal stop GAS8+- flanked right by EMR2-
  >PRDM7_ailMel Ailuropoda melanoleuca (panda) GL193502 Laur gene 6 GAS8+ first three exons from different contig ACTA01106867
  0 0  
  0 MGPLPASESEQSLPGGPSTMSLNTSPEETPERDSGRTGWKPT 0  
  0 1
  0 AKDAFKDISIYFSKEEWTEMGDWEKIRYRNVKRNYEALITI 1
  2 1
  2 GLRAPRPAFMCHRRQAIKPQVDDTEDSDEEWTPRRQ 1
  2 VKPSWVAFRVEQSKQQK 0
  2 VRPSWVAFRMEQSKHQR 0
  0 RMRTAPLSNESRLKELSGTAKLLKTSSSEQVQKPVSPLGEASSSEQHSRRKL 1
  0 GIPRAPLRNESSLKELSETAKLLNTSGSELGQKPVSLPGEASTSGHDSLQKL 1
  2 ELRRKEVGVKMYSLRERKGHAYQEVSEPQDDDYL 1
  2 GFRRKDVEVKMYSLRERKSLAYQEVSEPQDDDYL 1
  2 yCENCQNFFIDSCAAHGPPIFVKDSAVDKGHPNRSALTLPLGLRIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
  2 yCEKCQNFFIDSCAVHGPPTFVKDSAVDKGQPNRSALTLPPGLRIRPSGIPQAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
  0 ITKGRNCYEYVDGKDISWANWMR 2
  0 ITKGRNCYEYVDGKDNSWANWMR 2
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVVRPGCELLVWYGDEYGQELGIKWGSKWKRELTAGR 1
  1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKSELAAGK 1
  2 EPKLEIHPCPSCSLAFSSQKFLSQHVERNHPSQILPGTSARNHLQPEDPSPGDQNQQQQHSDPHSWKDKAHSQEVKERSKPLLKKIRQRRIPRAFSYPPKGQMENFRMRERIMEEKPSIGRKVNPEDTGKLFLEMRMSRNVR
  2 EPKPEIHPCPSCSLAFSSQKFLSQHLEHNHPSQILSRKSASEHFQQEDPCPGHQNQQQQQHSDPHRWNDKAKGQEVKERFKPLLKSIRQRRISRAFSSPCKGQTRSSTVCEGMVEEEPSAGQKLNPEETGKLFMGVGMSGIIR
  VQYGGCGRGFNDRASLIKHQRTHTGEKP
VKYRGCGRDFSDRSHQSGHQRRH QKKP
  YVCRECEQGFTQKSSLIAHQRTHTGEKP
  SVCKK<font color=blue>V</font>KREFSHKSVLITHQRTHTGEKP
  YVCRECEQGFSEKSHLIRHQRTHTGEKP
  YVCRECGRGFTQRSNLIRHQRTHTGEKP
  YVCRECEQGFSVKSNLIRHQRTHTGEKL
  YVCRECGRGFTQRSNLIRHQRTHTGEKP
  .FCREGK.....................
  YVCRECGRGFTQRSSLIRHQRTHTGEKP
  YVCRECGRGFTLRPNLIGHQRTHT<font color=blue>E</font>ALP INYISTTKEQM
   
   
  >PRDM7_sorAra Sorex araneus (shrew) AALT01000095 Laur gene 8 noDet no useful synteny; upstream spectrin, IgG; GAS8 contig has no sign of pseudogene
  >PRDM7_felCat Felis catus (cat) genome Laur gene 11 GAS8+ two contigs GAS8 implied by downstream CAD1
  0 MSLNRPAEMNTQGKARKLMLKPM 0  
  0 MEPSPASESARGQPGGPGTTSPLRFPEQSAERGSRKARWKPT 0  
  0 SKDAFKDISMYFSKEEWAEMGDWEKIRHRNVKRNYEELISI 1
  0 AKDAFKDISIYFSKEEWTEMGDWEKIRYRNVKRNYEALMTI 1
  2 GLRAARPAFMSHRRQAIKTQLDDTEESDEEWTPNQQ 1
  2 gLRAPRPAFMCHRRQAIKPQVDVTEDSDEEWTPRQQ 1
  2 VKSLRVAFRAEQSKHQK 0
  2 VKPSWVASRVDQNKQHK 0
  0 GRSRTPISNESSSKELSGTRTLLNTKCTKQAQKPLFPPGEASTSGHYSKPKL 1
  0 GTHRVPLSKESSLKDFSETAKLLNTSGSEQGQKPVSLPGEASTSGHHSRRKL 1
  2 ELRRKEPEVKMYSLRERKGRAYQEVSEPQDDDYL 1
  2 ELRRKEIGVKMYSLRERKGFAYQEVSEPQDDDYL 1
  2 YCENCQNFFINKCSAHGSPIFVKDNAVAKGHSNRSALTLPHGLRIGPSGIPEAGLGIWNEASDLPLGLHFGPYEGQITNDEEAANSGYSWL 0
  2 yCEKCQNFFIDSCAVHGPPTFVKDNAVGKGHPNRSALTLPPGLRIRPSSIPEAGLGVWNEASDLPLGTHFGPYEGQITEDEEAANSGYSWL 0
  0 ITKGRNCYEYVDGVDESLANWMR 2
  0 ITKGRNCYEYVDGKDNSWANWMR 2
  1 YVNCARDYEEQNLVAFQYHRQIFYRTCRIIKPGCELLVWYGDEYGQELGIKWGSKWKSELTADK 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKSELSTGK 1
  2 EPKPEIYPCPCCSLAFSNQKFLSRHVEHSHPSLILPGTSARTHPKSVNFCPGDQNQWQQHSDACNDKPDEPWNDKLENHKSKGRSKPLPKRMGQKRISTAFPNLRSSKMGSSNKHETIMDKINTGQKENPKDTYRVFAGIGMPRIIR
  2 EPQPDIHRCPSCSLAFSSQKFLSQHVECKHSSQSLPQISARKHFQPENPCPGDQNQQQQQHSDPHSWNDKAKCQEVKERSRPLLKSIKQRRISRAFSTPCKGQMGSSRVCEGMVEEGPSMGQNLNSEDTGKLFMGVGMSRIVR
  DKHVTLRRSFTNRSSPLTHQRTHTGEKP
IKNRGCEQGFNDRSHFSRHQRTHKEEKP
  YVCRECGRGFSQKSHLLTHQRTHTGEKP
SVCNEFRRDFSHKSALITHQRTHTGEKP
  YVCRECGRGFTDRSSLLTHQRTHTGEKP
YVCRECGRGFTQRSNLFRHQRTHTGEKP
  YVCRECGRGFSLKSSLLRHQRTHTGEKP
YVCRECGRGFTQRSDLFTHQRTHTGEKP
  YVCRECGRGFSLKSSLLTHQRTHTGEKP
  YVCRECGRGFTRRSNLFTHQRTHTGEKP
  YVCRECGRGFTDRSSLLTHQRTHTGEKP
  YVCRECGRGFTRRSHLFTHQRTHTGEKP
  YVCRECGRGFSLKSSLLTHQRTHTGEKP
  YVCRECGRGFTQRSNLFTHQRTHTGEKP
  YVCRECGRGFSRKSSLLRHQRTHTGEKP
  YVCRECGRGFTQRSDLFRHQRTHTGEKP
  YVCES.......................
  YVCRECGRGFTQRSHLFTHQRTHTGEKP
  YVCRECGRGFTQRSNLFRHQRTHTGEKP
  YVCRECGRGFTWRSNLFTHQRTHTGEKP
  YVCRKDGQGFTNKLHLSYQRT
  NVATTHSIPQL
   
   
  >PRDM9a_loxAfr Loxodonta africana (elephant) genome Afro gene 12 noDet chr 153 novel synteny THEG+ MIER2+ PPAP2C PRDM9- ZNF699-
  >PRDM7_equCab Equus caballus (horse) genome Laur gene 4 GAS8+ missing front exons, pre-terminal stop GAS8+- flanked right by EMR2-
0 MSPARAAKKNPRGDVGSAGRTPT 0
  0  0  
0 aKDTFRDISIYFSKEEWAEMGEWEKFRYRNVKRNYEALVTI 1
2 GLRAPRPAFMCHRRQAIKAQVDNTEDSDEEWTPRQQ 1
2 VKPPSVASRAEQSRHQK 0
0 GTPKALLGNESSLKEVSGTAILLNTTGSEQAQKPVSSPGEASTSDQPSRWKL 1
2 EPRRNEVEVKMYNLRERKGLEYQEVSEPQDDDYL 1
2 yCEKCQNFFIDTCAVHGAPMFVKDSPVDRGHPNHSALTLPPGLRIGPSSIPKAGLGVWNEASELPLGLHFGPYEGQVTEDKEAANSGYSWL 0
0 ITKGKNCYEYVDGKDESWANWMR 2
1 YVNCARDEEEQNLVAFQYHRQIFYRTCRTIQPDCELLVWYGDEYGQELGIKWGSRWKKELTSGR 1
2 EPKPEIHPCPSCRLAFSSQKFLSQHMKHSHPSPPFPGTPERKYLQPEDPRPGGRRQQRSEQHMWSDKAEDPEAGDGSRLVFERTRRGCISKACSSLPKGQIGSSREGNRMMETKPSPGQKANPEDAEKLFLGVGTSRIAK
VRCGECGQGFSQKSVLIRHQKTHSGEKP
YVCGECGRGFSVKSVLIKHQRTHSGEKP
YVCGECGRGFSVKSVLITHQRTHSGEKP
YVCGECGRGFSVKSVLITHQRTHSGEKP
YVCGECGRGFSQKSDLIKHQRTHSGEKP
YSCRECGRGFSRKSVLITHQRTHSGEKP
YVCGECGRGFSQKSNLITHQRTHSGEKP
YVCGECGRGFSRKSVLITHQRTHSGEKP
YVCGECGRGFSQKSNLITHQRTHSGEKP
YVCGECGRGFSQKSDLITHQRTHSGEKP
YVCRECGRGFSRKSNLITHQRTHSGEKP
YVCRECRRGFSVKSALI...........
GHGRRKCSKSAEPLHFPRVSRDQK....
>PRDM9b_loxAfr Loxodonta africana (elephant) genome Afro pseu 3 noDet approx seq after frameshift correction
  0  0  
  0  1
  0  1
  2  1
  2  1
  2 0
  2 VKPSWVAFRVEQSKQQK 0
  0 GTPKVLLSNESSLKEVSGTAILLSTMGSEQAQKPVSSPGEASTSDQPSRRKQ 1
  0 RMRTAPLSNESRLKELSGTAKLLKTSSSEQVQKPVSPLGEASSSEQHSRRKL 1
  2 EPRRKEVEVNMYSLRERKGLVYQEVGEPQDDDYL 1
  2 ELRRKEVGVKMYSLRERKGHAYQEVSEPQDDDYL 1
  2 yCEKCQNFFIHTCAVHGAPMFVKDSHVDRGHLNHSALTLPPGLRIGPSSIPEAGLRVR EVSEQLLGLHIGPYEGQVTEDkEAAHSGYSWL 0
  2 yCENCQNFFIDSCAAHGPPIFVKDSAVDKGHPNRSALTLPLGLRIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
  0 ITKGRNCYKYVDGKDDPWANRMR 2
  0 ITKGRNCYEYVDGKDISWANWMR 2
  1 YVNCIQD KEQNLVAFQYHRQIFHWTCCTIRPGCELLVWYGDNYSQELGIKWGSR KKEL    1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVVRPGCELLVWYGDEYGQELGIKWGSKWKRELTAGR 1
  2 EPKPEIHPCPSCPLAISSQKFLDQHTKHSHPSPPFPGTPERKHLQPEDPHPGGRRQQHSEQHLNDKAEDPETGDGSKPVFERARLVGGGAGGVSKVCSSLPKGQMGSSREGNRMMETEGQKVNPEDTEKLFLGVGISRLAK
  2 EPKLEIHPCPSCSLAFSSQKFLSQHVERNHPSQILPGTSARNHLQPEDPSPGDQNQQQQHSDPHSWKDKAHSQEVKERSKPLLKKIRQRRIPRAFSYPPKGQMENFRMRERIMEEKPSIGRKVNPEDTGKLFLEMRMSRNVR
  VRCGEYGQGFSQKSVLIRHQRTYSGEEH
VQYGGCGRGFNDRASLIKHQRTHTGEKP
  YVCGECGRGFSWKSQLTRHQRSHSWEKP
  YVCRECEQGFTQKSSLIAHQRTHTGEKP
  YVCRECGGFSVKSTLI............
  YVCRECEQGFSEKSHLIRHQRTHTGEKP
  GTGEGNAATIHLHLPS............
  YVCRECEQGFSVKSNLIRHQRTHTGEKL
  <font color=red>*</font>FCREGK
   
   
  >PRDM7_loxAfr Loxodonta africana (elephant) genome Afro pseu 5 GAS8+ scaffold_57 several frameshifts; ZNF540 opposite strand upstream of N-terminus
  >PRDM7_pteVam Pteropus vampyrus (bat) ABRP01250178 Laur gene 7 GAS8+ 4 distal exons of GAS8+-; unique F sweep in zinc finger; 15 ZNF dotplot no CAD1
  0 0  
  0 MRPDRSPEEAPEGDTRRTGCKPK 0  
  0 1
  0 AKDAFKDISIYFSKEEWTEMGDWEKIRYRNVKRNYDALQAI 1
  2 GLRASHPAFTCHCMQAIKAQMDDTEDSNEEQTPRQq 1
  2 GLRAPRPAFMCRRRQAIKPQVDDSEDSDEEWTPRQQ 1
  2 VRPSWVAFRMEQSKHQR 0
  2 0
  0 GMLRVPRSNESSLKNLSGTSIMLSRAGSEQAQKLVLPPGKASTSDEHSRQKP 1
  0 AMPRVPLSNEPSLKELSVIANLLKASGSEQDQKPVFPPGKASASRQHSRQKL 1
  2 EHRRKGVEVKMYSF ERKGLVYQEIS PQDDDYL 1
  2 GLRRKGVEVKMYSLRERTGRVYQEVSEPQDDDYL 1
  2 YCEKCQNFFIDTCESHGVPTFVKNSTTDSGHPNHLALTPSSGLRTRPSSIPKAWLRLWNKAFELLLGLPFSPCEGQVIEDEAVDNSGYSWL 0
  2 yCEKCQNFFIDSCAAHGSPIFVKDSEVDIRHPNRSALTLPPGLRIGPSGIPEAGLGVWNEASDLPLGLLFGPYEGQVTEDEEAANSGYSWL 0
  0 2
  0 QGKGRNCYEYVDGKDESRANWMR 2
  1 YVNGTQDEKEQNLVFFQYHRQIFYQTCYAVWPGCQLLVWYRDECGQELGIKWDNRGKKEFe    1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKRELTAGR 1
  2 EPKPEAHPCPSCPLAFSSEKFLSQHMKHNHPSQSSPETPERKHLQPEDPHPGHQNQQQQQHSDPHRWNDKAEGQQTGDRSKPMFENIRQEVTSRAFSSLPKGQMVCSREGNRMMETEPSPGLKVNPEVTGKLFLGVESSRIAK
  2 EPKPAIHPCPSCSLAFSGQKFLSQHMKRSHPSQSLPGISARKHLQSKEPHPEDQSQQQHNDPRSWNDKAEGQEVKERSKPLLERNRQRKIFRAFSKPPKGQMGSPREYERMMEAEPSTSQKVNPENTGKSSVGVGASRIVI
  VKYRGCGRDFSDRSHQSGHQRRHQ
VKYGGCEHGFDDGSHLIMHQRTHSGEKP
  KKP
FVCRECERGFSKKSNLITHQRTHSGEKP
  SVCKKVKREFSHKSVLITHQRTHSGEKS
FVCRECERGFTRKSSLITHQRTHSGEKP
  YVCKESGRGFSAKSNLIRPRRTHTGEKP
FVCRECERGFTQKSHLITHQRTHSGEKP
  YVCGERGG.FSVSGLII.HQRAHSPEKP
FVCRECERGFSEKSSLIKHQRTHSGEKP
  YVCREGRRGFGDKSSFIKHQRATLGEKS
FVCRECERGFTRKSSLITHQRTHSGEKP
  YVCKESGRGFS.................
FVCRECERGFTQKSSLIKHQRTHSGEKP
  AKSNLIRPRRKKCRHDTTPHPQL.....
FVCRECERGFTQKSSLIKHQRTHSGEKP
  FVCRECERGFTQKSSLIKHQRTHSGEKP
  FVCRECERGFTQKSSLITHQRTHSGEKP
  FVCRECERGFTQKSHLITHQRTHSGEKP
  FVCRECERGFSKKSNLITHQRTHSGEKP
  FVCRECERGFTRKSLLITHQRTHSGEKP
  FVFRECERGFTQKSSLITHQRTHSGEKP
  FVCRECERGFTRKSYLITHQRTHSGEKP
  FVGRECE
   
   
  >PRDM7_echTel Echinops telfairi (tenrec) genome Afro pseu 5 noDet 2 frameshifts plus stop codon
  >PRDM9_pteVam Pteropus vampyrus (bat) ABRP01232219 Laur pseu 15 noDet frameshift ttt to tttt fixed in last zinc finger; no blastx synteny
  0  0  
  0  0  
  0  1
  0  1
  2 GLRAPRPAFMCHHRPAAKGQVEDSEDSDEEWTPRQR 1
  2 1
  2 0
  2 vQPSWVAFGVEQSKHQK 0
  0 GMPGVSLRNESNLKVLSGTAILLTAAEPEQPH PGSPPGEATTSHEHLRQKV 1
  0 AMPRVPLSNESSLKELSVIANPLKASGSEQNQQPVFPPGKASASRQHSRRKL 1
  2 epELRRRAVMMNSLRERKNLMYQEVSTPCDDNCL 1
  2 eLRRKGVEVKMDSLRERMGRVYQEVSEPQDDDYL 1
  2 YGERCHNFFIDTHIAHGATTFVKDS    PMDRSNCSILPPGLRIGPSGIPEAGLGVWNEASELPLGLHFVPYEGQVTKDEAATNSGYSWM 0
  2 yCEKCQNFFIDSCAAHGSPIFVKDSEVDIGHPNHSALTLPPGLRIGPSGIPEAGLGVWNEASNLPLGLLFGPYEGQVTEDEEAANSKYSwM 0
  0 ITKGRNCYEYVDGKDKSWANwMr 2
  0 spKGETAEYV DGKDESRANWMR 2
  1 1
  1 YVNCARDDEDQNLVAFQFRRQIFYRTCRVIMPGCELLVWYGDEYGQGLGIKWGSKWKREFTAGR 1
  2 EPKPEVNPCPSCPLALSSQQLKHSHPFQSLPGTPAEKHLQAEDFHPRGQKLHHFEHHIRNERAEGLETGDGSKPMLERTRLGKMSKTTYNSPKGQTRSSGETNRIREADLNPGQGVNAEDTRNLFLGIGISRIAK
  2 EPKPEIHPCPSCSLAFSSRKFLSQHMKRSHPSQSLPGISARKHLQSKEPHPEDQSQQQQQQQHTDPCSWNDKAEGQEVKERSKPMLERNGQRKISRAFSKPPKGQMGSPRECERMMEAEPSTSQKVNPENTGKSSVGVGASRIVR
  VRCRECGHGFSVKSSLITHQRIHTGEKP
  VKYGGCGHGFDDGSHFIRHQRTHSGEKP
  YVCSECGQGFSQKSVLIRHQRIHTGEKP
  FVCRECERGFNEKSSLTMHQRTHSGEKP
  YICRECDRGFSRKSHLIKHQRTHSGEKP
  FVCREC.EGFSVKSSLIRHQRTYSGEKP
  YVCRECGQGFSQKSVLITHHRTHSGEKP
  FVCRECEQGFNEKSSLTMHQRTHSGEKP
  YVCRECGRGFSQKSDLIKHERTHS....
  FFCRECEGFSVK.SSLIRHQRTHSGQKP
FVCRECKRGFTQKSHLITHQRTHSGEKP
FCRECER.GFTQKSHLIKHQRTHSGEKP
FVCRECA
   
   
  >PRDM7a_proCap Procavia capensis (hyrax) ABRQ01227339 Afro pseu 17 noDet frameshift and two stop codons in exon 10
  >PRDM7_myoLuc Myotis lucifugus (bat) AAPE02062260 Laur gene 6 gas8+ TGA stop codon; CpG hotspot for R CGA; SXXRD implies missing KRAB no CAD1
  0  0  
  0  0  
  0 AKDAFRDISIYFSKEEWAEMGEWEKSRYRNVKRNYEALVAI 1
  0 1
  2 GLRAPRPAFMCHRRQAIKAQVDNTEDSDEEWTPRQQ 1
  2 1
  2 AKPRSVASREELRKPQK 0
  2 0
  0 GTPKALLGNESSLKEVSGTAILLNTTGSEQAQKPVSSPGEASTSDQPSRWKL 1
  0 AKSRAPLSNESSLKELSGTANLLTTSGSEQTQKTVPPPGEASTSGQHPRSKL 1
  2 EPRRKEAEVKRYNLREGTNPAYQEVGDTQDDDYL 1
  2 dLRRKEIEVKMYSLRERKCRVYQEISEPQDDDYL 1
  2 yCEKYQKFCTDVCPAHGALAFLKDLSVERGHPKHSALTLPPGLRIGASGIPEAGLGVWSEASELPPGLHFGPCERQVTKDNEAANRGYLWP 0
  2 YCEKCQNFFIDSCAVHGPPTFVKDSAVDKGHANRSALTLPPGLRIGPSGIPEAGLGVWNEECDLPVGLHYGPYEGQITEDEAIANSGYSWL 0
  0 ITKGRSCSLYMDRKDESRANWMR 2
  0 ITKGRNCYEYVDGKDTSQANWMR 2
  1 YVRHAGDKEEQNLVAFQYHRQIFYRTCRPVQPGCELLVWPGAEDGQELGLQRGSRWKKELASQT 1
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVVRKGCELLVWYGEEYGQELGIKWGSKWKTEPVAGR 1
  2 EARPEIHPCPSCPLAFSTPKFLSHHVKHSHPCQPFPGTLARRPLQPEDPHPGDRRQQHSEQPNWNDKAEGPEIGHVSRPVFEKTRQEGFSEARSSLPKGQMGRSREAERTTETQNSPGQKVNPEDTEILFLRGGISEIAK
  2 EPKPEIHPCPSCSVAFSSQTFLSQHGKRNHPSEILPGAPAGNHLQSEEPGPERQNQQQQQQTGPHGWNDKAEGQEVKGRSKPLLKRIRQRGTSRASFKPPNRHMGSSSERERIREEEPSTGQNVNHKNTGKLFVGVKRSKSVT
VKCGECGQGFSRKSHLIRHQRTHSGMKP
  IKHGGCGQGFNDGSHIDTHQRTHSGEKP
YVCRECRRGFGVKSLLTRHQRTCSGMKP
  YICRECGGFTHKSDL IRHQRTHSQENP
YVCRECGQGFRWKSHLIRHQRTHSGEKP
  YVCRECGRGFRDRSTLITHQRTHSGEKP
FVCSECGRGFSVRSHLFTHQRTHSGEKP
  YVCRECGRGLTEKSTLITHQRTHSGEKP
YVCKECGRGFSVKSYLTTHQRTHTGEKP
  YVCRECGRGFTRKSTLITHQRTHSGEKP
YVCKECGRGFSWKSHLITHQRTHSGEKP
  YVCRECGRGSRVKSNLIRHQRTHSGEKS GVCIEGE
YVCRQCGRGFSVQSHLIIHQRTHSGDKP
YICRECGRDFTEKSSLIRHRRTHSGEKP
YVCRDCG*GFTRKSLLITHQRTHSGEKP
YVYRECGRGFSCKSYLISHQKTHLGEKP
YVCSDCGRGFSVKSQLVSHKRTHSGEKP
FVCREC*RGFSVKSSLISHQRTHSGEKP
  FVCRECGRGFSVKSSLIKHQRTHSGEKP
  YVCKECGRGFSQKSSLITHQRTHSGEKP
  YVCRECGRGFGLKSYLITHQRTHTGEKP
  YICRECG*GFSVKSSLITDQRTHTGEKP
  YVCRECGRAFSKKSSLISHHRTHPAEAV
  YVHRECG.....................
   
   
  >PRDM7b_proCap Procavia capensis (hyrax) ABRQ01392668 Afro pseu 13 noDet CpG stop in ZNF1, 4aa insert exon 4, frameshift exon 5 c to cc, 4aa del exon 9 etc
  >PRDM7_sorAra Sorex araneus (shrew) AALT01000095 Laur gene 8 noDet no useful synteny; upstream spectrin, IgG; GAS8 contig has no sign of pseudogene
  0 0  
  0 MSLNRPAEMNTQGKARKLMLKPM 0  
  0 AKEYFRDISMFFS*ERWVEMSESEKFCYRNMKRNCETTGAG 1
  0 SKDAFKDISMYFSKEEWAEMGDWEKIRHRNVKRNYEELISI 1
  2 GIRVFHPAFMIHPRKTIKAQMDDSEDSDEDWTARQQ 1
  2 GLRAARPAFMSHRRQAIKTQLDDTEESDEEWTPNQQ 1
  2 AKPPSVASREELRKPQK 0
  2 VKSLRVAFRAEQSKHQK 0
  0 GPSRAPLRIKSSLKRVSEPAIVWSTADSEQAQERVQKPVLSRREASASDQPLRRKV 1
  0 GRSRTPISNESSSKELSGTRTLLNTKCTKQAQKPLFPPGEASTSGHYSKPKL 1
  2 EPRRHEAEDKRYSLRGGTGPACQEVGEPQDDDYL 1
  2 ELRRKEPEVKMYSLRERKGRAYQEVSEPQDDDYL 1
  2 yCEECRNFFIDTCVAHGTPVFIKDISVERGHPNRLALTLPTGLRIGPSSIPDAGLGVWNEASELPPGLHFGPCEGQVTEDEEAANSGYSWL 0
  2 YCENCQNFFINKCSAHGSPIFVKDNAVAKGHSNRSALTLPHGLRIGPSGIPEAGLGIWNEASDLPLGLHFGPYEGQITNDEEAANSGYSWL 0
  0 VTKGRSCFEYVDGKNEALANWMR 2
  0 ITKGRNCYEYVDGVDESLANWMR 2
  1 YVRRARDTEERNLVAFQYHRQIFYRTCCTVRPGCELLVWRGAEDSQALG----SRRTMELTSQK 1
  1 YVNCARDYEEQNLVAFQYHRQIFYRTCRIIKPGCELLVWYGDEYGQELGIKWGSKWKSELTADK 1
  2 EARPEIHPCPSCPLAFSTQKFLSYHVNHSHSSEPFPGTHARRHLPREDPRPGYERDQRSEQHNWNDSTGGPERDVSRP VIERTWEGEISEACSSLPRGHMGRSREGERMAETQSSPGLKVTLAK
  2 EPKPEIYPCPCCSLAFSNQKFLSRHVEHSHPSLILPGTSARTHPKSVNFCPGDQNQWQQHSDACNDKPDEPWNDKLENHKSKGRSKPLPKRMGQKRISTAFPNLRSSKMGSSNKHETIMDKINTGQKENPKDTYRVFAGIGMPRIIR
VRWDEYGQGFGPKSHHITQQTKHSGKKP
  DKHVTLRRSFTNRSSPLTHQRTHTGEKP
CVCKECG*GFRVKSLLKSHQMTHSGEKP
  YVCRECGRGFSQKSHLLTHQRTHTGEKP
YVCRECGRGFSVKSTLITHQRTHSGEKP
  YVCRECGRGFTDRSSLLTHQRTHTGEKP
YVCRECGRGFSVKSFLISHQRTHSGEKP
  YVCRECGRGFSLKSSLLRHQRTHTGEKP
  YVCRECGRGFSWKSGLITHQRTHTGEKR
  YVCRECGRGFSLKSSLLTHQRTHTGEKP
  YVCRECGHGFNRPSRLIRHQRTHSGEQP
  YVCRECGRGFTDRSSLLTHQRTHTGEKP
  YVCRECGHGFNRRSQLIRHQRTHTGEQP
  YVCRECGRGFSLKSSLLTHQRTHTGEKP
  YVCRECGQGFSGKSGLNRHQRTHSGEKP
  YVCRECGRGFSRKSSLLRHQRTHTGEKP
  YVYKECGRGFSVKSTLIKHQRGHSGEKP
  YVCES
  YVCKECGRGFSRNSGLITHQRTHSGEQP
  YVCRECGRGFNQKSGVISHQRIHSGEKP
  FVCGECGRRFSWQSNLITHQRTHSGEKP
  FVCRECGRGFSAKTSLINHQRIH*GKKP YVCRDGG*
   
   
  >PRDM7_dasNov Dasypus novemcinctus (armadillo) AAGV020462211 9 xena pseu TRAPP
  >PRDM7_echEur Echinops europaeus (hedgehog) ti|970966337
  0  0
  epkpeihpcPSCSLAFSAQKFLNQHVKHSHPSQILPGTSTRKQPQVENPCLSNQNQQKQHSNFQNQHDSTESQEAIEKFKPLLKMIKQKTISNGFSKLPKEQIGSSREHEKTKEEESNSCQKMNPEDTSELLVGLGMSRIV
0 AQDAFRDISTYFSREEWAEMGRWEKLRYRNVKRNYEALLAI 1
  DKYEGSGKNYYDMSHIITHQKTHTGEKP
2 GLRAPRPAFMCHRKQSIKPQVDDAEDSDEEWTPRQQ 1
  HVCKECGRGFSEKSSLIAHQRTHTGEKP
2  0
  HVCRECGRGFSEKSSLIAHQRAHTGEKP
0  1
  HVCRECGRGFSEKSGLITHQSTHTGEKP
2 EPRRKGIDVKMYSLRERKGLAYEEVSEPQDDDYL 1
  HVCRECG<font color=magenta>r</font>GFSAKSSLIAHKRTHTGEKA PCLQGSVGELQ
2 yCEKCQNFFIDSCTVHGPPIFVKDSAVDKGHPNRSALTLPSGLRIGPSGIPEAGLGIWNEASDLPLGLHFGPYEGQVTEDEEAANSGYSWL 0
0 ITKGRNYYEYEDGKDKSWANWMR 2
1 YVNCAWDDKEQNLVAFQYHRQIFYRTCRTIRPGCELLVWYGDEYGQELGIKWGSKWKKEFMTGT 1
2 ELKPEIHPCPSCPLAFSSEKFLSQHVRRHHPSQSFPAACAREHFQPQNPRPRGEEQQQHSDQCGWKDKAEGQETENRPKPLFERIKPMGSPRAFYNPPRGQMRSSREGKRMMEIQPSQDQKMNSE RGQLFLGVGIFKTEV
IKFGENRQDFSDKSDHTSHQRTHTGEKP
YVCRECGRGFSNNSHLTRHQRTHTGVKP
YVCRECGQGFSVKPALTKHQRTHTVEKP
yVCSECG GFSVKSTLITHQRTHTGEKP
CVCRECGRGFNNKPDLTKHQRTHTGEKS
  YVCRECG GFSVKSTLIIHQRTHTGEKP
  YVCRECGRGFSEKSNLTVHQRTHTGEKP
  YVCRECGRGFSEKSNLTVHQRTHTGEKP
  YVCRECGRSFSVKSTLITHQRTHTVEKP
  YVCMKSEVVVSNKSHLNSHRRMKCGHRT PPPPQL
   
   
  >PRDM7_choHof Choloepus hoffmanni (sloth) ABVD01893961 2 xena gene noDet 0  0
  >PRDM9a_loxAfr Loxodonta africana (elephant) genome Afro gene 12 noDet chr 153 novel synteny THEG+ MIER2+ PPAP2C PRDM9- ZNF699-
  0  1
0 MSPARAAKKNPRGDVGSAGRTPT 0  
  2  1
  0 aKDTFRDISIYFSKEEWAEMGEWEKFRYRNVKRNYEALVTI 1
  2  0
  2 GLRAPRPAFMCHRRQAIKAQVDNTEDSDEEWTPRQQ 1
2 VKPPSVASRAEQSRHQK 0
  0 GTPKALLGNESSLKEVSGTAILLNTTGSEQAQKPVSSPGEASTSDQPSRWKL 1
  2 EPRRNEVEVKMYNLRERKGLEYQEVSEPQDDDYL 1
  2 yCEKCQNFFIDTCAVHGAPMFVKDSPVDRGHPNHSALTLPPGLRIGPSSIPKAGLGVWNEASELPLGLHFGPYEGQVTEDKEAANSGYSWL 0
0 ITKGKNCYEYVDGKDESWANWMR 2
1 YVNCARDEEEQNLVAFQYHRQIFYRTCRTIQPDCELLVWYGDEYGQELGIKWGSRWKKELTSGR 1
  2 EPKPEIHPCPSCRLAFSSQKFLSQHMKHSHPSPPFPGTPERKYLQPEDPRPGGRRQQRSEQHMWSDKAEDPEAGDGSRLVFERTRRGCISKACSSLPKGQIGSSREGNRMMETKPSPGQKANPEDAEKLFLGVGTSRIAK
VRCGECGQGFSQKSVLIRHQKTHSGEKP
YVCGECGRGFSVKSVLIKHQRTHSGEKP
YVCGECGRGFSVKSVLITHQRTHSGEKP
YVCGECGRGFSVKSVLITHQRTHSGEKP
YVCGECGRGFSQKSDLIKHQRTHSGEKP
YSCRECGRGFSRKSVLITHQRTHSGEKP
YVCGECGRGFSQKSNLITHQRTHSGEKP
YVCGECGRGFSRKSVLITHQRTHSGEKP
YVCGECGRGFSQKSNLITHQRTHSGEKP
YVCGECGRGFSQKSDLITHQRTHSGEKP
YVCRECGRGFSRKSNLITHQRTHSGEKP
YVCRECRRGFSVKSALI            GHGRRKCSKSAEPLHFPRVSRDQK
>PRDM9b_loxAfr Loxodonta africana (elephant) genome Afro pseu 3 noDet approx seq after frameshift correction
0 0  
  0  1
  0  1
  2  1
  2  1
  2 ycekcQNFFFENCAAHGPPTLLKDSAVGQGRPKHSALVLPPGLRLGPSGIPEAGLGVWNEASDLPLGLHFGPYEGQVTEDEEATNSGYSWL 0
  2  0
  0 ITKGRNCYEYVDGKDKSCANWMR 2
  0 GTPKVLLSNESSLKEVSGTAILLSTMGSEQAQKPVSSPGEASTSDQPSRRKQ 1
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRAIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAEK 1
  2 EPRRKEVEVNMYSLRERKGLVYQEVGEPQDDDYL 1
2 GLKPEIHPCPSCPLAFSTEKFLSQHVQRNHPSQIFPVTYARKHLQPQDPRPGDQQQPQPHSDQCHCSDKAEDQETEKRSKPLFESTKQMGISRAYSSPPEGQMRSSREDKRTMEIEPSQDQKMNPEETRLFVGVGILKTAR
  2 yCEKCQNFFIHTCAVHGAPMFVKDSHVDRGHLNHSALTLPPGLRIGPSSIPEAGLRVR EVSEQLLGLHIGPYEGQVTEDkEAAHSGYSWL 0
IKCGEYGQGFSVKPNLTTHQRTHTEEKP
  0 ITKGRNCYKYVDGKDDPWANRMR 2
YVCRECGRGFGQKPNLSRHQRTHTGEKP
  1 YVNCIQD KEQNLVAFQYHRQIFHWTCCTIRPGCELLVWYGDNYSQELGIKWGSR KKEL    1
YVCRECGRGFG.................
  2 EPKPEIHPCPSCPLAISSQKFLDQHTKHSHPSPPFPGTPERKHLQPEDPHPGGRRQQHSEQHLNDKAEDPETGDGSKPVFERARLVGGGAGGVSKVCSSLPKGQMGSSREGNRMMETEGQKVNPEDTEKLFLGVGISRLAK
  VRCGEYGQGFSQKSVLIRHQRTYSGEEH
>PRDMx_monDom Monodelphis domestica (opossum) gene genome no GAS8 fragment KRAB SSXRD SET weak C2H2 domain
  YVCGECGRGFSWKSQLTRHQRSHSWEKP
  0
  YVCRECGGFSVKSTLI            GTGEGNAATIHLHLPS
0 GEDAFKDISTYFSKKQWVKLKEWEKVRLKNVKRNYEAMIKI 1  
   
  2 GLSVPRPAFMCRGRQNKKVKVEESGDSDEEWIPKQL 1  
  >PRDM7_loxAfr Loxodonta africana (elephant) genome Afro pseu 5 GAS8+ scaffold_57 several frameshifts; ZNF540 opposite strand upstream of N-terminus
  2 VKTLRFPSRAKQRTHPK 0
  0 0  
  0
  0 1
  2 DCRRKDVEVHIYSLRERKYQVYQEMWDPQDDDYL 1  
  2 GLRASHPAFTCHCMQAIKAQMDDTEDSNEEQTPRQq 1
  2 yCEECQIFFLDSCPLHGPPTFVQDSAMVKGHPYCSAITLPPGLRIGLSGIPGAGLGVWNEASTLPLGLHFGPYKGKMTEDDEAANSGYSWM 0
  2 VRPSWVAFRMEQSKHQR 0
0 ITKGRNCYEYVDGKEESCSNWMR 2 
  0 GMLRVPRSNESSLKNLSGTSIMLSRAGSEQAQKLVLPPGKASTSDEHSRQKP 1
  1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKRPLPELTGE 1
  2 EHRRKGVEVKMYSF ERKGLVYQEIS PQDDDYL 1
  2 GKPGISLCPSTLWASPLIPSSINTRCSKQPP*VFLDSGTGKL*AGRSTAGPATSNRFQLLSDKETSPKEHPSSLWGKTKQVDRREKFSLPQSQQVRGKESSSGEDLSRIQGKSTRQTTMAFQERNR
  2 YCEKCQNFFIDTCESHGVPTFVKNSTTDSGHPNHLALTPSSGLRTRPSSIPKAWLRLWNKAFELLLGLPFSPCEGQVIEDEAVDNSGYSWL 0
  KECE*GFTHQTNLVTHRWTHSGERP 
  0 2
YVCV*GFTQKLGFSPYTWTL* 0  
  1 YVNGTQDEKEQNLVFFQYHRQIFYQTCYAVWPGCQLLVWYRDECGQELGIKWDNRGKKEFe    1
 
  2 EPKPEAHPCPSCPLAFSSEKFLSQHMKHNHPSQSSPETPERKHLQPEDPHPGHQNQQQQQHSDPHRWNDKAEGQQTGDRSKPMFENIRQEVTSRAFSSLPKGQMVCSREGNRMMETEPSPGLKVNPEVTGKLFLGVESSRIAK
  >PRDMx_macEug Macropus eugenii (wallaby) ABQO010244377 ABQO010410412 ABQO011136158 ABQO010410657
  VKYRGCGRDFSDRSHQSGHQRRHQ
  0 0
  KKP
  0 GEDTYKDISMYFSKKQWMELREWEKIRLKNVKQNYEAMIKI 1
  SVCKKVKREFSHKSVLITHQRTHSGEKS
  2 gFSAPRPTFMCHGKQNKEAKVEESGDFDEEWIRKQP 1  
  YVCKESGRGFSAKSNLIRPRRTHTGEKP
  2 0
  YVCGERGG.FSVSGLII.HQRAHSPEKP
  0 1
  YVCREGRRGFGDKSSFIKHQRATLGEKS
  2 ECRRKEAEVHIYNLRERKYQVYQEIWDPQDDDYL 1
  YVCKESGRGFS                  AKSNLIRPRRKKCRHDTTPHPQL
  2 FCEECQTFFLETCAVHGPPKFVQDSVMVKGHPYCSAITLPPGLRIGLSGIPGAGLGIWNEASNLPLGLHFGPYEGQMTEDDEAANSGYSWM 0  
  0 2
  1 YVNCARDEEEQNLVAFQYHRKIFYRTCQIIRPGCELLVWYGDEYGQELGIKWGSKWKRPPITLT 1  
  2 espGIHVCPFCPLGSPLMHSQSTYAAQTSPQICLDSRTRNNYEPDQLLPPSSSCVSDKVEISQKQRPSSLCGKTKQVNLVEMLSLPQSPQVSKKSSSMDWDVSRIQGKSAKQTTQGFQKGDKKGFGS
  YKCGEYKQGFTSKSVLNRHRQKHSGKKP
  YVCEECGRGFTQVSNLTTHRQTHSGEKP
  YVCEECGRGFARKLNLTTHRRTHSGEKP
  YVCEECGRGFTQGSSLITHRRTHSGEKP
  YVCEECGRGFAWKLNLTTHRRTHSGEKP
YVCKECGRGFTQGSSLITHRRTHSGEKP
YVCKECGRGFTQGSNLTTHRRTHSGEKP
  YVCKECGRGFAWKSNLTTHRRTHSGEKP
  YVCKECGRGFTQVSNLIAHRRTHSGEKF
YVYGQEFTWKSDLSTCR* 0 
   
   
  >PRDMx_sarHar Sarcophilus harrisii (tasmanian_devil) AFEY01386448 two distal frameshifts, syntenic -PSMC4
  >PRDM9_triMan Trichechus manatus (manatee) AHIN01064530 synteny: none (12740 bp) contig terminates prior to repeat
  0 0
  0 MSPARATEESPGGDARRTPT 0  
  0 EEDSFKDISMYFSKKQWMELRDWEKVRFKNVKRNYEAMIKI 1
  0 AKDAFRDISIYFSKEEWAEMGEWEKFRYRNVKRNYEALVAI 1
  2 GLTASRPTFMCRGKQNRRAKVEESGDSDEEWMPKQL 1  
  2 GLRAPRPAFMCHRRQAIKAQVDDTEDSDEEWTPRQQ 1
  2 VKASRFSSRLKQKTHLR 0
  2 VKPPWVVSRVEQSKHQK 0
  0 1
  0 GTPRAPLNNESSLKEVSGTEILLSTAGSEQAQKLVSSPGEASTSDQHSRQKL 1
  2 eCRKKDAAVHIYNLRERKYPIYQEIWDPQDDDYL 1
  2 EPRRKEVEVKMYSLRERKGLAYQEVAEPQDDDYL 1
  2 FCEECQTFFLETCAVHGPPKFVQDGAMIKGYPYCSAITLPPGLRIGLSGIPNAGLGVWNEGSNLPMGLHFGPYEGKSTEDDEAANSGYSWM 0  
  2 yCEKCQNFFIDACAVHGAPTFVKDSPADRGHPNRSALTLPPGLGIGPSGIPKAGLGVWNEASELPLGVHFGPYEGQVTEDEEAANSGYSWL 0
  0 ITKGRNSYEYVDGKEESCSNWMR 2
  0 ITKGRNCYEYVDGKDESWANWMR 2
  1 YVNCAREEEEQNLVAFQYQRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGRKWKRPLTGIT 1  
  1 YVNCARNEEEQNLVAFQYHRQIFYRTCSTIQPGCELLVWYGDEYGQELGIKWGSRWKKELTSGR 1
  2 tspGIHLCPSCPSDFSTHAFLSQQVPKQPSQGFLDSTTGSHGLGNLHPDQLLPPGYSCVSDKAETSRKEHPSTLWEKIKKVDLEEPASLPQRQHVREEESNLGEWDLSRIQGESVKLTSLALQEESQEGLGQ
  2 EPKPEIHPCPSCPLAFSSQKFLSQHVKHRHPSQPFSGTPARKHLQPEDPRPGDQRQQHSERTQNDKAEDRETGDGSKRVFERTREGETSKVDSSLPKGQIGSSREGNRMMETEPSPGQKVNPEDTEKLLLGVGISRIVK
  YKCGEGKQRYSSKPGLIRHRQRTHSGEKC
  VRHGECGQGFSQKSVLITHQRTHSGEKP
  YVCEECKRGFARRSYLNIHRRRHSGQKP
  YVCRECGRGFS
HVCEECKRGFADKSTLIRHRWTHSKEKP
YICEECKQGFTQKSYLIKHRWKHLGEKP
YVCKECKQRFTQRSYLNTHRWRHRQRS
LLCMRSAGEDLHRDHLIIHRWTHSGERP
YVCEECKGGFTQRSYLNTHTDGNVGKEEP
YVCEECR* 0
   
   
  >PRDMxa_ornAna Ornithorhynchus anatinus (platypus) gene genome chrX5 fragment X5 +- 20577549 no iMet possible in first exon phase 2
  >PRDM7_triMan Trichechus manatus (manatee) pseudogene AHIN01061278 internal stop and frameshift
  0 0
  0 0  
  0 1  
  0 AKDAFRDISIYFSKEGWEEMGEWEKFRYRNMKRN^VQRNYKALVTI 1
  2 1
  2 GLKVPHPAFMCH*RQSIKSQTDDTEDSHEEWASRQQ 1
  2
  2  0
  0
  0 GILRASLSNKSSLKELSGT-IMLSRAGPEQAQKSVLPPGEASTSDKHSRQKL 1
  2 RIGKKPQVRDFNLRKQKRKIYNENYRPEDDDYL 1
  2 EPRRKEVEVKTYNL*ERKDLVYQEVS*PQDGDYL 1
2 yCEICQTFFLEKCVLHGPPVFVQDLPVEKWRPNRSTITLPPGMQIKVSGIPNAGLGVWNQATSLPRGLHFGPYMGIRTKNEKESHSGYSWM 0  
  2 yCEKCQNF-TDSCAAHGDPTFVKDSAMDSGHPHHS------GLGIGPSSIPKARLEVWNKA    GLHFSPYEGQVTEEEEAANSSYSWV 0
2 IVRGKNYEYLDGKDKAFSNWMR 2 
  0  2
1 YVNCARSEREQNLVAIQYQGEIYYRTCRVIPPGQELLVWYGLEYGRHLGILPNNNNPEP 1  
  1 YVNYTQDKE*QNLVAFQYHRQIFYRTCRAIWPGCELLVWYGDEYGQELDIKWNSR-QKEFTAGR 1
  2 ERAKARVRKSERIEKAMARVRKSEQIERAKARVRTSERIERAMATV RKSERIERAKVTVKKSEQIERAMGRVRKSERIERAKDMGRKKALGGLPRPCRGGLSDETQQRKGGGHEQLGQKPGPSEA RAGPAEGSATPRR
HCCDVCRKAFKRLSHLRQHKRIHTGEKP 
LVCKVCRRTFSDPSNLNRHSRIHTGLRP 
YVCKLCRKAFADPSNLKRHVFSHTGHKP 
FVCEKCGKGFNRCDNLKDHSAKHSEDNSTPKP* 0
 
>PRDMxb_ornAna Ornithorhynchus anatinus (platypus) gene genome chrX5 tandem fragment slight frameshift taa to ta YVN exon X5 +- 20605294 20611704 no iMet possible in first exon phase 2 gg as expected
0 0 
0 1
  2
2 0 
0
2 RSGKKPQVRDFNLRKQKRKMYTEESEPEDDDYL 1
  2 yCEDCQTFFLEKCSVHGPPVFVQDCEAKRCQQNRSEVTLPPGLLIKMSGIPNAGLGVWNQATSLPRGLYFGPFVGIRKNNVKDSLSGYSWA 0  
  0 ILRGRNYEYLDGKNTSFSNWMR 2
  1 YVNCPRTKYEQNLVAIQYHREIYYRTTPCDSTRSRVAGVVWRRVRSYLGIFWKSETPKS 1  
2 ERPHSSGGSFAPSARSGGVKQRIWSKRRSAALQRTRERRNSTHDFPPKHEDTAARQDERQCPDRGRAKQRGVRKSEQIERAKAMGRKKALGGLSPPRRERLSDEAGQRKKSGHEQFWQKPGPSEAWAGPAEGSTIPRR
HCCDVCGKAFNRLSRLKQHKRVHTGEKP 
LVCKICKRAFSDPSNLNRHAKRHTGEKP 
FVCRVCGRSFNRSDNMNEHRWKHTSNNIIP NTGHMSATVVENASLCINRNYQIYKERATYL* 0
   
   
  >PRDM7_danRer Danio rerio (zebrafish) Q6P2A1 transcript BC064665 no KRAB SSXRD or exon 5 but knuckle SET early ZNf C2H2 array
  >PRDM7_echTel Echinops telfairi (tenrec) genome Afro pseu 5 noDet 2 frameshifts plus stop codon
  0 MSLSP 1
0  0
  2 DLPPSEEQNLEIQGSATNCYSVVIIEEQDDTFNDQPF 1
0  1
  2 YCEMCQQHFIDQCETHGPPSFTCDSPAALGTPQRALLTLPQGLVIGRSSISHAGLGVFNQGQTVPLGMHFGPFDGEEISEEKALDSANSWV 0
2 GLRAPRPAFMCHHRPAAKGQVEDSEDSDEEWTPRQR 1
  0 ICRGNNQYSYIDAEKDTHSNWMK 2
2  0
  1 FVVCSRSETEQNLVAFQQNGRILFRCCRPISPGQEFRVWYAEEYAQGLGAIWDKIWDNKCISQ 1
0 GMPGVSLRNESNLKVLSGTAILLTAAEPEQPH PGSPPGEATTSHEHLRQKV 1
  2 GSTEEQATQNCPCPFCHYSFPTLVYLHAHVKRTHPNEYAQFTQTHPLESEAHTPITEVEQCLVASDEALSTQTQPVTESPQEQISTQNGQPIHQTENSDEPDASDIYTAAGEISDEI
2 epELRRRAVMMNSLRERKNLMYQEVSTPCDDNCL 1
  HACVDCGRSFLRSCHLKRHQRTIHSKEKP
2 YGERCHNFFIDTHIAHGATTFVKDS    PMDRSNCSILPPGLRIGPSGIPEAGLGVWNEASELPLGLHFVPYEGQVTKDEAATNSGYSWM 0
  YCCSQCKKCFSQATGLKRHQHTHQEQEKNIESPDRPSDI
0 ITKGRNCYEYVDGKDKSWANwMr 2
  YPCTKCTLSFVAKINLHQHLKRHHHGEYLRLVESGSLTAETEEDHT
1  1
  EVCFDKQDPNYEPPSRGRKSTKNSLKGRGCPKKVAVGRPRGRPPKNKNLEVEVQKIS
2 EPKPEVNPCPSCPLALSSQQLKHSHPFQSLPGTPAEKHLQAEDFHPRGQKLHHFEHHIRNERAEGLETGDGSKPMLERTRLGKMSKTTYNSPKGQTRSSGETNRIREADLNPGQGVNAEDTRNLFLGIGISRIAK
  PICTNCEQSFSDLETLKTHQCPRRDDEGDNVEHPQEASQ
VRCRECGHGFSVKSSLITHQRIHTGEKP
  YICGECIRAFSNLDLLKAHECIQQGEGS
YVCSECGQGFSQKSVLIRHQRIHTGEKP
  YCCPHCDLYFNRMCNLRRHERTIHSKEKP
YICRECDRGFSRKSHLIKHQRTHSGEKP
  YCCTVCLKSFTQSSGLKRHQQSHLRRKSHRQSSALFTAAI
YVCRECGQGFSQKSVLITHHRTHSGEKP
  FPCAYCPFSFTDERYLYKHIRRHHPEMSLKYLSFQEGGVLSVEKP
YVCRECGRGFSQKSDLIKHERTHS
  HSCSQCCKSFSTIKGFKNHSCFKQGEKV
  YLCPDCGKAFSWFNSLKQHQRIHTGEKP
>PRDM7a_proCap Procavia capensis (hyrax) ABRQ01227339 Afro pseu 17 noDet frameshift and two stop codons in exon 10
  YTCSQCGKSFVHSGQLNVHLRTHTGEKP
0  0
  FLCSQCGESFRQSGDLRRHEQKHSGVRP
0 AKDAFRDISIYFSKEEWAEMGEWEKSRYRNVKRNYEALVAI 1
  CQCPDCGKSFSRPQSLKAHQQLHVGTKL
2 GLRAPRPAFMCHRRQAIKAQVDNTEDSDEEWTPRQQ 1
  FPCTQCGKSFTRRYHLTRHHQKMHS* 0
2 AKPRSVASREELRKPQK 0
  0 GTPKALLGNESSLKEVSGTAILLNTTGSEQAQKPVSSPGEASTSDQPSRWKL 1
  2 EPRRKEAEVKRYNLREGTNPAYQEVGDTQDDDYL 1
  2 yCEKYQKFCTDVCPAHGALAFLKDLSVERGHPKHSALTLPPGLRIGASGIPEAGLGVWSEASELPPGLHFGPCERQVTKDNEAANRGYLWP 0
  0 ITKGRSCSLYMDRKDESRANWMR 2
  1 YVRHAGDKEEQNLVAFQYHRQIFYRTCRPVQPGCELLVWPGAEDGQELGLQRGSRWKKELASQT 1
  2 EARPEIHPCPSCPLAFSTPKFLSHHVKHSHPCQPFPGTLARRPLQPEDPHPGDRRQQHSEQPNWNDKAEGPEIGHVSRPVFEKTRQEGFSEARSSLPKGQMGRSREAERTTETQNSPGQKVNPEDTEILFLRGGISEIAK
VKCGECGQGFSRKSHLIRHQRTHSGMKP
  YVCRECRRGFGVKSLLTRHQRTCSGMKP
  YVCRECGQGFRWKSHLIRHQRTHSGEKP
  FVCSECGRGFSVRSHLFTHQRTHSGEKP
  YVCKECGRGFSVKSYLTTHQRTHTGEKP
  YVCKECGRGFSWKSHLITHQRTHSGEKP
  YVCRQCGRGFSVQSHLIIHQRTHSGDKP
  YICRECGRDFTEKSSLIRHRRTHSGEKP
  YVCRDCG<font color=red>*</font>GFTRKSLLITHQRTHSGEKP
  YVYRECGRGFSCKSYLISHQKTHLGEKP
  YVCSDCGRGFSVKSQLVSHKRTHSGEKP
  FVCREC<font color=red>*</font>RGFSVKSSLISHQRTHSGEKP
  FVCRECGRGFSVKSSLIKHQRTHSGEKP
  YVCKECGRGFSQKSSLITHQRTHSGEKP
  YVCRECGRGFGLKSYLITHQRTHTGEKP
  YICRECG<font color=red>*</font>GFSVKSSLITDQRTHTGEKP
YVCRECGRAFSKKSSLISHHRTHPAEAV
YVHRECG
   
   
  >PRDM7_salSal Salmo salar NM_001173912
  >PRDM7b_proCap Procavia capensis (hyrax) ABRQ01392668 Afro pseu 13 noDet CpG stop in ZNF1, 4aa insert exon 4, frameshift exon 5 c to cc, 4aa del exon 9 etc
  0 MESEWKSGGEEESGSEGERTPSSSHRDP 1
  0 0
  2 VCVSEQMKRAWLRQMNLRSRARVGYTEEEELRDEEYF 1
0 AKEYFRDISMFFS<font color=red>*</font>ERWVEMSESEKFCYRNMKRNCETTGAG 1
  2 FCEECKSFFIEECELHGPPLFIPDTPAPLGAPDRARLTLPPGLEVRTSAIPGAGLGVFNHGHSVTQGTHYGPYEGELTDKELDMESGYSWV 0
2 GIRVFHPAFMIHPRKTIKAQMDDSEDSDEDWTARQQ 1
  0 IYKSKQRDEYIDGKRDTHSNWMR 2
2 AKPPSVASREELRKPQK 0
  1 YVNCARSEDEQNLVAFQYRGGILYRCCKPIAVGEELLVWYGEKYARDLGIVFDFLWDKKCSAR 1
0 GPSRAPLRIKSSLKRVSEPAIVWSTADSEQAQERVQKPVLSRREASASDQPLRRKV 1
  2 GVNESSQSQIFSCSGCLFSFTAQTYLYKHIKRCHREECVRLPRSGGIRAETLAPPSGSQRCSTTPDRTPITLLTQKHRDTGKPAP
  2 EPRRHEAEDKRYSLRGGTGPACQEVGEPQDDDYL 1
  HHCSQCGKSFRRSGDLKVHQRTHTGERP
  2 yCEECRNFFIDTCVAHGTPVFIKDISVERGHPNRLALTLPTGLRIGPSSIPDAGLGVWNEASELPPGLHFGPCEGQVTEDEEAANSGYSWL 0
  YHCSQCGKRFSVSGHLKTHQRTHTGERP
  0 VTKGRSCFEYVDGKNEALANWMR 2
  YHCSQCGKSFCRSGDLKVHQRTHTGERP
  1 YVRRARDTEERNLVAFQYHRQIFYRTCCTVRPGCELLVWRGAEDSQALGSRRTMELTSQK 1
  YHCSQCGKRFSVSRHLKRHQHIHTGERP
  2 EARPEIHPCPSCPLAFSTQKFLSYHVNHSHSSEPFPGTHARRHLPREDPRPGYERDQRSEQHNWNDSTGGPERDVSRP VIERTWEGEISEACSSLPRGHMGRSREGERMAETQSSPGLKVTLAK
  YHCSQCGKSFSASWSVKRHQITVHSVGRVSVSQEA* 0
VRWDEYGQGFGPKSHHITQQTKHSGKKP
CVCKECG*GFRVKSLLKSHQMTHSGEKP
YVCRECGRGFSVKSTLITHQRTHSGEKP
YVCRECGRGFSVKSFLISHQRTHSGEKP
YVCRECGRGFSWKSGLITHQRTHTGEKR
  YVCRECGHGFNRPSRLIRHQRTHSGEQP
  YVCRECGHGFNRRSQLIRHQRTHTGEQP
  YVCRECGQGFSGKSGLNRHQRTHSGEKP
  YVYKECGRGFSVKSTLIKHQRGHSGEKP
  YVCKECGRGFSRNSGLITHQRTHSGEQP
YVCRECGRGFNQKSGVISHQRIHSGEKP
FVCGECGRRFSWQSNLITHQRTHSGEKP
FVCRECGRGFSAKTSLINHQRIH<font color=red>*</font>GKKP YVCRDGG
   
   
  >PRDM7_oncMyk Oncorhynchus mykiss testis FP324541 CR372724
  >PRDM7_dasNov Dasypus novemcinctus (armadillo) AAGV020462211 9 xena pseu TRAPP
  0 mTPSSSHRDPVC 1
  0 0
  2 VSEQRKRAWLKQVNLCSRARVRVGYTEEEELREEDYF 1
0 AQDAFRDISTYFSREEWAEMGRWEKLRYRNVKRNYEALLAI 1
  2 FCEECKSFFIEECELHGPPLFIQDTPAPLGAPDRARLTLPPGLEVRTSAIPGAGLGVFNYGHSVTQGTHYGPYEGELTDTELAMESGYSWV 0
  2 GLRAPRPAFMCHRKQSIKPQVDDAEDSDEEWTPRQQ 1
  0 IYKSKQSDEYIDAKRETHSNWMR 2
  2 0
  1 YVNCARNEEEQNLVAFQYRGGILYRCCKPLAVGEELLVWYGEEYARDLGIIFDFLWDRKSSAR 1
  0 1
  2 GVNESSQSQIFSCSGCPFSFTAQIYLYKHTKRCHREEYVRLPRSGGIRSETLAPPSGSQRCSTTPDRTPITLLTQKHQDTGKPRP
2 EPRRKGIDVKMYSLRERKGLAYEEVSEPQDDDYL 1
  HHCSQCGKSFHRSGDLKVHQRTHTGERP
2 yCEKCQNFFIDSCTVHGPPIFVKDSAVDKGHPNRSALTLPSGLRIGPSGIPEAGLGIWNEASDLPLGLHFGPYEGQVTEDEEAANSGYSWL 0
  YHCSQCGKRFSVSGNLKTHQRIHTGERP
0 ITKGRNYYEYEDGKDKSWANWMR 2
  YPCSQCGKSFHRSDLKVHQRTHTGEKP
  1 YVNCAWDDKEQNLVAFQYHRQIFYRTCRTIRPGCELLVWYGDEYGQELGIKWGSKWKKEFMTGT 1
  YHCSQCGKRFSVSGNLKTHQRIHTGERL
  2 ELKPEIHPCPSCPLAFSSEKFLSQHVRRHHPSQSFPAACAREHFQPQNPRPRGEEQQQHSDQCGWKDKAEGQETENRPKPLFERIKPMGSPRAFYNPPRGQMRSSREGKRMMEIQPSQDQKMNSE RGQLFLGVGIFKTEV
  YPCSQCGKSFHRSELKVQQRTRPGKKTISLFPVWE*
IKFGENRQDFSDKSDHTSHQRTHTGEKP
YVCRECGRGFSNNSHLTRHQRTHTGVKP
YVCRECGQGFSVKPALTKHQRTHTVEKP
yVCSECG GFSVKSTLITHQRTHTGEKP
CVCRECGRGFNNKPDLTKHQRTHTGEKS
  YVCRECG GFSVKSTLIIHQRTHTGEKP
  YVCRECGRGFSEKSNLTVHQRTHTGEKP
  YVCRECGRGFSEKSNLTVHQRTHTGEKP
  YVCRECGRSFSVKSTLITHQRTHTVEKP
  YVCMKSEVVVSNKSHLNSHRRMKCGHRT PPPPQL
   
   
  >PRDM7_ictPun Ictalurus punctatus FD367165 FD063496 C-terminus missing second gene present
  >PRDM7_choHof Choloepus hoffmanni (sloth) ABVD01893961 2 xena gene noDet 0  0
  0 MKTEAKDGGTEGI 2
  0 1
  1 VKKETLELSISNHGNSFHIIPEVVSIKEEEADVKDFL 1
2  1
  2 YCEVCKSVFFSKCEVHGPALFIADSPVPMGVADRARQTLPPGLEIQKSGIPDAGLGVFNKGETVPVGAHFGPYQGELVDKEEAMNSVYSWV 0
  2 0
  0 IYMSRQCEKYIDAKREVHANWMR 2
  0  1
  1 YVNCAHSDGEQNLVAFQYRGGILYRCCRPINPGQELLVWYEEKYASDVGPIFAQLWNIKCSLSGKVHT
  2 1
 
  2 ycekcQNFFFENCAAHGPPTLLKDSAVGQGRPKHSALVLPPGLRLGPSGIPEAGLGVWNEASDLPLGLHFGPYEGQVTEDEEATNSGYSWL 0
=== Other genes of relevance ===
  0 ITKGRNCYEYVDGKDKSCANWMR 2
 
  1 YVNCARDDEEQNLVAFQYHRQIFYRTCRAIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAEK 1
It is instructive to consider certain closely related placental KRAB, ZNF and PRDM genes that may have some connection to the origin of PRDM7 and PRDM9. Nomenclature is very unsatisfactory in these gene families, as can be seen from lack of correspondence between gene name and intronation which is exceedingly well conserved in metazoa. For example, HKR1 a conventional ZNF family member, is egregiously misnamed. The methylase component is exceedingly old with clear antecedents in bacteria. Evidently gene duplications in an early intronless stem eukaryote were subsequently intronated randomly in different paralogs and shuffled into various larger proteins. Within PRDM*, the gene tree is (((PRDM7/9,PRDM11),(PRDM4,PRDM10)),PRDM6) with others only related by a PR (SET) domain.
  2 GLKPEIHPCPSCPLAFSTEKFLSQHVQRNHPSQIFPVTYARKHLQPQDPRPGDQQQPQPHSDQCHCSDKAEDQETEKRSKPLFESTKQMGISRAYSSPPEGQMRSSREDKRTMEIEPSQDQKMNPEETRLFVGVGILKTAR
 
  IKCGEYGQGFSVKPNLTTHQRTHTEEKP
A set of fragmentary sequences from murid rodents is also of some comparative interest. These include common strain variants of lab mouse as well as close relatives. Only the terminal zinc finger array is available for most of these. While these are likely PRDM7 (rather than PRDM9 which rodents never had), it is not possible to decisively establish this with GAS8 synteny in any of the rodents (or lagomorphs) currently the subject of a genome project.
  YVCRECGRGFGQKPNLSRHQRTHTGEKP
 
  YVCRECGRGFG
  >PRDM11_homSap Homo sapiens (human) 511 aa 7 exons chr11:45115564 44% id PRDM9 SET no C2H2 array
  0 MLKMAEPIASLMIVECRACLRCSPLFLYQREK 0
  0 DRMTENMKECLAQTNAAVGDMVTVVKTEVCSPLRDQEYGQPC 2
  1 SRRPDSSAMEVEPKKLKGKRDLIVPKSFQQVDFW 1
  2 FCESCQEYFVDECPNHGPPVFVSDTPVPVGIPDRAALTIPQGMEVVKDTSGESDVRCVNEVIPKGHIFGPYEGQISTQDKSAGFFSWL 0
  0 IVDKNNRYKSIDGSDETKANWMR 2
  1 YVVISREEREQNLLAFQHSERIYFRACRDIRPGEWLRVWYSEDYMKRLHSMSQETIHRNLAR 1
2 GEKRLQREKSEQVLDNPEDLRGPIHLSVLRQGKSPYKRGFDEGDVHPQAKKKKIDLIFKDVLEASLESAKVEAHQLALSTSLVIRKVPKYQDDAYSQCATTMTHGVQNIGQTQG
  EGDWKVPQGVSKEPGQLEDEEEEPSSFKADSPAEASLASDPHELPTTSFCPNCIRLKKKVRELQAELDMLKSGKLPEPPVLPPQVLELPEFSDPAGKLVWMRLLSEGRVRSGLCGG* 0
   
   
  >PRDM4_homSap Homo sapiens (human) 801 aa 11 exons chr12:108126644 3DB5:EHGPV..IGVPE SET + 1 + 6 C2H2 domaians
  >PRDMx_monDom Monodelphis domestica (opossum) gene genome no GAS8 fragment KRAB SSXRD SET weak C2H2 domain
  0 MHHR 2
  0
  1 MNEMNLSPVGMEQLTSSSVSNALPVSGSHLGLAASPTHSAIPAP 1
  0 GEDAFKDISTYFSKKQWVKLKEWEKVRLKNVKRNYEAMIKI 1  
  2 GLPVAIPNLGPSLSSLPSALSLMLPMGIGDRGVMCGLPERNYTLPPPPYPHLESSYFRTILP 1
  2 GLSVPRPAFMCRGRQNKKVKVEESGDSDEEWIPKQL 1  
  2 GILSYLADRPPPQYIHPNSINVDGNTALSITNNPSALDPYQSNGNVGLEPGIVSIDSRSVNTHGAQSLHPSDGHEVALDTAITMENVSRVTSPISTDGMAEELTMDGVAGEHSQIPNGSRSHEPLSVDSVSN
  2 VKTLRFPSRAKQRTHPK 0 
  NLAADAVGHGGVIPMHGNGLELPVVMETDHIASRVNGMSDSALSDSIHTVAMSTNSVSVALSTSHNLASLESVSLHEVGLSLEPVAVSSITQEVAMGTGHVDVSSDSLSFVSPSLQMEDSNSNKENMATLFTI 1
  0 1
  2 WCTLCDRAYPSDCPEHGPVTFVPDTPIESRARLSLPKQLVLRQSIVGAEV 1
  2 DCRRKDVEVHIYSLRERKYQVYQEMWDPQDDDYL 1  
  2 GVWTGETIPVRTCFGPLIGQQSHSMEVAEWTDKAVNHIWK 0
  2 yCEECQIFFLDSCPLHGPPTFVQDSAMVKGHPYCSAITLPPGLRIGLSGIPGAGLGVWNEASTLPLGLHFGPYKGKMTEDDEAANSGYSWM 0  
  0 IYHNGVLEFCIITTDENECNWMMFVRKAR 2
  0 ITKGRNCYEYVDGKEESCSNWMR 2
  1 NREEQNLVAYPHDGKIFFCTSQDIPPENELLFYYSRDYAQQI 1
  1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKRPLPELTGE 1  
  2 GVPEHPDVHLCNCGKECNSYTEFKAHLTSHIHNHLPTQGHSGSHGPSHSKERKWKCSMCPQAFISPSKLHVHFMGHMGMKPHKCDFCSKAFSDPSNLRTHLKIHT 1
  2 GKPGISLCPSTLWASPLIPSSINTRCSKQPP<font color=red>*</font>VFLDSGTGKL<font color=red>*</font>AGRSTAGPATSNRFQLLSDKETSPKEHPSSLWGKTKQVDRREKFSLPQSQQVRGKESSSGEDLSRIQGKSTRQTTMAFQERNR
  2 GQKN
  KECE<font color=red>*</font>GFTHQTNLVTHRWTHSGERP 
  YRCTLCDKSFTQKAHLESHMVIHTGEKN
  YVCV<font color=red>*</font>GFTQKLGFSPYTWTL
  LKCDYCDKLFMRRQDLKQHVLIHTQ 21 ERQ
 
  IKCPKCDKLFLRTNHLKKHLNSHEGKRD
  >PRDMx_macEug Macropus eugenii (wallaby) ABQO010244377 ABQO010410412 ABQO011136158 ABQO010410657
  YVCEKCTKAYLTKYHLTRHLKTCKGPTS SSSAPEEEEEDDSEEEDLADSVGTEDCRINSAVYSADESLSAHK* 0
  0 0 
   
  0 GEDTYKDISMYFSKKQWMELREWEKIRLKNVKQNYEAMIKI 1 
  >PRDM10_homSap length=1160
  2 gFSAPRPTFMCHGKQNKEAKVEESGDFDEEWIRKQP 1
  0 ASLPVHNQVLPSIESVDGSDPLATLQTPLGRLEAKEEEDEDEDEDTEEDEEEDGEDTDLDDWEPDPPRPFDPHDL 1
  2 0 
  2 WCEECNNAHASVCPKHGPLHPIPNRPVLTRARASLPLVLYIDRFLGGVFSKRRIPKRTQFGPVEGPLVRGSELKDCYIHLK 0
  0 1
  0 VSLDKGDRKERDLHEDLWFELSDETLCNWMMFVRPAQNHLEQNLVAYQYGHHVYYTTIKNVEPKQELK 0
2 ECRRKEAEVHIYNLRERKYQVYQEIWDPQDDDYL 1 
  0 VWYAASYAEFVNQKIHDISEEERK 1
  2 FCEECQTFFLETCAVHGPPKFVQDSVMVKGHPYCSAITLPPGLRIGLSGIPGAGLGIWNEASNLPLGLHFGPYEGQMTEDDEAANSGYSWM 0  
  2 VLREQEKNWPCYECNRRFISSEQLQQHLNSHDEKLDVFSR 2
  0
  1 TRGRGRGRGKRRFGPGRRPGRPPKFIRLEITSENGEKSDDGTQ 0
  1 YVNCARDEEEQNLVAFQYHRKIFYRTCQIIRPGCELLVWYGDEYGQELGIKWGSKWKRPPITLT 1  
  2 espGIHVCPFCPLGSPLMHSQSTYAAQTSPQICLDSRTRNNYEPDQLLPPSSSCVSDKVEISQKQRPSSLCGKTKQVNLVEMLSLPQSPQVSKKSSSMDWDVSRIQGKSAKQTTQGFQKGDKKGFGS
YKCGEYKQGFTSKSVLNRHRQKHSGKKP
YVCEECGRGFTQVSNLTTHRQTHSGEKP
YVCEECGRGFARKLNLTTHRRTHSGEKP
YVCEECGRGFTQGSSLITHRRTHSGEKP
YVCEECGRGFAWKLNLTTHRRTHSGEKP
YVCKECGRGFTQGSSLITHRRTHSGEKP
YVCKECGRGFTQGSNLTTHRRTHSGEKP
YVCKECGRGFAWKSNLTTHRRTHSGEKP
YVCKECGRGFTQVSNLIAHRRTHSGEKF
  YVYGQE                      FTWKSDLSTCR
   
   
  >PRDM6_homSap length=595
  >PRDMx_sarHar Sarcophilus harrisii (tasmanian_devil) AFEY01386448 distal frameshifts and stop codons, syntenic -PSMC4
  0 MLKPGDPGGSAFLKVDPAYLQHWQQLFPHGGAGPLKGSGAAGLLSAPQPLQPPPPPPPPERAEPPPDSLRPRPASLSSASSTPASSSTSASSASSCAA
  0
  AAAAAALAGLSALPVSQLPVFAPLAAAAVAAEPLPPKELCLGATSGPGPVKCGGGGGGGGEGRGAPRFRCSAEELDYYLYGQQRMEIIPLNQHTSDPNN 1
  0 EEDSFKDISMYFSKKQWMELRDWEKVRFKNVKRNYEAMIKI 1   
  2 RCDMCADNRNGECPMHGPLHSLRRLVGTSSAAAAAPPPELPEWLRDLPREVCLCTSTVPGLAYGICAAQRIQQGTWIGPFQGVLLPPEKVQAGAVRNTQHLWE 0
  2 GLTASRPTFMCRGKQNRRAKVEESGDSDEEWMPKQL 1  
  0 IYDQDGTLQHFIDGGEPSKSSWMRYIRCARHCGEQNLTVVQYR 2
  2 VKASRFSSRLKQKTHLR 0   
1 SNIFYRACIDIPRGTELLVWYNDSYTSFFGIPLQCIAQDEN 1
  0 1
  2 LNVPSTVMEAMCRQDALQPFNKSSKLAPTTQQRSVVFPQTPCSRNFSLLDKSGPIESGFNQINVKNQRVLASPTSTSQLHSEFSDWHLWKCGQCFKTFTQRILLQMHVCTQNPDR 2
  2 eCRKKDAAVHIYNLRERKYPIYQEIWDPQDDDYL 1
1 PYQCGHCSQSFSQPSELRNHVVTHSSDRP
  2 FCEECQTFFLETCAVHGPPKFVQDGAMIKGYPYCSAITLPPGLRIGLSGIPNAGLGVWNEGSNLPMGLHFGPYEGKSTEDDEAANSGYSWM 0
  FKCGYCGRAFAGATTLNNHIRTHTGEKP
  0 ITKGRNSYEYVDGKEESCSNWMR 2  
  FK 21 CERCERSFTQATQLSRHQRMPNECKP ITESPESIEVD* 0
  1 YVNCAREEEEQNLVAFQYQRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGRKWKRPLTGIT 1
 
  2 GIHLCPSCPSDFSTHAFLSQQVPKQPSQGFLDSTTGSHGLGNLHPDQLLPPGYSCVSDKAETSRKEHPSTLWEKIKKVDLEEPASLPQRQHVREEESNLGEWDLSRIQGESVKLTSLALQEESQEGLGQ
  >ZNF133_homSap Homo sapiens (human) NP_001076799 KRAB Krueppel-associated box and zinc fingers
  YKCGEGKQRYSSKPGLIRHRQRTHSGEKC
  0 MAFRDVAVDFTQDEWRLLSPAQRTLYREVMLENYSNLVSL 1
  YVCEECKRGFARRSYLNIHRRRHSGQKP
  2 GISFSKPELITQLEQGKETWREEKKCSPATCP 1
  HVCEECKRGFADKSTLIRHRWTHSKEKP
  2 DPEPELYLDPFCPPGFSSQKFPMQHVLCNHPPWIFTCLCAEGNIQPGDPGPGDQ EKQQQASEGRPWSDQAEGPE GEGAMPLFGRTKKRTLG AFSRPPQRQPVSSRNGLRGVELEASPAQTGNPEETDKLLKRIEVLGFGT
  YICEECKQGFTQKSYLIKHRWKHLGEKP
  VNCGECGLSFSKMTNLLSHQRIHSGEKP
  YVCKECKQRFTQRSYLNTHRWRHRQRSL
  YVCGVCEKGFSLKKSLARHQKAHSGEKP
  <font color=magenta>v</font>FC<font color=magenta>a</font>ECR<font color=red>*</font>GFT<font color=red>*</font>RS<font color=red>*</font>LIIHRWTHSGERP
  IVCRECGRGFNRKSTLIIHERTHSGEKP
  YVCEECKGGFTQRSYLN<font color=magenta>t</font>HTDGNVGKEEP
  YMCSECGRGFSQKSNLIIHQRTHSGEKP
  YVCEECR
  YVCRECGKGFSQKSAVVRHQRTHLEEKT
  IVCSDCGLGFSDRSNLISHQRTHSGEKP
  YACKECGRCFRQRTTLVNHQRTHSKEKP
  YVCGVCGHSFSQNSTLISHRRTHTGEKP
  YVCGVCGRGFSLKSHLNRHQNIHSGEKP
  IVCKDCGRGFSQQSNLIRHQRTHSGEKP
  MVCGECGRGFSQKSNLVAHQRTHSGERP
YVCRECGRGFSHQAGLIRHKRKHSREKP
YMCRQCGLGFGNKSALITHKRAHSEEKP
CVCRECGQGFLQKSHLTLHQMTHTGEKP
  YVCKTCGRGFSLKSHLSRHRKTTSVHHR LPVQPDPEPCAGQPSDSLYSL* 0
   
   
  >ZNF169_homSap Homo sapiens (human) KRAB Krueppel-associated box and zinc fingers
  >PRDMxa_ornAna Ornithorhynchus anatinus (platypus) gene genome chrX5 fragment X5 +- 20577549 no iMet possible in first exon phase 2
  0 MSPGLLTTRKEALMAFRDVAVAFTQKEWKLLSSAQRTLYREVMLENYSHLVSL 1
  0
  2 GIAFSKPKLIEQLEQGDEPWREENEHLLDLCP 1
  0 1  
  2 EPRTEFQPSFPHLVAFSSSQLLRQYALSGHPTQIFPSSSAGGDFQLEAPRCSSEKGESGETEGPDSSLRKRPSRISRTFFSPHQGDPVEWVEGNREGGTDLRLAQRMSLGGSDTMLKGADTSESGAVIRGNYRLGLSKKSSLFSHQKH
  2 1  
  HVCPECGRGFCQRSDLIKHQRTHTGEKP
  2 0  
  YLCPECGRRFSQKASLSIHQRKHSGEKP
  0 1  
YVCRECGRHFRYTSSLTNHKRIHSGERP
  2 RIGKKPQVRDFNLRKQKRKIYNENYRPEDDDYL 1  
FVCQECGRGFRQKIALLLHQRTHLEEKP
  2 yCEICQTFFLEKCVLHGPPVFVQDLPVEKWRPNRSTITLPPGMQIKVSGIPNAGLGVWNQATSLPRGLHFGPYMGIRTKNEKESHSGYSWM 0  
FVCPECGRGFCQKASLLQHQSSHTGERP
  2 IVRGKNYEYLDGKDKAFSNWMR 2  
FLCLECGRSFRQQSLLLSHQVTHSGEKP
  1 YVNCARSEREQNLVAIQYQGEIYYRTCRVIPPGQELLVWYGLEYGRHLGILPNNNNPEP 1
YVCAECGHSFRQKVTLIRHQRTHTGEKP
  2 ERAKARVRKSERIEKAMARVRKSEQIERAKARVRTSERIERAMATV RKSERIERAKVTVKKSEQIERAMGRVRKSERIERAKDMGRKKALGGLPRPCRGGLSDETQQRKGGGHEQLGQKPGPSEA RAGPAEGSATPRR
YLCPQCGRGFSQKVTLIGHQRTHTGEKP
  HCCDVCRKAFKRLSHLRQHKRIHTGEKP  
YLCPDCGRGFGQKVTLIRHQRTHTGEKP
  LVCKVCRRTFSDPSNLNRHSRIHTGLRP  
  YLCPKCGRAFGFKSLLTRHQRTHSEEEL
  YVCKLCRKAFADPSNLKRHVFSHTGHKP  
  YVDRVCGQGLGQKSHLISDQRTHSGEKP
  FVCEKCGKGFNRCDNLKDHSAKHSEDNSTPKP
CICDECGRGFGFKSALIRHQRTHSGEKP
YVCRECGRGFSQKSHLHRHRRTKSGHQL LPQEVF* 0
  >ZNF343_homSap Homo sapiens (human) KRAB Krueppel-associated box and zinc fingers
  0 MMLPYPSALGDQYWEEILLPKNGENVETMKKLTQNHKAK 1
  2 GLPSNDTDCPQKKEGKAQIV 0
  0 VPVTFRDVTVIFTEAEWKRLSPEQRNLYKEVMLENYRNLLSL 1
2 AEPKPEIYTCSSCLLAFSCQQFLSQHVLQIFLGLCAENHFHPGNSSPGHWKQQGQQYSHVSCWFENAEGQERGGGSKPWSARTEERETSRAFPSPLQRQSASPRKGNMVVETEPSSAQRPNPVQLDKGLKELETLRFGA
  INCREYEPDHNLESNFITNPRTLLGKKP
  YICSDCGRSFKDRSTLIRHHRIHSMEKP
  YVCSECGRGFSQKSNLSRHQRTHSEEKP
  YLCRECGQSFRSKSILNRHQWTHSEEKP
  YVCSECGRGFSEKSSFIRHQRTHSGEKP
  YVCLECGRSFCDKSTLRKHQRIHSGEKP
  YVCRECGRGFSQNSDLIKHQRTHLDEKP
  YVCRECGRGFCDKSTLIIHERTHSGEKP
  YVCGECGRGFSRKSLLLVHQRTHSGEKH
  YVCRECRRGFSQKSNLIRHQRTHSNEKP
YICRECGRGFCDKSTLIVHERTHSGEKP
YVCSECGRGFSRKSLLLVHQRTHSGEKH
YVCRECGRGFSHKSNLIRHQRTH* 0
    
    
  >ZNF589_homSap length=364
  >PRDMxb_ornAna Ornithorhynchus anatinus (platypus) gene genome chrX5 tandem fragment slight frameshift taa to ta YVN exon X5 +- 20605294 20611704 no iMet possible in first exon phase 2 gg as expected
  0 MWAPREQLLGWTAE 1
  0 0  
  2 ALPAKDSAWPWEEKPRYL 0
  0 1
  0 GPVTFEDVAVLFTEAEWKRLSLEQRNLYKEVMLENLRNLVSL 1
  2 1  
  2 AESKPEVHTCPSCPLAFGSQQFLSQDELHNHPIPGFHAGNQLHPGNPCPEDQPQSQHPSDKNHRGAEAEDQRVEGGVRPLFWSTNERGALVGFSSLFQRPPISSWG
  2 0   
  GNRILEIQLSPAQNASSEEVDRISKRAETPGFGAVTFGECALAFNQKSNLFRQKAVTAEKSSDKRQSQVCRECGRGFSRKSQLIIHQRTHTGEKPYVCGECGRGFIVESVLRNHLSTHSG
  0 1
  EKPYVCSHCGRGFSCKPYLIRHQRTHTREKSFMCTVCGRGFREKSELIKHQRIHTGDKPYVCRD* 0
  2 RSGKKPQVRDFNLRKQKRKMYTEESEPEDDDYL 1
  2 yCEDCQTFFLEKCSVHGPPVFVQDCEAKRCQQNRSEVTLPPGLLIKMSGIPNAGLGVWNQATSLPRGLYFGPFVGIRKNNVKDSLSGYSWA 0
  >ZNF596_homSap Homo sapiens (human) KRAB Krueppel-associated box and zinc fingers
  0 ILRGRNYEYLDGKNTSFSNWMR 2  
  0 MESQESVTFQDVAVDFTQEEWALLDTSQRTLFREVMLENISHLVSV 1
  1 YVNCPRTKYEQNLVAIQYHREIYYRTTPCDSTRSRVAGVVWRRVRSYLGIFWKSETPKS 1  
  2 GNQLYKSDVISHLEQGEQLSREGLGFLQGQSPVISDREDDPKKQEMLSMQHICKKDAPLISAMQWSHTQEDPLECNNFREKFTEILPLTQYVIPQVGKKPFISQDVGKAISYLPSFNIQKQIHSRSKS
  2 ERPHSSGGSFAPSARSGGVKQRIWSKRRSAALQRTRERRNSTHDFPPKHEDTAARQDERQCPDRGRAKQRGVRKSEQIERAKAMGRKKALGGLSPPRRERLSDEAGQRKKSGHEQFWQKPGPSEAWAGPAEGSTIPRR
  YECHQRRNTFIQSSAHRQHNNTQTGEKT
  HCCDVCGKAFNRLSRLKQHKRVHTGEKP  
FECHVCRKAFSKSSNLRRHEMIHTGVKP
  LVCKICKRAFSDPSNLNRHAKRHTGEKP  
HGCHLCGKSFTHCSDLRKHERIHTGEKL
  FVCRVCGRSFNRSDNMNEHRWKHTSNNIIP NTGHMSATVVENASLCINRNYQIYKERATYL
  YGCHLCGKAFSKSYNLRRHEVIHTKEKP
NECHLCGKAFAHCSDLRKHERTHFGEKP
YGCHLCGKTFSKTSYLRQHERTHNGEKP
YGCHLCGKAFTHCSHLRKHERTHTGEKP
YECHLCGKAFTESSVLRRHERTHTGEKP
YECHLCWKAFTDSSVLKRHERTHTGEKP
YECHLCGKTFNHSSVLRRHERTHTGEKP
YECNICGKAFNRSYNFRLHKRIHTGEKP
YKCYLCGKAFSKYFNLRQHENSCYKGNK* 0
   
  >HKR1_homSap Homo sapiens (human) KRAB Krueppel-associated box and zinc fingers
0 MRVNHTVSTMLPTCMVHRQTMSCSGAGGITAFVAFRDVAVYFTQEEWRLLSPAQRTLHREVMLETYNHLVSL 1
2 EIPSSKPKLIAQLERGEAPWREERKCPLDLCP 1
  2 ESKPEIQLSPSCPLIFSSQQALSQHVWLSHLSQLFSSLWAGNPLHLGKHYPEDQ KQQQDPFCFSGKAEWIQE GEDSRLLFGRVSKNGTSKALSSPPEEQQPAQSKEDNTVVDIGSSPERRADLEETDKVLHGLEVSGFGE
IKYEEFGPGFIKESNLLSLQKTQTGETP
YMYTEWGDSFGSMSVLIKNPRTHSGGKP
YVCRECGRGFTWKSNLITHQRTHSGEKP
YVCKDCGRGFTWKSNLFTHQRTHSGLKP
YVCKECGQSFSLKSNLITHQRAHTGEKP
  YVCRECGRGFRQHSHLVRHKRTHSGEKP
  YICRECEQGFSQKSHLIRHLRTHTGEKP
  YVCTECGRHFSWKSNLKTHQRTHSGVKP
  YVCLECGQCFSLKSNLNKHQRSHTGEKP
  FVCTECGRGFTRKSTLSTHQRTHSGEKP
FVCAECGRGFNDKSTLISHQRTHSGEKP
FMCRECGRRFRQKPNLFRHKRAHSGA
FVCRECGQGFCAKLTLIKHQRAHAGGKP
HVCRECGQGFSRQSHLIRHQRTHSGEKP
YICRKCGRGFSRKSNLIRHQRTHSG* 0


  >GAS8_homSap Homo sapiens (human) synteny marker right centromeric positive strand C16orf3- in second intron growth arrest-specific del cancer
  >PRDMx_danRer Danio rerio (zebrafish) Q6P2A1 transcript BC064665 no KRAB SSXRD or exon 5 but knuckle SET early ZNf C2H2 array
MAPKKKGKKGKAKGTPIVDGLAPEDMSKEQVEEHVSRIREELDREREERNYFQLERDKIHTFWEITRRQLEEKKAELRNKDREMEEAEERHQVEIKVYKQKVKHLLYEHQNNLTEMKAEG
  0 MSLSP 1
TVVMKLAQKEHRIQESVLRKDMRALKVELKEQELASEVVVKNLRLKHTEEITRMRNDFERQVREIEAKYDKKMKMLRDELDLRRKTELHEVEERKNGQIHTLMQRHEEAFTDIKNYYNDI
  2 DLPPSEEQNLEIQGSATNCYSVVIIEEQDDTFNDQPF 1
  TLNNLALINSLKEQMEDMRKKEDHLEREMAEVSGQNKRLADPLQKAREEMSEMQKQLANYERDKQILLCTKARLKVREKELKDLQWEHEVLEQRFTKVQQERDELYRKFTAAIQEVQQKT
  2 YCEMCQQHFIDQCETHGPPSFTCDSPAALGTPQRALLTLPQGLVIGRSSISHAGLGVFNQGQTVPLGMHFGPFDGEEISEEKALDSANSWV 0
  GFKNLVLERKLQALSAAVEKKEVQFNEVLAASNLDPAALTLVSRKLEDVLESKNSTIKDLQYELAQVCKAHNDLLRTYEAKLLAFGIPLDNVGFKPLETAVIGQTLGQGPAGLVGTPT*
  0 ICRGNNQYSYIDAEKDTHSNWMK 2
   
  1 FVVCSRSETEQNLVAFQQNGRILFRCCRPISPGQEFRVWYAEEYAQGLGAIWDKIWDNKCISQ 1
  >CDH12_homSap Homo sapiens (human) synteny marker chr 5 794 aa
  2 GSTEEQATQNCPCPFCHYSFPTLVYLHAHVKRTHPNEYAQFTQTHPLESEAHTPITEVEQCLVASDEALSTQTQPVTESPQEQISTQNGQPIHQTENSDEPDASDIYTAAGEISDEI
  MLTRNCLSLLLWVLFDGGLLTPLQPQPQQTLATEPRENVIHLPGQRSHFQRVKRGWVWNQFFVLEEYVGSEPQYVGKLHSDLDKGEGTVKYTLSGDGAGTVFTIDETTGDIHAIRSLDRE
  HACVDCGRSFLRSCHLKRHQRTIHSKEKP
  EKPFYTLRAQAVDIETRKPLEPESEFIIKVQDINDNEPKFLDGPYVATVPEMSPVGAYVLQVKATDADDPTYGNSARVVYSILQGQPYFSIDPKTGVIRTALPNMDREVKEQYQVLIQAK
  YCCSQCKKCFSQATGLKRHQHTHQEQEKNIESPDRPSDI
  DMGGQLGGLAGTTIVNITLTDVNDNPPRFPKSIFHLKVPESSPIGSAIGRIRAVDPDFGQNAEIEYNIVPGDGGNLFDIVTDEDTQEGVIKLKKPLDFETKKAYTFKVEASNLHLDHRFH
  YPCTKCTLSFVAKINLHQHLKRHHHGEYLRLVESGSLTAETEEDHT
  SAGPFKDTATVKISVLDVDEPPVFSKPLYTMEVYEDTPVGTIIGAVTAQDLDVGSSAVRYFIDWKSDGDSYFTIDGNEGTIATNELLDRESTAQYNFSIIASKVSNPLLTSKVNILINVL
  EVCFDKQDPNYEPPSRGRKSTKNSLKGRGCPKKVAVGRPRGRPPKNKNLEVEVQKIS
DVNEFPPEISVPYETAVCENAKPGQIIQIVSAADRDLSPAGQQFSFRLSPEAAIKPNFTVRDFRNNTAGIETRRNGYSRRQQELYFLPVVIEDSSYPVQSSTNTMTIRVCRCDSDGTILS
  PICTNCEQSFSDLETLKTHQCPRRDDEGDNVEHPQEASQ
CNVEAIFLPVGLSTGALIAILLCIVILLAIVVLYVALRRQKKKDTLMTSKEDIRDNVIHYDDEGGGEEDTQAFDIGALRNPKVIEENKIRRDIKPDSLCLPRQRPPMEDNTDIRDFIHQR
  YICGECIRAFSNLDLLKAHECIQQGEGS
LQENDVDPTAPPYDSLATYAYEGSGSVAESLSSIDSLTTEADQDYDYLTDWGPRFKVLADMFGEEESYNPDKVT*
  YCCPHCDLYFNRMCNLRRHERTIHSKEKP
 
  YCCTVCLKSFTQSSGLKRHQQSHLRRKSHRQSSALFTAAI
  >PRDM7_musMus1 Mus musculus genomic strain
  FPCAYCPFSFTDERYLYKHIRRHHPEMSLKYLSFQEGGVLSVEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  HSCSQCCKSFSTIKGFKNHSCFKQGEKV
  YVCRECGRGFTQNSHLIQHQRTHTGEKP
  YLCPDCGKAFSWFNSLKQHQRIHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YTCSQCGKSFVHSGQLNVHLRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  FLCSQCGESFRQSGDLRRHEQKHSGVRP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  CQCPDCGKSFSRPQSLKAHQQLHVGTKL
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  FPCTQCGKSFTRRYHLTRHHQKMHS
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCRECGRGFTQKSNLIKHQRTHTGEKP
  YVCRECGWGFTQKSDLIQHQRTHTREKp
   
   
  >PRDM7_musMus2 Mus musculus strain WSB/EiJ GU183911 and EU719625 missing a repeat
  >PRDMx_salSal Salmo salar NM_001173912
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  0 MESEWKSGGEEESGSEGERTPSSSHRDP 1
  YVCRECGRGFTQNSHLIQHQRTHTGEKP
  2 VCVSEQMKRAWLRQMNLRSRARVGYTEEEELRDEEYF 1
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  2 FCEECKSFFIEECELHGPPLFIPDTPAPLGAPDRARLTLPPGLEVRTSAIPGAGLGVFNHGHSVTQGTHYGPYEGELTDKELDMESGYSWV 0
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  0 IYKSKQRDEYIDGKRDTHSNWMR 2
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  1 YVNCARSEDEQNLVAFQYRGGILYRCCKPIAVGEELLVWYGEKYARDLGIVFDFLWDKKCSAR 1
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  2 GVNESSQSQIFSCSGCLFSFTAQTYLYKHIKRCHREECVRLPRSGGIRAETLAPPSGSQRCSTTPDRTPITLLTQKHRDTGKPAP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  HHCSQCGKSFRRSGDLKVHQRTHTGERP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YHCSQCGKRFSVSGHLKTHQRTHTGERP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YHCSQCGKSFCRSGDLKVHQRTHTGERP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YHCSQCGKRFSVSRHLKRHQHIHTGERP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YHCSQCGKSFSASWSVKRHQITVHSVGRVSVSQEA
YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK
   
   
  >PRDM7_musMus3 Mus musculus strain MOLF/EiJ GU183913
  >PRDMx_oncMyk Oncorhynchus mykiss testis FP324541 CR372724
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  0 mTPSSSHRDPVC 1
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  2 VSEQRKRAWLKQVNLCSRARVRVGYTEEEELREEDYF 1
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  2 FCEECKSFFIEECELHGPPLFIQDTPAPLGAPDRARLTLPPGLEVRTSAIPGAGLGVFNYGHSVTQGTHYGPYEGELTDTELAMESGYSWV 0
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  0 IYKSKQSDEYIDAKRETHSNWMR 2
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  1 YVNCARNEEEQNLVAFQYRGGILYRCCKPLAVGEELLVWYGEEYARDLGIIFDFLWDRKSSAR 1
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  2 GVNESSQSQIFSCSGCPFSFTAQIYLYKHTKRCHREEYVRLPRSGGIRSETLAPPSGSQRCSTTPDRTPITLLTQKHQDTGKPRP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  HHCSQCGKSFHRSGDLKVHQRTHTGERP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YHCSQCGKRFSVSGNLKTHQRIHTGERP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YPCSQCGKSFHRSDLKVHQRTHTGEKP
  YVCRECGRGFTEKSSLIQHQRTHTGEKP
  YHCSQCGKRFSVSGNLKTHQRIHTGERL
  YVCRECGRGFTQKSNLIKHQRTHTGEKP
  YPCSQCGKSFHRSELKVQQRTRPGKKTISLFPVWE
YVCRECGRGFTAKSVLIQHQRTHTGEKP
   
   
  >PRDM7_musMus4 Mus musculus strain PWD/PhJ GU183912 = PWD/Ph FJ212287
  >PRDMx_ictPun Ictalurus punctatus FD367165 FD063496 C-terminus missing second gene present
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
0 MKTEAKDGGTEGI 2
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
1 VKKETLELSISNHGNSFHIIPEVVSIKEEEADVKDFL 1
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
2 YCEVCKSVFFSKCEVHGPALFIADSPVPMGVADRARQTLPPGLEIQKSGIPDAGLGVFNKGETVPVGAHFGPYQGELVDKEEAMNSVYSWV 0
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
0 IYMSRQCEKYIDAKREVHANWMR 2
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
1 YVNCAHSDGEQNLVAFQYRGGILYRCCRPINPGQELLVWYEEKYASDVGPIFAQLWNIKCSLSGKVHT
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
 
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
=== Other genes of relevance ===
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
 
  YVCRECGRGFTEKSSLIKHQRTHTGEKP
It is instructive to consider certain closely related placental KRAB, ZNF and PRDM genes that may have some connection to the origin of PRDM7 and PRDM9. Nomenclature is very unsatisfactory in these gene families, as can be seen from lack of correspondence between gene name and intronation which is exceedingly well conserved in metazoa. For example, HKR1 a conventional ZNF family member, is egregiously misnamed. The methylase component is exceedingly old with clear antecedents in bacteria. Evidently gene duplications in an early intronless stem eukaryote were subsequently intronated randomly in different paralogs and shuffled  into various larger proteins. Within PRDM*, the gene tree is (((PRDM7/9,PRDM11),(PRDM4,PRDM10)),PRDM6) with others only related by a PR (SET) domain. PRDM11 and its novel giant terminal exon are discussed in a [[PRDM11:_giant_missing_exon|separate article]]
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
 
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
A set of fragmentary sequences from murid rodents is also of some comparative interest. These include common strain variants of lab mouse as well as close relatives. Only the terminal zinc finger array is available for most of these. While these are likely PRDM7 (rather than PRDM9 which rodents never had), it is not possible to decisively establish this with GAS8 synteny in any of the rodents (or lagomorphs) currently the subject of a genome project.
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
 
>PRDM11_homSap Homo sapiens (human) corrected 511+722 aa  <font color=#00CC66>PhosS</font> <font color=blue>3RAY coverage</font> <font color=#FFBB66>knuckle</font> <font color=red>SET</font> <font color=#990099>ZnF_TTF</font> <font color=brown>hATC_dimerization</font> no early zinc finger or terminal array syn PFM8 related ZNF 862
  0 MTENMKECLAQTNAAVGDMVTVVKTEVC<font color=#00CC66>S</font>PLRDQEYGQPC 2
  1 SRRPD<font color=blue>SSAMEVEPKKLKGKRDLIVPKSFQQVDF</font><font color=#FFBB66>W 1
  2 FCESCQEYFVDECPNH</font><font color=blue>GPPVFVSDTPVPVGIPDRAALTIP</font><font color=red>QGMEVVKDTSGESDVRCVNEVIPKGHIFGPYEGQISTQDKSAGFFSWL 0
  0 IVDKNNRYKSIDGSDETKANWMR 2
  1 YVVISREEREQNLLAFQHSERIYFRACRDIRPGEWLRVWYSEDYMKR</font><font color=blue>LHSMSQETIHRNLAR 1
  2 GEKRLQREKSEQVLDNPEDLRGPIHLSVLRQGK</font>SPYKRGFDEGDVHPQAKKKKIDLIFKDVLEASLESAKVEAHQLALSTSLVIRKVPKYQDDAYSQCATTMTHGVQNIGQTQGEGDWKVPQGVSKEPGQLEDEEEEPSSFKADSPAEASLASDPHELPTTSFCPNCIRLKKKVRELQAELDMLKSGKLPEPPVLPPQVLELPEFSDPA 1
  2 ASESMVSGPAIMEDDDQEVDSADESVSNDMMTATDEPSKMSSATG<font color=#990099>RRIRRFKQEWLKKFWFLRYSPTLNEMWCHVCRQYTVQSSRTSAFIIGSKQFKIHTIKLHSQSNLHKKCLQLYKLRMHPEKTEEM</font>
  CRNMTLLFNTAYHLALEGRPYLDFRPLAELLRKCELKVVDQYMNEGDCQILIHHIARALREDLVERIRQSPCLSVILDGQSDDLLADTVAVYVQYTSSDGPPATEFLSLQELGFSSTESYLQALDRAF
  SALGIRLQDEKPTVGLGVDGANITASLRASMFMTIRKTLPWLLCLPFMVHRPHLEILDAISGKELPCLEELENNLKQLLSFYRYSPRLMCELRSTAATLCEETEFLGDIRAVRWIIGEQN
  VLNALIKDYLEVVAHLKEVSSQTQRADASAIALALLQFLMDYQSIKLIYFLLDVIAVLSRLAYIFQGEYLLVSQVDDKIEEAIQEISRLADSPGEYLQEFEENFRESFNGIAMKNLRVAE
  AKFQSIREKICQKTQVILAQRFDSRSRIFVKACQVFDLAAWPRSSEELMSYGKEDMVQIFDHLEAIPT<font color=brown>FSRDVCREGLDPRGSLLMEWRELKADYYTKNGFKDLISHICKYKQRFPLLNK
  IIQVLKVLPTSTACCEKGRNALQRVRKNHRSRLTLEQLSDLLTIAVN</font>GPPITNFDAKRALDSWFEEKSGNSYALSAEVLSRMSALEQKPALQTMDHGTEFYPDI* 0
>PRDM4_homSap Homo sapiens (human) 801 aa knuckle, SET, early zinc and array
0 MHHR 2
1 MNEMNLSPVGMEQLTSSSVSNALPVSGSHLGLAASPTHSAIPAP 1
2 GLPVAIPNLGPSLSSLPSALSLMLPMGIGDRGVMCGLPERNYTLPPPPYPHLESSYFRTILP 1
2 GILSYLADRPPPQYIHPNSINVDGNTALSITNNPSALDPYQSNGNVGLEPGIVSIDSRSVNTHGAQSLHPSDGHEVALDTAITMENVSRVTSPISTDGMAEELTMDGVAGEHSQIPNGSRSHEPLSVDSVSN
NLAADAVGHGGVIPMHGNGLELPVVMETDHIASRVNGMSDSALSDSIHTVAMSTNSVSVALSTSHNLASLESVSLHEVGLSLEPVAVSSITQEVAMGTGHVDVSSDSLSFVSPSLQMEDSNSNKENMATLFT<font color = red>I</font> 1
2 <font color = red>WCTLCDRAYPSDCPEH</font>GPVTFVPDTPIESRARLSLP<font color = purple>KQLVLRQSIVGAEV 1
2 GVWTGETIPVRTCFGPLIGQQSHSMEVAEWTDKAVNHIWK 0
0 IYHNGVLEFCIITTDENECNWMMFVRKAR 2
1 NREEQNLVAYPHDGKIFFCTSQDIPPENELLFYYSRDYAQQ</font>I 1
2 GVPEHPDV<font color = magenta>HLCNCGKECNSYTEFKAHLTSH</font>IHNHLPTQGHSGSHGPSHSKERKWKCSMCPQAFISPSKLHVHFMGHMGMKP
<font color = blue>HKCDFCSKAFSDPSNLRTHLKIHT 12 GQKN</font>
<font color = blue>YRCTLCDKSFTQKAHLESHMVIHTGEKN</font>
<font color = blue>LKCDYCDKLFMRRQDLKQHVLIHTQ 21 ERQ</font>
<font color = blue>IKCPKCDKLFLRTNHLKKHLNSHEGKRD</font>
<font color = blue>YVCEKCTKAYLTKYHLTRHLKTCKGPTS</font> SSSAPEEEEEDDSEEEDLADSVGTEDCRINSAVYSADESLSAHK* 0
   
   
  >PRDM7_musMus5 Mus musculus strain CAST/EiJ GU183909
  >PRDM10_homSap  Homo sapiens (human) 1160 aa knuckle, SET, early zinc and array
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
0 MDSKDESSHVWPTSAEHEQNAAQ 0
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
0 VHFVPDTGTVAQIVYTDDQVRPPQQVVYTADGASYTSVDGPEHTLVYIHPVEAAQ 0
  YVCRECGRGFTQKSVLIQHQRTHTGEKP
0 TLFTDPGQVAYVQQDATAQQ 0
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
0 ASLPVHNQVLPSIESVDGSDPLATLQTPLGRLEAKEEEDEDEDEDTEEDEEEDGEDTDLDDWEPDPPRPFDPHD<font color = red>L</font> 1
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
2 <font color = red>WCEECNNAHASVCPKHGPLH</font>PIPNRPVLTRARASLPL<font color = purple>VLYIDRFLGGVFSKRRIPKRTQFGPVEGPLVRGSELKDCYIHLK 0
  YVCRECGRGFTEKSSLIKHQRTHTGEKP
0 VSLDKGDRKERDLHEDLWFELSDETLCNWMMFVRPAQNHLEQNLVAYQYGHHVYYTTIKNVEPKQELK 0
  YVCRECGWGFTAKSNLIQHQRTHTGEKP
0 VWYAASYAEF</font>VNQKIHDISEEERK 1
  YVCRECGRGFTQKSSLIKHQRTHTGEKP
2 VLREQEKN<font color = magenta>WPCYECNRRFISSEQLQQHLNSH</font>DEKLDVFSR 2
  YVCRECGRGFTAKSNLIQHQRTHTGEKPa
1 TRGRGRGRGKRRFGPGRRPGRPPKFIRLEITSENGEKSDDGTQ 0
  YVCRECGWGFTQKSNLIKHQRTHTGEKP
0 DLLHFPTKEQFDEAEPATLNGLDQPEQTTIPIPQLPQETQSSLEHEPETHTLHLQPQHEESVVPTQSTLTADDMRRAKRIR 0
  YVCRECGWGFTQKSDLIQHQRTHTREK*
0 LELQ 0
0 NAALQHLFIRKSFRP
<font color = blue>FKCLQCGKAFREKDKLDQHLRFH</font>GREGNCP
  <font color = blue>LTCDLCNKGFISSTSLESHMKLH</font>SDQKT
  <font color = blue>YSCIFCPESFDRLDLLKDHVAIH</font>INDGY
  <font color = blue>FTCPTCKKRFPDFIQ</font> 00 <font color = blue>VKKHVRSFH</font>SEKI
  <font color = blue>YQCTECDKAFCRPDKLRLHMLRH</font>SDRKD
  <font color = blue>FLCSTCGKQFK</font> 00 <font color = blue>RKDKLREHMQRMH</font>NPEREAKKADRISRSKTFKPRITSTDYDSFT
  <font color = blue>FKCRLCMMGFRRRGML</font> 00 <font color = blue>VNHLSKRH</font>PDMKIEEVPELTLPIIKPNRD
  <font color = blue>YFCQYCDK</font> 00 <font color = blue>VYKSASKRKAHILKNH</font>PGAELPPSIRKLRPAGPGEPDPMLSTHTQLTGTIATPP
<font color = blue>VCCPHCSKQYSSK</font> 00 <font color = blue>TKMVQHIRKKH</font>PEFAQLSNTIHTPLTTAVISATPAVLTTDSATGETVVTTDLLTQAMTELSQTLTTDYRTPQGDYQRIQYIPVSQSASGLQQPQHIQLQVVQVAS 0
  0 ATSPHQSQQSTVDVGQLHDPQPYPQHAIQVQHIQVSEPTASAPSSAQ 0
  0 VSGQPLSPSAQQAQQGLSPSHIQGSSSTQGQALQQQQQQQQNSSVQHTYLPSAWNSFRGY 1
  2 SSEIQMMTLPPGQFVITDSGVATPVTTGQVKAVTS 0
  0 GHYVLSESQSELEEKQTSALSGGVQVEPPAHSDSLDPQTNSQQQTTQYIITTTTNGNGSSEVHITKP* 0
   
   
  >PRDM7_musMus6 Mus musculus strain C57BL10.F HQ704390
  >PRDM15_homSap  Homo sapiens (human) 1507 aa knuckle, SET, early zinc finger and intronated array
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
0 MPRRRPPASGAAQFPERIATRSPDPIPLCTFQRQ 0
  YVCRECGRGFTQNSHLIQHQRTHTGEKP
0 PRAAPVQPPCRLFFVTFAGCGHRWRSESKPGWISRSRSGIALRAARPP 1
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
2 GSSPPRPAAPRPPPPGGVVAEAPGDVVIPRPRVQPMRVARGGPWTPNPAFREAESW 2
  YVCRECGRGFTVKSVLIKHQRTHTGEKP
1 SQIGNQRVSEQLLETSLGNEVSDTEPLSPASAGLRRNPALPP 1
  YVCRECGRGFTQNSHLIQHQRTHTGEKP
2 GPFAQNFSWGNQENLPPALGKIANGG 1
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
2 GTGAGKAECGYETESHLLEPHEIPLNVN 0
  YVCRECGRGFTQNSHLIQHQRTHTGEKP
0 THKFSDCEFPYEFCTVCFSPFKLLGMSGVEGVWNQHSRSASMHTFLNHSATGIREAGCRKDMP 0
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
0 VSEMAEDGSEEIMF<font color = red>I</font> 12 <font color = red>WCEDCSQYHDSECPELGP</font>VVMVKDSFVLSRAR 2
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
1 SWPASGHVHTQAGQGMRGYEDRDRADPQQLPEAVPAGLVRRLSGQQLPCRSTLTWGRLCHLVAQGR 2
  YVCRECGRGFTQKSNLIKHQRTHTGEKP
1 SSLP<font color = purple>PNLEIRRLEDGAEGVFAITQLVKRTQFGPFESRRVAKWEKESAFPLK 0
  YVCRECGWGFTQKSDLIQHQRTHTREK
0 VFQKDGHPVCFDTSNEDDCNWMMLVRPAAEAEHQNLTAYQHGSDVYFTTSRDIPPGTELRVWYAAFYAKK</font>MDKPMLKQAGSGVH 1
2 AAGTPENSAPVESEPSQ<font color = magenta>WACKVCSATFLELQLLN</font> 12 <font color = magenta>EHLLGH</font>LEQAKSLPPGSQSEAAAPEKEQDTPRGEPPAVPESENVATKEQKKKPRRGRKPKVSKAEQPLVIVEDKEPT 12 EQVAEIITEVPPDEPVSATPDERIMELVLGKLATTTTDTSSVPK 21 FTHHQNNTITLKRSLILSSRHGIRRKLIKQLGEHKR
<font color = blue>VYQCNICSKIFQNSSNLSRHVRSH</font> 12 GDKL
<font color = blue>FKCEECAKLFSRKESLKQHVSYKH</font>SRNE 00 VDGEYR
<font color = blue>YRCGTCEKTFRIESALEFHNC</font>RT 12 DDKT
<font color = blue>FQCEMCFRFFSTNSNLSKHKKKH</font>GDKK
<font color = blue>FACEVCSKMFYRKDVMLDHQRRH</font>LE 12 GVRRVKblueLEAGGENLVRYKKEP
<font color = blue>SGCPVCGK</font> 00 <font color = blue>VFSCRSNMNKHLLTH</font>GDKK
<font color = blue>YTCEICGRKFFRVDVLRDHIHVH</font>FK 00 DIALMDDHQREEFIGKIGISSEENDDNSDESADSEPHK
<font color = blue>YSCKRCQ</font> 00 <font color = blue>LTFGRGKEYLKHIMEVH</font>KEKG
  <font color = blue>YGCSICNRRFALKATYHAHMVIH</font>RENLPDPNVQK 21 YI
  <font color = blue>HPCEICGRIFNSIGNLERHKLIH</font>T 12 GVKS
  <font color = blue>HACEQCGKSFARKDMLKEHMRVH</font>DNVRE
  <font color = blue>YLCAECGK</font> 12 <font color = blue>GMKTKHALRHHMKLH</font>KGIKE
  <font color = blue>YECKECHRRFAQKVNMLKHCKRH</font>T 12 GIKD
  <font color = blue>FMCELCGKTFSERNTMETHKLIH</font>T 12 VGKQ
  <font color = blue>WTCSVCDKKYVTEYMLQKHVQLTH</font>DKVEA
  <font color = blue>QSCQLCGTKVSTRASMSRHMRRKH</font>PE 0
  0 VLAVRIDDLDHLPETTTIDASSIGIVQ 0
  0 PELTLEQEDLAEGKHGKAAKRSHKRKQKPEEEAGAPVPEDATFSEYSEKETEFTGSVGDETNSAVQSIQQ 0
  0 VVVTLGDPNVTTPSSSVGLTNITVTPITTAAATQFTNLQPVAVGHLTTPERQLQLDNSILTVTFDTVSGSAMLHNRQNDVQIHPQPEASNPQSVAHFINLTTLVNSITPLGSQLSDQHPLTWRAVPQTDVLPPSQPQAPPQQAAQPQVQAEQQQQQMYSY* 0
   
   
  >PRDM7_musMol Mus musculus molossinus GU216230
  >PRDM6_homSap  Homo sapiens (human) 595 aa knuckle, SET, no early zinc finger, short array
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
0 MLKPGDPGGSAFLKVDPAYLQHWQQLFPHGGAGPLKGSGAAGLLSAPQPLQPPPPPPPPERAEPPPDSLRPRPASLSSASSTPASSSTSASSASSCAA
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
AAAAAALAGLSALPVSQLPVFAPLAAAAVAAEPLPPKELCLGATSGPGPVKCGGGGGGGGEGRGAPRFRCSAEELDYYLYGQQRMEIIPLNQHTSDPN<font color = red>N</font> 1
  YVCRECGRGFTQKSVLIQHQRTHTGEKP
2 <font color = red>RCDMCADNRNGECPMH</font>GPLHSLRRLVGTSSAAAAAPPPELPEWLRDLPRE<font color = purple>VCLCTSTVPGLAYGICAAQRIQQGTWIGPFQGVLLPPEKVQAGAVRNTQHLWE 0
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
0 IYDQDGTLQHFIDGGEPSKSSWMRYIRCARHCGEQNLTVVQYR 2
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
1 SNIFYRACIDIPRGTELLVWYNDSYTSF</font>FGIPLQCIAQDEN 1
  YVCRECGRGFTEKSSLIKHQRTHTGEKP
2 LNVPSTVMEAMCRQDALQPFNKSSKLAPTTQQRSVVFPQTPCSRNFSLLDKSGPIESGFNQINVKNQRVLASPTSTSQLHSEFSDWHL
  YVCRECGWGFTAKSNLIQHQRTHTGEKP
<font color = blue>WKCGQCFKTFTQRILLQMHVCTQNPDR</font> 21 <font color = blue>P</font>
  YVCRECGRGFTQKSSLIKHQRTHTGEKP
<font color = blue>YQCGHCSQSFSQPSELRNHVVTHSSDRP</font>
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
<font color = blue>FKCGYCGRAFAGATTLNNHIRTHTGEKP</font>
  YVCRECGWGFTQKSNLIKHQRTHTGEKP
<font color = blue>FK</font> 21 <font color = blue>CERCERSFTQATQLSRHQRMPNECKP</font> ITESPESIEVD* 0
  YVCRECGWGFTQKSDLIQHQRTHTREK*
 
>ZNF133_homSap Homo sapiens (human) 653 aa KRAB, early zinc finger and array
0 <font color = green>MAFRDVAVDFTQDEWRLLSPAQRTLYREVMLENYSNLVSL 1
2 GISFSKPELITQLEQGKETWR</font>EEKKCSPATCP 1
2 DPEPEL<font color = magenta>YLDPFCPPGFSSQKFPMQHVLCNH</font>PPWIFTCLCAEGNIQPGDPGPGDQEKQQQASEGRPWSDQAEGPEGEGAMPLFGRTKKRTLGAFSRPPQRQPVSSRNGLRGVELEASPAQTGNPEETDKLLKRIEVLGFGT
<font color = blue>VNCGECGLSFSKMTNLLSHQRIHSGEKP
YVCGVCEKGFSLKKSLARHQKAHSGEKP
IVCRECGRGFNRKSTLIIHERTHSGEKP
YMCSECGRGFSQKSNLIIHQRTHSGEKP
  YVCRECGKGFSQKSAVVRHQRTHLEEKT
  IVCSDCGLGFSDRSNLISHQRTHSGEKP
  YACKECGRCFRQRTTLVNHQRTHSKEKP
  YVCGVCGHSFSQNSTLISHRRTHTGEKP
  YVCGVCGRGFSLKSHLNRHQNIHSGEKP
  IVCKDCGRGFSQQSNLIRHQRTHSGEKP
  MVCGECGRGFSQKSNLVAHQRTHSGERP
  YVCRECGRGFSHQAGLIRHKRKHSREKP
  YMCRQCGLGFGNKSALITHKRAHSEEKP
  CVCRECGQGFLQKSHLTLHQMTHTGEKP
  YVCKTCGRGFSLKSHLSRHRKTTS</font>VHHR LPVQPDPEPCAGQPSDSLYSL* 0
   
   
  >PRDM9_musCas Mus musculus castaneus
  >HKR1_homSap Homo sapiens (human) 659aa KRAB, early zinc finger and array
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  0 MRVNHTVSTMLPTCMVHRQTMSCSGAGGITAF<font color = green>VAFRDVAVYFTQEEWRLLSPAQRTLHREVMLETYNHLVSL 1
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  2 EIPSSKPKLIAQLERGEAPWR</font>EERKCPLDLCP 1
  YVCRECGRGFTQKSVLIQHQRTHTGEKP
  2 ESKPEIQLS<font color = magenta>PSCPLIFSSQQALSQHVWLSH</font>LSQLFSSLWAGNPLHLGKHYPEDQKQQQDPFCFSGKAEWIQEGEDSRLLFGRVSKNGTSKALSSPPEEQQPAQSKEDNTVVDIGSSPERRADLEETDKVLHGLEVSGFGE
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  <font color = blue>IKYEEFGPGFIKESNLLSLQKTQTGETP
  YVCRECGRGFTARSNLIQHQRTHTGEKP
  YMYTEWGDSFGSMSVLIKNPRTHSGGKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTWKSNLITHQRTHSGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCKDCGRGFTWKSNLFTHQRTHSGLKP
  YVCRECGRGFTEKSSLIKHQRTHTGEKP
  YVCKECGQSFSLKSNLITHQRAHTGEKP
  YVCRECGWGFTAKSNLIQHQRTHTGEKP
  YVCRECGRGFRQHSHLVRHKRTHSGEKP
  YVCRECGRGFTQKSSLIKHQRTHTGEKP
  YICRECEQGFSQKSHLIRHLRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCTECGRHFSWKSNLKTHQRTHSGVKP
  YVCRECGWGFTQKSNLIKHQRTHTGEKP
  YVCLECGQCFSLKSNLNKHQRSHTGEKP
  YVCRECGWGFTQKSDLIQHQRTHTREKp
  FVCTECGRGFTRKSTLSTHQRTHSGEKP
FVCAECGRGFNDKSTLISHQRTHSGEKP
FMCRECGRRFRQKPNLFRHKRAHSGA
FVCRECGQGFCAKLTLIKHQRAHAGGKP
HVCRECGQGFSRQSHLIRHQRTHSGEKP
YICRKCGRGFSRKSNLIRHQRTHSG</font>* 0
   
   
  >PRDM9_musPah Mus pahari
  >ZNF343_homSap Homo sapiens (human) 599aa KRAB, early zinc finger and array
  SIERQCGQYFSDKSNVNEHQRTHTGEKP
0 MMLPYPSALGDQYWEEILLPKNGENVETMKKLTQNHKAK 1
  YVCRECGRGFTQKSNLITHQRTHTGEKP
2 GLPSNDTDCPQKKEGKAQIV 0
  YVCRECGRGFTGKSPLIRHQRTHTGEKP
0 VP<font color = green>VTFRDVTVIFTEAEWKRLSPEQRNLYKEVMLENYRNLLSL 1
  YVCRECGRGFTQKSNLITHQRTHTGEKP
2 AEPKPEI</font><font color = magenta>YTCSSCLLAFSCQQFLSQHVL</font>QIFLGLCAENHFHPGNSSPGHWKQQGQQYSHVSCWFENAEGQERGGGSKPWSARTEERETSRAFPSPLQRQSASPRKGNMVVETEPSSAQRPNPVQLDKGLKELETLRFGA
  YVCRECGRGFTGKSPLIRHQRTHTGEKP
<font color = blue>INCREYEPDHNLESNFITNPRTLLGKKP
  YVCRECGRGFTQKSHLIKHQRTHTGEKP
YICSDCGRSFKDRSTLIRHHRIHSMEKP
  YVCRECGRGFTEKSNLIKHQRTHTGEKP
YVCSECGRGFSQKSNLSRHQRTHSEEKP
  YVCRECGRGFTQKSPLIRHQRTHTGEKP
YLCRECGQSFRSKSILNRHQWTHSEEKP
  YVCTECGRGFTQKSNLITHQRTNTGEKP
YVCSECGRGFSEKSSFIRHQRTHSGEKP
   
YVCLECGRSFCDKSTLRKHQRIHSGEKP
  >PRDM9_musMac Mus macedonicus
YVCRECGRGFSQNSDLIKHQRTHLDEKP
YVCRECGRGFCDKSTLIIHERTHSGEKP
YVCGECGRGFSRKSLLLVHQRTHSGEKH
YVCRECRRGFSQKSNLIRHQRTHSNEKP
YICRECGRGFCDKSTLIVHERTHSGEKP
YVCSECGRGFSRKSLLLVHQRTHSGEKH
YVCRECGRGFSHKSNLIRHQRTH</font>* 0
 
>ZNF589_homSap Homo sapiens (human) 364 aa KRAB, early zinc finger and truncated array
0 MWAPREQLLGWTAE 1
2 ALPAKDSAWPWEEKPRYL 0
0 GP<font color = green>VTFEDVAVLFTEAEWKRLSLEQRNLYKEVMLENLRNLVSL 1
2 AESKPEV</font><font color = magenta>HTCPSCPLAFGSQQFLSQDELHNH</font>PIPGFHAGNQLHPGNPCPEDQPQSQHPSDKNHRGAEAEDQRVEGGVRPLFWSTNERGALVGFSSLFQRPPISSWGGNRILEIQLSPAQNASSEEVDRISKRAETPGFGAVTFGECALAFNQKSNLFRQKAVTAEKSSDKRQS
<font color = blue>QVCRECGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSHCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGRGFREKSELIKHQRIHTGDKP
YVCRD</font>* 0
>ZNF169_homSap Homo sapiens (human) 603aa KRAB, no early zinc finger but array
0 MSPGLLTTRKEAL<font color = green>MAFRDVAVAFTQKEWKLLSSAQRTLYREVMLENYSHLVSL 1
2 GIAFSKPKLIEQLEQGDEPWR</font>EENEHLLDLCP 1
2 EPRTEFQPSFPHLVAFSSSQLLRQYALSGHPTQIFPSSSAGGDFQLEAPRCSSEKGESGETEGPDSSLRKRPSRISRTFFSPHQGDPVEWVEGNREGGTDLRLAQRMSLGGSDTMLKGADTSESGAVIRGNYRLGLSKKSSLFSHQKH
<font color = blue>HVCPECGRGFCQRSDLIKHQRTHTGEKP
YLCPECGRRFSQKASLSIHQRKHSGEKP
YVCRECGRHFRYTSSLTNHKRIHSGERP
FVCQECGRGFRQKIALLLHQRTHLEEKP
FVCPECGRGFCQKASLLQHQSSHTGERP
FLCLECGRSFRQQSLLLSHQVTHSGEKP
YVCAECGHSFRQKVTLIRHQRTHTGEKP
YLCPQCGRGFSQKVTLIGHQRTHTGEKP
YLCPDCGRGFGQKVTLIRHQRTHTGEKP
YLCPKCGRAFGFKSLLTRHQRTHSEEEL
YVDRVCGQGLGQKSHLISDQRTHSGEKP
CICDECGRGFGFKSALIRHQRTHSGEKP
YVCRECGRGFSQKSHLHRHRRTKSG</font>HQL LPQEVF* 0
 
>ZNF596_homSap Homo sapiens (human) 504 aa KRAB, no early zinc finger but array
0 MPSP 0
0 DS<font color = green>MTFEDIIVDFTQEEWALLDTSQRKLFQDVMLENISHLVSI 1
2 GKQLCKSVVLSQLEQVEKLST</font>QRISLLQ 1
2 GREVGIKHQEIPFIQHIYQKGTSTISTM 0
0 RSHTQEDPFLCNDLGEDFTQHIALTQNVITYMRTKHFVSKKFGKIFSDWLSFNQHKEIHTKCKSYGSHLFDYAFIQNSALRPHSVTHTREIT
<font color = blue>LECRVCGKTFSKNSNLRRHEMIHTGEKP</font>
<font color = blue>HGCHLCGKAFTHCSDLRKHERTHTGEKP</font>
<font color = blue>YGCHLCGKAFSKSSNLRRHEMIHTREKA</font>
<font color = blue>QICHLCGKAFTHCSDLRKHERTHLGDKP</font>
<font color = blue>YGCLLCGKAFSKCSYLRQHERTHNGEKP</font>
<font color = blue>YECHLCGKAFSHCSHLRQHERSHNGEKP</font>
<font color = blue>HGCHLCGKAFTESSVLKRHERIHTGEKP</font>
<font color = blue>YECHVCGKAFTESSDLRRHERTHTGEKP</font>
<font color = blue>YECHLCGKAFNHSSVLRRHERTHTGEKP</font>
<font color = blue>YECNICGKAFNRSYNFRLHRRVHTGEKP</font>
<font color = blue>YVCPLCGKAFSKFFNLRQHERTHT</font>KKAMNM* 0
 
>GAS8_homSap Homo sapiens (human) synteny marker centromeric to PRDM7 in placentals
0 M 0
0 APKKKGKKGKAKGTPIVDGLAPEDMSKEQ 0
0 VEEHVSRIREELDREREERNYFQLERDKIHTFWEITRRQLEEKKAELRNKDREMEEAEERHQVEIK 0
0 VYKQKVKHLLYEHQNNLTEMKAEGTVVMKLAQKEHRIQESVLRKDMRALKVELKEQELASEVVVKNLRL 0
0 KHTEEITRMRNDFERQVR 1
2 EIEAKYDKKMKMLRDELDLRRKTELHEVEERKNGQIHTLMQRHEEAFTDIKNYYNDITLNNLALINSLK 0
0 EQMEDMRKKEDHLEREMAEVSGQNKRLADPLQKAREEMSEMQKQLANYERDKQILL 0
0 CTKARLKVREKELKDLQWEHEVLEQRFTK 0
0 VQQERDELYRKFTAAIQEVQQKTGFKNLVLERKLQALSAAVEKKEVQFNEVLAASNLDPAALTLVSRKLE 0
0 DVLESKNSTIKDLQYELAQVCK 0
0 AHNDLLRTYEAKLLAFGIPLDNVGFKPLETAVIGQTLGQGPAGLVGTPT
>CDH12_homSap Homo sapiens (human) synteny marker chr 5 794 aa
MLTRNCLSLLLWVLFDGGLLTPLQPQPQQTLATEPRENVIHLPGQRSHFQRVKRGWVWNQFFVLEEYVGSEPQYVGKLHSDLDKGEGTVKYTLSGDGAGTVFTIDETTGDIHAIRSLDRE
EKPFYTLRAQAVDIETRKPLEPESEFIIKVQDINDNEPKFLDGPYVATVPEMSPVGAYVLQVKATDADDPTYGNSARVVYSILQGQPYFSIDPKTGVIRTALPNMDREVKEQYQVLIQAK
DMGGQLGGLAGTTIVNITLTDVNDNPPRFPKSIFHLKVPESSPIGSAIGRIRAVDPDFGQNAEIEYNIVPGDGGNLFDIVTDEDTQEGVIKLKKPLDFETKKAYTFKVEASNLHLDHRFH
SAGPFKDTATVKISVLDVDEPPVFSKPLYTMEVYEDTPVGTIIGAVTAQDLDVGSSAVRYFIDWKSDGDSYFTIDGNEGTIATNELLDRESTAQYNFSIIASKVSNPLLTSKVNILINVL
DVNEFPPEISVPYETAVCENAKPGQIIQIVSAADRDLSPAGQQFSFRLSPEAAIKPNFTVRDFRNNTAGIETRRNGYSRRQQELYFLPVVIEDSSYPVQSSTNTMTIRVCRCDSDGTILS
CNVEAIFLPVGLSTGALIAILLCIVILLAIVVLYVALRRQKKKDTLMTSKEDIRDNVIHYDDEGGGEEDTQAFDIGALRNPKVIEENKIRRDIKPDSLCLPRQRPPMEDNTDIRDFIHQR
LQENDVDPTAPPYDSLATYAYEGSGSVAESLSSIDSLTTEADQDYDYLTDWGPRFKVLADMFGEEESYNPDKVT*
   
  >CDH10
  MTIHQFLLLFLFWVCLPHFCSPEIMFRRTPVPQQRILSSRVPRSDGKILHRQKRGWMWNQFFLLEEYTGSDYQYVGKLHSDQDKGDGSLKYILSGDGAGTLFIIDEKTGDIHATRRIDRE
  EKAFYTLRAQAINRRTLRPVEPESEFVIKIHDINDNEPTFPEEIYTASVPEMSVVGTSVVQVTATDADDPSYGNSARVIYSILQGQPYFSVEPETGIIRTALPNMNRENREQYQVVIQAK
  DMGGQMGGLSGTTTVNITLTDVNDNPPRFPQNTIHLRVLESSPVGTAIGSVKATDADTGKNAEVEYRIIDGDGTDMFDIVTEKDTQEGIITVKKPLDYESRRLYTLKVEAENTHVDPRFY
  YLGPFKDTTIVKISIEDVDEPPVFSRSSYLFEVHEDIEVGTIIGTVMARDPDSISSPIRFSLDRHTDLDRIFNIHSGNGSLYTSKPLDRELSQWHNLTVIAAEINNPKETTRVAVFVRIL
  DVNDNAPQFAVFYDTFVCENARPGQLIQTISAVDKDDPLGGQKFFFSLAAVNPNFTVQDNEDNTARILTRKNGFNRHEISTYLLPVVISDNDYPIQSSTGTLTIRVCACDSQGNMQSCSA
  EALLLPAGLSTGALIAILLCIIILLVIVVLFAALKRQRKKEPLILSKEDIRDNIVSYNDEGGGEEDTQAFDIGTLRNPAAIEEKKLRRDIIPETLFIPRRTPTAPDNTDVRDFINERLKE
  HDLDPTAPPYDSLATYAYEGNDSIAESLSSLESGTTEGDQNYDYLREWGPRFNKLAEMYGGGESDKDS
   
  >PRDM7_musMus1 Mus musculus genomic strain
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQNSHLIQHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTVKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSNLIQHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTVKSHLTQHQRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREKp
>PRDM7_musMus2 Mus musculus strain WSB/EiJ GU183911 and EU719625 missing a repeat
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQNSHLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTAKSHLIKHQRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  YVCRECGRGFTQKSNLIQHQRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  YVCRECGRGFTAKSNLIKHQRTHTGEKP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCRECGRGFTQNSHLTQHQRTHTGEKS
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGWGFKQKSDLIQHQRTHTREKp
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK
   
   
  >PRDM9_musSpi Mus spicilegus
  >PRDM7_musMus3 Mus musculus strain MOLF/EiJ GU183913
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQKSNLIQHQRTHTGEK
YVCRECGRGFTQKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSDLIKHQRTHTGEKP
YVCRECGRGFTVKSHLTQHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTAKSHLTQHQRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  YVCRECGRGFTQKSNLIQHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTAKSNLIKHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGRGFTQNSHLTQHQRTHTGEKS
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCRECGWGFKQKSDLIQHQRTHTREKp
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTEKSSLIQHQRTHTGEKP
YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
   
   
  >PRDM9_merUng Meriones unguiculatus
  >PRDM7_musMus4 Mus musculus strain PWD/PhJ GU183912 = PWD/Ph FJ212287
  GTGRECGQCFSDKSNVSEHQRTHTGEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  YVCRECGRGFMQRSNLISHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFMQRSNLISHQRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  YVCRECGRGFTVKSVLISHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTVKPHLISHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  HVCRECGRGFTQRSNLIRHQRTHTGEKP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCRECGRGFTVKPHLISHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTVKPHLISHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGRGFTVKSVLISHQRTHTGEKP
  YVCRECGRGFTEKSSLIKHQRTHTGEKP
  YVCRECGRGFTVKSVLIRHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECRRGFTQRSTLIRHQRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  HVCRECGRGFTRGSHLLRHQRTHTGEVL
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
   
   
  >PRDM9_micAgr Microtus agrestis
  >PRDM7_musMus5 Mus musculus strain CAST/EiJ GU183909
  RVGGERGQCFSDKSNVNEHQRTHTGEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  YVCRECGRGFTRKSNLNVHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGRGFTRKALLISHQRTHTGEKP
  YVCRECGRGFTQKSVLIQHQRTHTGEKP
  YVCRECGRGFTQKALLISHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTQKSYLILHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGRGFTGKSNLNVHQRTHTGEKP
  YVCRECGRGFTEKSSLIKHQRTHTGEKP
  YVCRECGRGFTQKSYLILHQRTHTGEKP
  YVCRECGWGFTAKSNLIQHQRTHTGEKP
  YVCRECGRGFTGKSLLIRHQRTHTGEKP
  YVCRECGRGFTQKSSLIKHQRTHTGEKP
  YVCRECGRGFTQKSYPILHQRTHTGEKp
  YVCRECGRGFTAKSNLIQHQRTHTGEKPa
YVCRECGWGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK*
   
   
  >PRDM9_arvTer Arvicola terrestris
  >PRDM7_musMus6 Mus musculus strain C57BL10.F HQ704390
  RVEGECGQCFNDKSNVNERQRTHTGEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  YVCRECGRGFTRKSVLILHQRTHTGEKP
  YVCRECGRGFTQNSHLIQHQRTHTGEKP
  YVCRECGRGFTQKSVLINHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTQKSHLIFHQRTHTGEKP
  YVCRECGRGFTVKSVLIKHQRTHTGEKP
  YVCRECGRGFTQKSHLILHQRTHTGEKP
  YVCRECGRGFTQNSHLIQHQRTHTGEKP
  YVCRECGRGFTWKSVLILHQRTHTGERP
  YVCRECGRGFTAKSVLIQHQRTHTGEKP
  YVCRECGRGFTRKSHLILHQRTHTGEKP
  YVCRECGRGFTQNSHLIQHQRTHTGEKP
  YVCRECGRGFTQKSHLILHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTRKSVLILHQRTHTGEKP
  YVCRECGRGFTQKSVLIKHQRTHTGEKP
  YVCRECGRGFTRKSVLINHQRTHTGEKp
  YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK
   
   
  >PRDM9_perPol Peromyscus polionotus
  >PRDM7_musMol Mus musculus molossinus GU216230
  RIETECGQRFSDKSNVNESQRTHSEEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  YVCRECGQGFIQKSVLICHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGQGFTWKSHLIRHQRTHTGEKP
  YVCRECGRGFTQKSVLIQHQRTHTGEKP
  YVCRECGKGFIRKSHLICHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGQGFIQKSHLICHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGQGFTQKSVLICHQRTHTGEKP
  YVCRECGRGFTEKSSLIKHQRTHTGEKP
  YVCRECGQGFIRKSYLICHQRTHTGEKP
  YVCRECGWGFTAKSNLIQHQRTHTGEKP
  YVCRECGKGFTWKSVLIRHQRTHTVEKp
  YVCRECGRGFTQKSSLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGWGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK*
   
   
  >PRDM9_perLeu Peromyscus leucopus
  >PRDM9_musCas Mus musculus castaneus
  RIETECGQRFSDKSNANESQRTHSEEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  YVCRECGQGFTRKSYLICHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGQGFIQKSVLIRHQRTHTGEKP
  YVCRECGRGFTQKSVLIQHQRTHTGEKP
  YVCRECGQGFTRKSYLICHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGQGFIQKSVLIRHQRTHTGEKP
  YVCRECGRGFTARSNLIQHQRTHTGEKP
  YVCRECGQGFTWKSVLICHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGQGFTRKSYLICHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGQGFTWKSHLIRHQRTHTGEKP
  YVCRECGRGFTEKSSLIKHQRTHTGEKP
  YVCRECGQGFTRKSYLICHQRTHTGEKP
  YVCRECGWGFTAKSNLIQHQRTHTGEKP
  YVCRECGQGFIQKSHLICHQRTHTGEKP
  YVCRECGRGFTQKSSLIKHQRTHTGEKP
  YVCRECGQGFTRKSYLICHQRTHTGEKP
  YVCRECGRGFTAKSNLIQHQRTHTGEKP
  YVCRECGQGFTWKSVLIRHQRTHTAEKp
  YVCRECGWGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREKp
   
   
  >PRDM9_perMan Peromyscus maniculatus
  >PRDM9_musPah Mus pahari
  RTETECGQHFSDKSNANESQRTHSEEKP
  SIERQCGQYFSDKSNVNEHQRTHTGEKP
  YVCRECGQGFTWKSVLIRHQRTHTGEKP
  YVCRECGRGFTQKSNLITHQRTHTGEKP
  YVCRECGQGFTWKSVLICHQRTHTGEKP
  YVCRECGRGFTGKSPLIRHQRTHTGEKP
  YVCRECGQGFTWKSVLICHQRTHTGEKP
  YVCRECGRGFTQKSNLITHQRTHTGEKP
  YVCRECGQGFIQKSHLIRHQRTHTGEKP
  YVCRECGRGFTGKSPLIRHQRTHTGEKP
  YVCRECGQGFIRKSHLICHQRTHTGEKP
  YVCRECGRGFTQKSHLIKHQRTHTGEKP
  YVCRECGQGFAQKSVLIYHQRTHTGEKP
  YVCRECGRGFTEKSNLIKHQRTHTGEKP
  YVCRECGQGFTRKSHLICHQRTHTGEKP
  YVCRECGRGFTQKSPLIRHQRTHTGEKP
  YVCRECGQGFAQKSVLICHQRTHTGEKP
  YVCTECGRGFTQKSNLITHQRTNTGEKP
YVCRECGQGFTWKSVLICHQRTHTGEKP
YVCRECGQGFIQKSHLIRHQRTHTGEKP
YVCRECGQGFIQKSHLIRHQRTHTGEKp
   
   
  >PRDM9_apoSyl Apodemus sylvaticus
  >PRDM9_musMac Mus macedonicus
  RVERQRGQCFSDKSNVSERQGTHTGEKP
  SIERQCGQYFSDKSNVNEHQKTHTGEKP
  CVCRECGRGFTQKSHLNRHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  HVCRECGRGFTQKSHLNRHQRTHTGEKP
  YVCRECGRGFTVKSDLIKHQRTHTGEKP
  HVCRECGRGFTLKSNLNRHQRTHTGEKP
  YVCRECGRGFTQKSNLIQHQRTHTGEKP
  CVCRECGRAFTQKSDLIQHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTQKSNLNQHQRTHTGEKP
  YVCRECGRGFTVKSHLTQHQRTHTGEKP
  YVCRECGRGFTRKSLLIQHQRTHTGEKP
  YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YVCRECGRGFTQKSDLNRHQRTHTGEKP
  YVCRECGRGFTAKSHLIKHQRTHTGEKP
YVCRECGRGLTQKSNLIQHQRTHTGEKP
YVCRECGRGFTLKSDLIQHQRTHTGEKP
YVCRECGRGFTRKSDLNRHQRTHTGEKP
  YVCRECGRGFTQKSNLIQHQRTHTGEKP
  YVCRECGRGFTQKSNLIQHQRTHTGEKP
  YVCRECGRGFTLKSDLIQHQRTHTGEKP
  YVCRECGRGFTAKSNLIKHQRTHTGEKP
  YVCRECGRGFTRKSDLNRHQRTHTGEKp
  YVCRECGRGFTQNSHLTQHQRTHTGEKS
YVCRECGWGFKQKSDLIQHQRTHTREKp
   
   
  >PRDM7_ratNor Rattus norvegicus
>PRDM9_musSpi Mus spicilegus
  RIERQCGQCFSDKSNVSEHQRTHTGEKP
SIERQCGQYFSDKSNVNEHQKTHTGEKP
  YICRECGRGFSQKSDLIKHQRTHTEEKP
YVCRECGRGFTQKSNLIQHQRTHTGEK
  YICRECGRGFTQKSDLIKHQRTHTEEKP
YVCRECGRGFTQKSNLIQHQRTHTGEKP
  YICRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSDLIKHQRTHTGEKP
  YICRECGRGFTQKSDLIKHQRTHTEEKP
YVCRECGRGFTVKSHLTQHQRTHTGEKP
  YICRECGRGFTQKSSLIRHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
  YICRECGLGFTQKSNLIRHLRTHTGEKP
YVCRECGRGFTAKSHLTQHQRTHTGEKP
  YICRECGLGFTRKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSNLIQHQRTHTGEKP
  YICRECGQGLTWKSSLIQHQRTHTGEKP
YVCRECGRGFTAKSNLIKHQRTHTGEKP
  YICRECGRGFTWKSSLIQHQRTHTVEKp
YVCRECGRGFTQNSHLTQHQRTHTGEKS
 
YVCRECGWGFKQKSDLIQHQRTHTREKp
=== Online references ===
 
>PRDM9_merUng Meriones unguiculatus
Open [http://www.ncbi.nlm.nih.gov/pubmed/21460839,21775986,21330546,21604305,21698098,21334090,21388701,21159001,21343182,20044539,20818382,21170346,20150474,20334833,20981099,20877321,20044541,20210982,20044538,20948797,20961408,19168450,19074312,19997497,20041164,19150836,18941885,17916234,17032681,16582607,10656784,18325330,20961408,20346131,20478078,19261184,16292313,19175294 38 abstracts] on PRDM9 and related issues. Or the reverse chronological list below provides free full text for individual articles when that is available:
GTGRECGQCFSDKSNVSEHQRTHTGEKP
 
YVCRECGRGFMQRSNLISHQRTHTGEKP
  [http://genetics.med.harvard.edu/reich/Reich_Lab/Welcome_files/2011_Hinch_Nature.pdf pdf 2011]  Hinch        The landscape of recombination in African Americans.  Nature. 2011 Jul 20. doi: 10.1038/nature10336.
YVCRECGRGFMQRSNLISHQRTHTGEKP
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117304/ pmc 2011]  Smagulova    Genome-wide analysis reveals novel molecular features of mouse recombination hotspots.  Nature. 2011 Apr 21;472(7343):375-8.
YVCRECGRGFTVKSVLISHQRTHTGEKP
  [http://www.sciencemag.org/content/331/6019/916.full htm 2011]  Kaupi        Distinct properties of the XY pseudoautosomal region crucial for male mouse meiosis.  Science 18 Feb 2011;DOI: 10.1126/science.1195774
YVCRECGRGFTVKPHLISHQRTHTGEKP
  [http://www.ncbi.nlm.nih.gov/pubmed/21604305 abs 2011]  Briknarova  The PR/SET domain in PRDM4 is preceded by a zinc knuckle.  Proteins 2011 Jul;79(7):2341-5. doi: 10.1002/prot.23057.
HVCRECGRGFTQRSNLIRHQRTHTGEKP
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117798 pmc 2011]  Fledel      Variation in human recombination rates and its genetic determinants.  PLoS One 2011;6(6):e20321.
YVCRECGRGFTVKPHLISHQRTHTGEKP
  [http://www.ncbi.nlm.nih.gov/pubmed/21334090 abs 2011]  Neaves      Unisexual reproduction among vertebrates.  Trends Genet. 2011 Mar;27(3):81-8.
YVCRECGRGFTVKPHLISHQRTHTGEKP
  [http://www.ncbi.nlm.nih.gov/pubmed/21388701 abs 2011]  Ponting      What are the genomic drivers of the rapid evolution of PRDM9?  Trends Genetics (2011) 1–7
YVCRECGRGFTVKSVLISHQRTHTGEKP
  [http://nar.oxfordjournals.org/content/early/2011/02/21/nar.gkr048.full htm 2011]  Yanover      Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers.  Nucleic Acids Res. 2011 Feb 22
YVCRECGRGFTVKSVLIRHQRTHTGEKP
  [http://www.tiem.utk.edu/~fubeda/papers/U&W11JEB.pdf pdf 2011]  Ubeda        Red Queen theory of recombination hotspots.  J Evol Biol. 2011 Mar;24(3):541-53.
YVCRECRRGFTQRSTLIRHQRTHTGEKP
  [http://www.ncbi.nlm.nih.gov/pubmed/20334833 abs 2010]  Hochwagen    Meiosis: a PRDM9 guide to the hotspots of recombination.  Curr Biol. 2010 Mar 23;20(6):R271-4.
HVCRECGRGFTRGSHLLRHQRTHTGEVL
  [http://www.ncbi.nlm.nih.gov/pubmed/20478078 abs 2010]  Klug        The discovery of zinc fingers and practical applications in gene regulation and genome manipulation.  Q Rev Biophys. 2010 Feb;43(1):1-21.
>PRDM9_micAgr Microtus agrestis
RVGGERGQCFSDKSNVNEHQRTHTGEKP
YVCRECGRGFTRKSNLNVHQRTHTGEKP
YVCRECGRGFTRKALLISHQRTHTGEKP
YVCRECGRGFTQKALLISHQRTHTGEKP
YVCRECGRGFTQKSYLILHQRTHTGEKP
YVCRECGRGFTGKSNLNVHQRTHTGEKP
YVCRECGRGFTQKSYLILHQRTHTGEKP
YVCRECGRGFTGKSLLIRHQRTHTGEKP
YVCRECGRGFTQKSYPILHQRTHTGEKp
>PRDM9_arvTer Arvicola terrestris
RVEGECGQCFNDKSNVNERQRTHTGEKP
YVCRECGRGFTRKSVLILHQRTHTGEKP
YVCRECGRGFTQKSVLINHQRTHTGEKP
YVCRECGRGFTQKSHLIFHQRTHTGEKP
YVCRECGRGFTQKSHLILHQRTHTGEKP
YVCRECGRGFTWKSVLILHQRTHTGERP
YVCRECGRGFTRKSHLILHQRTHTGEKP
YVCRECGRGFTQKSHLILHQRTHTGEKP
YVCRECGRGFTRKSVLILHQRTHTGEKP
YVCRECGRGFTRKSVLINHQRTHTGEKp
>PRDM9_perPol Peromyscus polionotus
RIETECGQRFSDKSNVNESQRTHSEEKP
YVCRECGQGFIQKSVLICHQRTHTGEKP
YVCRECGQGFTWKSHLIRHQRTHTGEKP
YVCRECGKGFIRKSHLICHQRTHTGEKP
YVCRECGQGFIQKSHLICHQRTHTGEKP
YVCRECGQGFTQKSVLICHQRTHTGEKP
YVCRECGQGFIRKSYLICHQRTHTGEKP
YVCRECGKGFTWKSVLIRHQRTHTVEKp
>PRDM9_perLeu Peromyscus leucopus
RIETECGQRFSDKSNANESQRTHSEEKP
YVCRECGQGFTRKSYLICHQRTHTGEKP
YVCRECGQGFIQKSVLIRHQRTHTGEKP
YVCRECGQGFTRKSYLICHQRTHTGEKP
YVCRECGQGFIQKSVLIRHQRTHTGEKP
YVCRECGQGFTWKSVLICHQRTHTGEKP
YVCRECGQGFTRKSYLICHQRTHTGEKP
YVCRECGQGFTWKSHLIRHQRTHTGEKP
YVCRECGQGFTRKSYLICHQRTHTGEKP
YVCRECGQGFIQKSHLICHQRTHTGEKP
YVCRECGQGFTRKSYLICHQRTHTGEKP
YVCRECGQGFTWKSVLIRHQRTHTAEKp
>PRDM9_perMan Peromyscus maniculatus
RTETECGQHFSDKSNANESQRTHSEEKP
YVCRECGQGFTWKSVLIRHQRTHTGEKP
YVCRECGQGFTWKSVLICHQRTHTGEKP
YVCRECGQGFTWKSVLICHQRTHTGEKP
YVCRECGQGFIQKSHLIRHQRTHTGEKP
YVCRECGQGFIRKSHLICHQRTHTGEKP
YVCRECGQGFAQKSVLIYHQRTHTGEKP
YVCRECGQGFTRKSHLICHQRTHTGEKP
YVCRECGQGFAQKSVLICHQRTHTGEKP
YVCRECGQGFTWKSVLICHQRTHTGEKP
YVCRECGQGFIQKSHLIRHQRTHTGEKP
YVCRECGQGFIQKSHLIRHQRTHTGEKp
>PRDM9_apoSyl Apodemus sylvaticus
RVERQRGQCFSDKSNVSERQGTHTGEKP
CVCRECGRGFTQKSHLNRHQRTHTGEKP
HVCRECGRGFTQKSHLNRHQRTHTGEKP
HVCRECGRGFTLKSNLNRHQRTHTGEKP
CVCRECGRAFTQKSDLIQHQRTHTGEKP
YVCRECGRGFTQKSNLNQHQRTHTGEKP
YVCRECGRGFTRKSLLIQHQRTHTGEKP
YVCRECGRGFTQKSDLNRHQRTHTGEKP
YVCRECGRGLTQKSNLIQHQRTHTGEKP
YVCRECGRGFTLKSDLIQHQRTHTGEKP
YVCRECGRGFTRKSDLNRHQRTHTGEKP
YVCRECGRGFTQKSNLIQHQRTHTGEKP
YVCRECGRGFTLKSDLIQHQRTHTGEKP
YVCRECGRGFTRKSDLNRHQRTHTGEKp
  >PRDM7_ratNor Rattus norvegicus
  RIERQCGQCFSDKSNVSEHQRTHTGEKP
  YICRECGRGFSQKSDLIKHQRTHTEEKP
  YICRECGRGFTQKSDLIKHQRTHTEEKP
  YICRECGRGFTQKSDLIKHQRTHTGEKP
  YICRECGRGFTQKSDLIKHQRTHTEEKP
  YICRECGRGFTQKSSLIRHQRTHTGEKP
  YICRECGLGFTQKSNLIRHLRTHTGEKP
  YICRECGLGFTRKSNLIQHQRTHTGEKP
  YICRECGQGLTWKSSLIQHQRTHTGEKP
  YICRECGRGFTWKSSLIQHQRTHTVEKp
 
=== Online references ===
 
Open [http://www.ncbi.nlm.nih.gov/pubmed/22291443,22162947,22028627,22102853,21697099,22006216,2175015,21460839,21775986,21564555,21330546,21604305,21698098,20385822,21366357,21334090,21388701,19349985,21159001,21343182,20044539,20818382,21170346,20150474,20334833,20981099,20877321,20044541,20210982,20044538,20948797,20961408,19168450,19074312,19997497,20041164,19150836,18941885,17660532,17916234,17032681,16582607,10656784,19165926,18325330,15705809,20961408,20346131,20478078,19261184,18650392,16292313,19175294 53 recent PubMed abstracts] on PRDM9 and related issues. Or use the reverse chronological list below to get free full text for individual articles when that is available:
 
 
[http://www.ncbi.nlm.nih.gov/pubmed/22291443 abs 2012]  Sarbajna    A major recombination hotspot in the XqYq pseudoautosomal region gives new insight into processing of human gene conversion events. Hum Mol Genet. 2012 Feb 8                                                       
[http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001211 htm 2011]  Ségurel      The Case of the Fickle Fingers: How the PRDM9 Zinc Finger Protein Specifies Meiotic Recombination Hotspots in Humans.  PLoS Biol 9(12): e1001211. doi:10.1371/journal.pbio.1001211
[http://gbe.oxfordjournals.org/content/3/614.full htm 2011]  Katzman      Ongoing GC-Biased Evolution Is Widespread in the Human Genome and Enriched Near Recombination Hot Spots.  Genome Biol Evol (2011) 3 614-626
[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213085/?tool=pubmed htm 2011]  Muñoz        Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes.  PLoS One. Nov 2011; 6(11): e25498.
[http://genome.cshlp.org/cgi/pmidlookup?view=long&pmid=22006216 htm 2011]  Axelsson    Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome.  Genome Res. 17 Oct 2011
[http://dx.plos.org/10.1371/journal.pbio.1001176 htm 2011]  Grey        Mouse PRDM9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination.  PLoS Biol. 2011 Oct;9(10):e1001176. 2011 Oct 18.
[http://www.pnas.org/content/108/30/12378.full.pdf+html?with-ds=yes pdf 2011]  Berg        Variants of the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots highly active in African populations.  PNAS 2011 Jul 26;108(30):12378-83.
[http://onlinelibrary.wiley.com/store/10.1111/j.1747-0285.2011.01135.x/asset/supinfo/CBDD_1135_sm_TableS1-FigS1-4.pdf?v=1&s=81ef430033f1fd8d18bed72183e312564387ad66 pdf 2011]  Richon      Chemogenetic analysis of human protein methyltransferases.  Chem Biol Drug Des. 2011 Aug;78(2):199-210.
[http://www.ncbi.nlm.nih.gov/pubmed/21366357 abs 2011]  Campagna    Structural Chemistry of the Histone Methyltransferases Cofactor Binding Site. J Chem Inf Model. 2011 Mar 28;51(3):612-23.
  [http://genetics.med.harvard.edu/reich/Reich_Lab/Welcome_files/2011_Hinch_Nature.pdf pdf 2011]  Hinch        The landscape of recombination in African Americans.  Nature. 2011 Jul 20. doi: 10.1038/nature10336.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117304/ pmc 2011]  Smagulova    Genome-wide analysis reveals novel molecular features of mouse recombination hotspots.  Nature. 2011 Apr 21;472(7343):375-8.
  [http://www.sciencemag.org/content/331/6019/916.full htm 2011]  Kaupi        Distinct properties of the XY pseudoautosomal region crucial for male mouse meiosis.  Science 18 Feb 2011;DOI: 10.1126/science.1195774
  [http://www.ncbi.nlm.nih.gov/pubmed/21604305 abs 2011]  Briknarova  The PR/SET domain in PRDM4 is preceded by a zinc knuckle.  Proteins 2011 Jul;79(7):2341-5. doi: 10.1002/prot.23057.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117798 pmc 2011]  Fledel      Variation in human recombination rates and its genetic determinants.  PLoS One 2011;6(6):e20321.
  [http://www.ncbi.nlm.nih.gov/pubmed/21334090 abs 2011]  Neaves      Unisexual reproduction among vertebrates.  Trends Genet. 2011 Mar;27(3):81-8.
  [http://www.ncbi.nlm.nih.gov/pubmed/21388701 abs 2011]  Ponting      What are the genomic drivers of the rapid evolution of PRDM9?  Trends Genetics (2011) 1–7
  [http://nar.oxfordjournals.org/content/early/2011/02/21/nar.gkr048.full htm 2011]  Yanover      Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers.  Nucleic Acids Res. 2011 Feb 22
  [http://www.tiem.utk.edu/~fubeda/papers/U&W11JEB.pdf pdf 2011]  Ubeda        Red Queen theory of recombination hotspots.  J Evol Biol. 2011 Mar;24(3):541-53.
  [http://www.ncbi.nlm.nih.gov/pubmed/20334833 abs 2010]  Hochwagen    Meiosis: a PRDM9 guide to the hotspots of recombination.  Curr Biol. 2010 Mar 23;20(6):R271-4.
[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867876 pmc 2010]  Tsai        Conservation of recombination hotspots in yeast.  PNAS 2010 April 27; 107(17): 7847–7852.
  [http://www.ncbi.nlm.nih.gov/pubmed/20478078 abs 2010]  Klug        The discovery of zinc fingers and practical applications in gene regulation and genome manipulation.  Q Rev Biophys. 2010 Feb;43(1):1-21.
  [http://www.ncbi.nlm.nih.gov/pubmed/20818382 abs 2010]  Berg        PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans.  Nat Genet. 2010 Oct;42(10):859-63.
  [http://www.ncbi.nlm.nih.gov/pubmed/20818382 abs 2010]  Berg        PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans.  Nat Genet. 2010 Oct;42(10):859-63.
  [http://www.ncbi.nlm.nih.gov/pubmed/20877321 abs 2010]  McVean      PRDM9 marks the spot.  Nat Genet. 2010 Oct;42(10):821-2.
  [http://www.ncbi.nlm.nih.gov/pubmed/20877321 abs 2010]  McVean      PRDM9 marks the spot.  Nat Genet. 2010 Oct;42(10):821-2.
  [http://eebweb.arizona.edu/nachman/Suggested%20Papers/Lab%20papers%20fall%202010/Kong_et_al_2010.pdf pdf 2010]  Kong        Fine-scale recombination rate differences between sexes, populations and individuals.  Nature. 2010 Oct 28;467(7319):1099-103.
  [http://eebweb.arizona.edu/nachman/Suggested%20Papers/Lab%20papers%20fall%202010/Kong_et_al_2010.pdf pdf 2010]  Kong        Fine-scale recombination rate differences between sexes, populations and individuals.  Nature. 2010 Oct 28;467(7319):1099-103.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821451 pmc 2010]  Parvanov    Prdm9 controls activation of mammalian recombination hotspots.  Science. 2010 Feb 12;327(5967):835.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821451 pmc 2010]  Parvanov    Prdm9 controls activation of mammalian recombination hotspots.  Science. 2010 Feb 12;327(5967):835.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865497 pmc 2010]  Lorenz      The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3  BMC Genomics. 2010 Mar 26;11:206.  
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865497 pmc 2010]  Lorenz      The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3  BMC Genomics. 2010 Mar 26;11:206.  
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872867 pmc 2010]  Neale        PRDM9 points the zinc finger at meiotic recombination hotspots.  Genome Biol. 2010;11(2):104.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872867 pmc 2010]  Neale        PRDM9 points the zinc finger at meiotic recombination hotspots.  Genome Biol. 2010;11(2):104.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950028 pmc 2010]  Sandovici    PRDM9 sticks its zinc fingers into recombination hotspots and between species.  F1000 Biol Rep. 2010 May 24;2.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950028 pmc 2010]  Sandovici    PRDM9 sticks its zinc fingers into recombination hotspots and between species.  F1000 Biol Rep. 2010 May 24;2.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999565 pmc 2010]  Billings    Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping.  PLoS One. 2010 Dec 8;5(12):e15340.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999565 pmc 2010]  Billings    Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping.  PLoS One. 2010 Dec 8;5(12):e15340.
  [http://www.sciencemag.org/content/327/5967/791.full?rss=1 htm 2010]  Cheung      Genetic control of hotspots.  Science. 2010 Feb 12;327(5967):791-2.
  [http://www.sciencemag.org/content/327/5967/791.full?rss=1 htm 2010]  Cheung      Genetic control of hotspots.  Science. 2010 Feb 12;327(5967):791-2.
  [http://www.med.upenn.edu/timm/documents/Highlyefficientendogenous.pdf pdf 2010]  Urnov        Highly efficient endogenous human gene correction using designed zinc-finger nucleases.  Nature. 2005 Jun 2;435(7042):646-51.
  [http://www.med.upenn.edu/timm/documents/Highlyefficientendogenous.pdf pdf 2010]  Urnov        Highly efficient endogenous human gene correction using designed zinc-finger nucleases.  Nature. 2005 Jun 2;435(7042):646-51.
  [http://genomebiology.com/2010/11/10/R103 htm 2010]  Zheng        Detecting sequence polymorphisms associated with meiotic recombination hotspots in the human genome.  Genome Biol. 2010;11(10):R103.
  [http://genomebiology.com/2010/11/10/R103 htm 2010]  Zheng        Detecting sequence polymorphisms associated with meiotic recombination hotspots in the human genome.  Genome Biol. 2010;11(10):R103.
  [http://www.sciencemag.org/content/327/5967/836.full htm 2010]  Baudat      PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice.  Science. 2010 Feb 12;327(5967):836-40.
  [http://www.sciencemag.org/content/327/5967/836.full htm 2010]  Baudat      PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice.  Science. 2010 Feb 12;327(5967):836-40.
  [http://www.sciencemag.org/content/327/5967/876.full htm 2010]  Myers        Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination.  Science. 2010 Feb 12;327(5967):876-9.
  [http://www.sciencemag.org/content/327/5967/876.full htm 2010]  Myers        Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination.  Science. 2010 Feb 12;327(5967):876-9.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631073 pmc 2009]  Berglund    Hotspots of biased nucleotide substitutions in human genes.  PLoS Biol. 2009 Jan 27;7(1):e26.
[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678279/?tool=pubmed pmc 2009]  Jeffreys    The rise and fall of a human recombination hot spot.  Nat Genet 2009 41:625–629.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667407 pmc 2009]  Thomas      Evolution of C2H2-zinc finger genes revisited.  BMC Evol Biol. 2009 Mar 4;9:51.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631073 pmc 2009]  Berglund    Hotspots of biased nucleotide substitutions in human genes.  PLoS Biol. 2009 Jan 27;7(1):e26.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779102 pmc 2009]  Oliver      Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa.  PLoS Genet. 2009 Dec;5(12):e1000753.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667407 pmc 2009]  Thomas      Evolution of C2H2-zinc finger genes revisited.  BMC Evol Biol. 2009 Mar 4;9:51.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794550 pmc 2009]  Thomas      Extraordinary molecular evolution in the PRDM9 fertility gene.  PLoS One. 2009 Dec 30;4(12):e8505.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779102 pmc 2009]  Oliver      Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa.  PLoS Genet. 2009 Dec;5(12):e1000753.
  [http://www.sciencemag.org/content/323/5912/350.full?rss=1 htm 2009]  Willis      Origin of species in overdrive.  Science. 2009 Jan 16;323(5912):350-1.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794550 pmc 2009]  Thomas      Extraordinary molecular evolution in the PRDM9 fertility gene.  PLoS One. 2009 Dec 30;4(12):e8505.
  [http://www.andrologyjournal.org/cgi/content/full/30/4/426 htm 2009]  Irie        Single-nucleotide polymorphisms of the PRDM9 (MEISETZ) gene in patients with nonobstructive azoospermia.  J Androl. 2009 Jul-Aug;30(4):426-31.
  [http://www.sciencemag.org/content/323/5912/350.full?rss=1 htm 2009]  Willis      Origin of species in overdrive.  Science. 2009 Jan 16;323(5912):350-1.
  [http://www.sciencemag.org/content/323/5912/373.full htm 2009]  Mihola      A mouse speciation gene encodes a meiotic histone H3 methyltransferase.  Science. 2009 Jan 16;323(5912):373-5.
  [http://www.andrologyjournal.org/cgi/content/full/30/4/426 htm 2009]  Irie        Single-nucleotide polymorphisms of the PRDM9 (MEISETZ) gene in patients with nonobstructive azoospermia.  J Androl. 2009 Jul-Aug;30(4):426-31.
  [http://www.ncbi.nlm.nih.gov/pubmed/18286240 abs 2008]  Brayer      The protein-binding potential of C2H2 zinc finger domains.  Cell Biochem Biophys. 2008;51(1):9-19.
  [http://www.sciencemag.org/content/323/5912/373.full htm 2009]  Mihola      A mouse speciation gene encodes a meiotic histone H3 methyltransferase.  Science. 2009 Jan 16;323(5912):373-5.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2346554 pmc 2008]  Duret        The impact of recombination on nucleotide substitutions in  the human genome.  PLoS Genet. 2008 May 9;4(5):e1000071.
  [http://www.ncbi.nlm.nih.gov/pubmed/18286240 abs 2008]  Brayer      The protein-binding potential of C2H2 zinc finger domains.  Cell Biochem Biophys. 2008;51(1):9-19.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593767 pmc 2008]  Miyamoto    Two single nucleotide polymorphisms in PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with azoospermia by meiotic arrest.  J Assist Reprod Genet. 2008 Nov-Dec;25(11-12):553-7.
[http://www.pnas.org/content/105/30/10471.long htm 2008]  Webb        Sperm cross-over activity in regions of the human genome showing extreme breakdown of marker association.  PNAS 2008 105:10471–10476
  [http://bioinfo.hanyang.ac.kr/ZIFIBI/frameset.php htm 2008]  Cho          Prediction of DNA binding sites for zinc finger proteins.  BBRC 2008 May 9;369(3):845-8.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2346554 pmc 2008]  Duret        The impact of recombination on nucleotide substitutions in  the human genome.  PLoS Genet. 2008 May 9;4(5):e1000071.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1817654 pmc 2007]  Coop        Live hot, die young: transmission distortion in recombination hotspots.  PLoS Genet. 2007 Mar 9;3(3):e35.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593767 pmc 2008]  Miyamoto    Two single nucleotide polymorphisms in PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with azoospermia by meiotic arrest.  J Assist Reprod Genet. 2008 Nov-Dec;25(11-12):553-7.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082429 pmc 2007]  Fumasoni    Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates.  BMC Evol Biol. 2007 Oct 4;7:187.
  [http://bioinfo.hanyang.ac.kr/ZIFIBI/frameset.php htm 2008]  Cho          Prediction of DNA binding sites for zinc finger proteins.  BBRC 2008 May 9;369(3):845-8.
  [http://www.genetics.iastate.edu/Phillips_Dernburg_2006.pdf pdf 2006]  Phillips    A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis.  Dev Cell. 2006 Dec;11(6):817-29.
[http://www.ncbi.nlm.nih.gov/pubmed/19165926 abs 2008]  Myers        A common sequence motif associated with recombination hot spots and genome instability in humans.  Nat Genet. 2008 Sep;40(9):1124-9.
  [http://bioinformatics.oxfordjournals.org/content/22/23/2841.long htm 2006]  Birtle      Meisetz and the birth of the KRAB motif.  Bioinformatics. 2006 Dec 1;22(23):2841-5.  
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1817654 pmc 2007]  Coop        Live hot, die young: transmission distortion in recombination hotspots.  PLoS Genet. 2007 Mar 9;3(3):e35.
  [http://www.landesbioscience.com/journals/cc/hayashiCC5-6.pdf pdf 2006]  Hayashi      Meisetz, a novel histone tri-methyltransferase, regulates meiosis-specific epigenesis.  Cell Cycle. 2006 Mar;5(6):615-20.
  [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082429 pmc 2007]  Fumasoni    Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates.  BMC Evol Biol. 2007 Oct 4;7:187.
  [http://www.img.cas.cz/journalclub/fulltexts/07_10_18_odd21_28.pdf pdf 2005]  Hayashi      A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 2005 Nov 17;438(7066):374-8.
[http://www.genetics.org/content/177/2/881.full htm 2007]  Gay          Estimating meiotic gene conversion rates from population genetic data.  Genetics. 2007 Oct;177(2):881-94.
  [http://www.ncbi.nlm.nih.gov/pubmed/10656784 abs 2000]  Laity        DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers.  J Mol Biol. 2000 Jan 28;295(4):719-27.
  [http://www.genetics.iastate.edu/Phillips_Dernburg_2006.pdf pdf 2006]  Phillips    A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis.  Dev Cell. 2006 Dec;11(6):817-29.
 
  [http://bioinformatics.oxfordjournals.org/content/22/23/2841.long htm 2006]  Birtle      Meisetz and the birth of the KRAB motif.  Bioinformatics. 2006 Dec 1;22(23):2841-5.  
=== Article author ===
  [http://www.landesbioscience.com/journals/cc/hayashiCC5-6.pdf pdf 2006]  Hayashi      Meisetz, a novel histone tri-methyltransferase, regulates meiosis-specific epigenesis.  Cell Cycle. 2006 Mar;5(6):615-20.
  [http://www.img.cas.cz/journalclub/fulltexts/07_10_18_odd21_28.pdf pdf 2005]  Hayashi      A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 2005 Nov 17;438(7066):374-8.
[http://www.sciencemag.org/content/308/5718/107.full htm 2005]  Winckler    Comparison of Fine-Scale Recombination Rates in Humans and Chimpanzees. Science 2005 2005 Apr 1;308(5718):107-11.
  [http://www.ncbi.nlm.nih.gov/pubmed/10656784 abs 2000]  Laity        DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers.  J Mol Biol. 2000 Jan 28;295(4):719-27.
 
=== Article author ===
 
[[Image:Author.jpg|left]]


[[Image:Author.jpg|left]]
I researched this article in its entirety in April and July-August of 2011, paying as little attention as possible to the previous studies above, which are excellent on meiosis but completely clueless on comparative genomics. This is a moderately difficult topic as human genes go, so the overall annotation is still being revised periodically into 2012 as better quality genomes become available. A change in one section places others in need of revision, not always promptly attended to.  


I researched this article in its entirety in April and July of 2011. This is a moderately difficult topic as human genes go, so is still being revised with new sections added each week. Although copyrighted, all the information here is in the public domain and can be used by anyone without additional permissions if properly sourced; however if used extensively for a peer-reviewed scientific publication, it would be appropriate (after consultation) to include me among the non-leading co-authors.  
Although copyrighted, all the information here is in the public domain and can be used by anyone without additional permissions if properly sourced; however if data, figures or original observations are taken for a peer-reviewed scientific publication, it might be appropriate (after consultation early on) to include me among secondary co-authors.  


Rather than make article edits, please contact me by email for clarifications, corrections or additions to the content -- I will make edits as appropriate to maintaining a consistent approach. Another option is to register at the UCSC genomewiki site and create your own page within the comparative genomics category.
Rather than make article edits yourself, please contact me by email with clarifications, corrections or additions to the content so I can make edits while maintaining a consistent approach. For broader disagreements or different interests, a better option is to register at the UCSC genomeWiki site and create your own page within the comparative genomics category.


This is a scientific research article on a vertebrate gene family, not a resource for genetic counseling nor a source of medical advice. Technical terms from genetics and molecular biology are not explained here if keywords have a satisfactory treatment at wikipedia or in undergraduate genetics texts -- thanks in advance for not sending inappropriate email.
This is just a scientific research article on a vertebrate gene family, not a counseling resource for personal genomics nor medical advice on infertility -- thanks in advance for not sending inappropriate email. Note technical terms from genetics and molecular biology are not explained when keywords have a satisfactory treatment at wikipedia or in undergraduate genetics texts.


My last dozen published research papers in PNAS, Nature, Science etc can be found [http://www.ncbi.nlm.nih.gov/pubmed/21709235,20164927,19020620,18464734,18266766,17984227,18085818,17975064,17322288,15608236,12045153 here]. Watch for 5 additional comparative genomics paper to appear in 2011. I've also written over a [[:Category:Comparative_Genomics|thousand pages of comparative genomics]] for other human genes, authored the original user guide to the UCSC human genome browser and in 1999 an advanced tutorial on metazoan genome annotation still [http://www.mad-cow.org/00/annotation_tutorial.html widely available online]. I thank the UCSC Genomics Group (Hiram Clawson, Brian Raney) for software and manuscript resources, Evim Foundation for logistical support, and the Sperling Foundation for financial support under project grant 2011.GNTCS.004.
My last dozen published research papers in PNAS, Nature, Science etc can be found [http://www.ncbi.nlm.nih.gov/pubmed/21709235,20164927,19020620,18464734,18266766,17984227,18085818,17975064,17322288,15608236,12045153,22012981 here]. Watch for 4 additional comparative genomics paper to appear in 2012. I've also written over a [[:Category:Comparative_Genomics|thousand pages of comparative genomics]] for other human genes, authored the original user manual to the UCSC human genome browser and in 1999 an advanced tutorial on metazoan genome annotation still [http://www.mad-cow.org/00/annotation_tutorial.html widely available online]. I thank the UCSC Genomics Group (Hiram Clawson, Brian Raney) for software and manuscript resources, Evim Foundation for logistical support, and the Sperling Foundation for financial support under project grant 2011.GNTCS.004.
<br clear=all>
<br clear=all>


[[Category:Comparative Genomics]]
[[Category:Comparative Genomics]]

Latest revision as of 15:21, 16 September 2015

See also: All about PRDM11

Updates: To help readers locate fixes, additions and other news as the article grows longer, significant
additions will be noted here in reverse chronological order linked into their spot in the article. 

04 Feb 11: improved cow and sheep assemblies have six PRDM7/9 genes and a functional chrX copy with 21 zinc fingers. 
15 Dec 11: wake up folks: that gene in dog and mice is PRDM7 not PRDM9
11 Dec 11: added a whole new page on PRDM11 -- the closest match in non-mammalian amniotes to the PR(SET) methylation domain of PRDM7/9
30 Oct 11: added 6 new fragmentary Carnivora PRDM7 sequences that -- like dog -- have inactive terminal exons.
12 Sep 11: started new section on origin of species, sex chromosome co-evolution etc.
11 Sep 11: re-edited first 20 pages for glitches, redundancy and inconsistencies.
09 Sep 11: added sections on chained meiosis in platypus and non-PAR PRDM9 gene conversion sites on human chrY.
07 Sep 11: transversional second block of human PRDM9 recognizes hotspots.
31 Aug 11: the first 523 amino acids of primate PRDM9 are not evolving at an anomalous rate.
28 Aug 11: partial distal pseudogenization of PRDM7 in some catarrhines.
22 Aug 11: re-wrote section proving mouse PRDM9 is really PRDM7; re-analyzed historic species barrier paper.
22 Aug 11: improved mouse PAR region depiction and updated expression data -- retinal transcripts suggest a multi-functional protein.
19 Aug 11: showed odd TGEKL cap region of first human repeat was already present in Denisova and pygmy.
18 Aug 11: fixed timing of the primate PRDM7 duplication creating PRDM9 relative to marmoset, tarsier, lemurs and tree shrew. 

Introduction

PRDM9 is a gene on human chromosome 5 with a very peculiar history. Its primary function -- after many false starts -- has only recently become clear: scanning the genome with its terminal zinc finger array to locate and mark recombination hotspots with its histone methylase where its transcription factor binding domain can direct additional proteins to initiate the double stranded breaks needed for meiosis. Some level of recombination between homologous chromosomes is essential to proper alignment and separation into daughter cells as well as for bringing favorable alleles onto the same haplotype for adaptive evolution.

This reaches criticality in placental mammal sex chromosomes which are limited in homologous alignability to short pseudoautosomal regions (PAR). Here in male meiosis, a recognizable sequence site must be found for the double stranded break with only tens of kilobases available in mouse, the most favorable experimental situation. However two large gaps remain in the most recent mouse assembly used (July 07) telomeric to the single known PAR hotspot (a situation not improved in the July 2011 release 37.2) nor fixed by Illumina reads. This region likely consists entirely of sequence categorized as simple repeats, meaning that as one hotspot is erased by gene conversion, similar ones remain available in the region, mitigating the need for adaptation in PRDM7/9.

PrdmPAR.gif

Humans are unique in having a second PAR of size 330 kb on distal Xq which contains five genes, acquired recently by chrY via LINE-mediated illegitimate recombination. Shrinkage of the larger PAR1 (currently 2.7 Mb, 24 genes) since lemur divergence (a process at much longer time scales driven by strata-creating inversions), reduces the potential number of recombination initiation sites and may correlate with autosomal duplication of PRDM7 around this same time.

Gene conversion also occurs unexpectedly in human at various hotspots between the PARs, notably in the PRKY, VCX/Y, TGIF2LX/Y and IR1 and P1 regions -- as well as intra-chromosomally in the palindromic section of chrY. The PRKY site contains a canonical PRDM9 recognition site, CCCCCCCTTCCCTC. If recombination intermediates resolve as translocation rather than gene conversion, infertile 46,XX males and 46,XY females result.

A protein central to an ancient essential process is usually highly conserved. However this is not the case here at all. Indeed, it proves exceedingly difficult to find a comprehensive set of PRDM9 orthologs even in the 39 sequenced placental mammalian genomes available on 10 Sept 2011, with immense and continuing confusion in the literature caused by independent segmental gene duplications, partial and full pseudogenizations and mix-ups with other composite domain proteins -- all compounded by outright sequencing error in the long terminal zinc finger repeat array.

Although meoitic recombination is a universal feature of eukaryotes, surprisingly the underlying mechanism for it is not. As shown below, the PRDM9 scenario is not directly applicable even to other major placental mammal clades. And neither PRDM9 nor its parent gene PRDM7 have a full-length orthologous counterpart in monotremes, birds, lizards, amphibians or earlier diverging vertebrates. While similar domain combinations have arisen before in other narrow bilateran clades, no evidence connects them to meiosis. Drosophila in particular uses very different gene products; meiosis there does not involve zinc finger proteins.

This puzzling history did not arise from ab initio sequence innovation in post-Cambrian deuterostomes because PRDM7 (the parent of primate PRMD9) arose instead from chimerization events in the mammalian stem involving SSX1, PRDM11 and a ZNF that together provided the six structural domains of the current protein. The parental gene histories are themselves complex, involving still earlier gene duplications and internal tandem repeat expansions -- patterns with numerous precedents in the overall metazoan proteome evolutionary context. Zinc finger proteins are a greatly expanded, often chimeric family within the mammalian lineage whose history may never be fully unravelled.

Rapid evolution of the terminal region of PRDM7/9 occurs at the amino acid level, both in the number of zinc fingers and -- within a given finger -- in the four non-adjacent residues primarily responsible for recognizing a specific dna trinucleotide. This variability is not coincidental to the role in meiosis -- that process tends to destroy its recombination hotspots by biased gene conversion. Since recombination is essential, new hotspots must emerge. The race is then on for PRDM7 or its spun-off PRDM9s to rapidly evolve and define new histone markup sites.

The consequent mutational pattern is quite distinct from those of closely related zinc finger proteins. It may result from error-prone replication slippage in the repeat region but why that mechanism would concentrate non-synonomous change at certain residue positions remains unexplained, along with fine structure details in meiotic data, transcription in non-meiotic retina and the functions of the conserved zinc knuckle and early zinc finger domains.

This rapid evolution can cause breeding incompatibility between populations in the F1 generation (meiosis arrest for lack of cross-overs, notably between chrX and chrY) and thus be central to the process of speciation. However PRDM7/9 cannot provide a universal explanation of either speciation or Haldane's rule even within placentals because the hotspot-defining genes are not in straightforward correspondence.

In effect, initiation of meiotic recombination is rapidly evolving -- and taking speciation and Haldane's rule along with it: each major clade of placentals has evolved a different hotspot recognition system, taking its most extreme form in pecoran ruminants with six PRDM7/9 genes (whose individual roles are not understood but could be quickly worked out in cattle). These differences within placentals follows upon the very different structure and gene content of sex chromosomes between monotremes, marsupials and placentals which in turn are quite different from those of birds, lizards and the amniote ancestor.

Syntenic relationships can help resolve gene duplication events during mammalian evolution. Here the chromosomal gene order TUBB3+ AFG3L1+ GAS8+ has stably existed since the stem amniote some 310 million years ago, with PRDM7- qTer added in placental mammals after marsupial divergence and maintained there since over billions of years of observable branch length time. PRDM9 however is found in many syntenic contexts, depending on timing and positioning of the segmental duplications giving rise to these secondary copies.

From the perspective of evolutionary genomics, PRDM7 is the fundamental gene, not the disparate collection of genes lumped under PRDM9 (even as those have taken over in primate meiois). At different times in different placental clades, PRDM7 spun off segmental duplications of itself to other sites in other chromosomes, probably because of a susceptible location at the extreme q arm of an autosomal chromosome. Because PRDM7 has stayed at its site adjacent to GAS8, it is possible to say unambiguously which of two initially identical copies was the parent gene. Due to this history, the 'PRDM9' genes do not form their own subtree within the overall two-gene tree under phylogenetic algorithms but instead associate more closely with their parental PRDM7 parent.

These paralogous copies -- despite all being called PRDM9 -- are not usefully considered orthologous outside their species clade of origin. Orthology requires (by long-standing definition) vertical descent from a common gene in the last common ancestor of two species. Here primate PRDM9 are descended from a common gene (namely the recent duplicate of PRDM7 in the stem primate ancestor) but 'PRDM9' in afrotheres, pecoran ruminants, rabbits etc arose from different duplications at different times during placental mammal evolution from a rapidly evolving PRDM7 parental gene in those lineages and so -- despite the name -- are not vertically descended from a common primate PRDM9 in their last common ancestor (though all the genes here descend from a single stem placental PRDM7 gene).

In tandem duplications, the parental copy cannot be distinguished but here the second copy was never on an equal syntenic footing. In a small segmental duplication, not all of the upstream regulatory features (which can be a megabase or more away from transcription start) are necessarily carried over. The second copy may be differently expressed from the get-go despite encoding an identical protein.

In mammals, PRDM7 has segmentally duplicated numerous times, in each case to a different site on a different chromosome. While PRDM7 has a moderately long history, primate PRDM9 has none of its own prior to its creation in stem catarrhine. For clarity, the various PRDM7 duplications can be denoted PRDMPpri, PRDM9pec, and PRDM9afr.

Such gene duplicates are sometimes called in-paralogs within a species and co-orthologs across species. However these terms do not reflect the mechanism of duplication and are topologically unstable (depend on the species range included in the gene tree unlike the terms ortholog, paralog and homolog) and have gained limited traction. Synteny creates an asymmetry here because only the parental gene assuredly has all upstream and downstream effectors.

Composite-domain proteins such as PRDM7/9 give rise to a whole new level of terminological muddle as each domain may have its own complex evolutionary history of earlier duplication, shuffling partners, and functional drift. It is very difficult to capture these histories within gene nomenclature.

Comparative genomics of placental mammals

Within Euarchonta, a small segmental duplication encompassing PRDM7 took place in a stem catarrhine primate. The duplicated gene, designated PRDM9 by the human gene nomenclature committee, resides within an altogether new syntenic context -- a cadherin gene complex on an unrelated autosomal chromosome. PRDM9 initially shared meiotic functionality with PRDM7 even as it diverged in amino acid sequence and descended through speciation events into contemporary old world monkeys and great apes. PRDM7 still persists at its original ancestral location (qTer and adjacent to GAS8) but as an overt full-length pseudogene in some lineages (rhesus, gibbon) but not so clearly in others (orangutan). Gene duplication followed by lineage-specific reallocation of functionality is an exceedingly common scenario within metazoan evolution. The timing of gene duplication here means only catarrhine primates have a PRDM9 gene.

Human PRDM7, despite its 3 frameshifts in exon 9 and 10, may still retain N-terminal functions (those not requiring dna recognition by the zinc finger array). PRDM7 is sometimes treated as a conventional gene with splice 'isoforms' despite an internal direct tandem repeat of 88 nucleotides in exon 9 of the human reference sequence that throws off the reading frame and subsequent splice donor to exon 10, which itself has a frameshift (GGGG to GGG) in the second of its three zinc fingers. This is not an anomaly of the reference genome as it is shared across the 1000 Genome Project. The C-terminal pseudogenization of human PRDM7 predated divergence of denisovan, bushman and neanderthal and postdated analogous events in other primates.

Translation into an incorrect reading frame cannot plausibly yield a stable fold, much less zinc fingers that recognize a nucleotide meiotic sequence. Nothing is known about the fate of in vivo transcripts or mature PRDM7 protein but the likeliest scenarios are nonsense-mediated decay or proteolytic trimming of unfolded C-terminal rubbish. Partial pseudogenization is an option for a protein like PRDM7 with multiple quasi-independent domains. Transcripts and alternative splices -- being artifact-rich processes in vertebrates -- do not provide a reliable guide to any stably folded mature protein that may ultimately be produced.

Initially PRDM7 must have shared its role in meiosis with PRDM9 (the sequences and near-upstream regulatory regions being identical), but later PRDM9 took over this role entirely in most primate clades as only it retained the zinc finger array. PRDM7 either retained non-meiotic roles (implied by numerous transcripts in non-meiotic tissue) or acquired other functionality not involving the terminal zinc finger array (but in some species losing all function).

Chimp and gorilla have also lost functionality in the last exon. However the mechanisms of loss -- stop codon in chimp vs exon 10 frameshifts in gorilla -- differ from human. Orangutan PRDM7 may still be functional whereas gibbon is riddled with early stop codons implying total loss. Since pseudogenization is a fairly rapid process, it could not have begun at the time of segmental duplication in stem catarrhine. Instead PRDM7 co-existed with PRDM9 for tens of millions of years, only in the last few million years losing distal functionality independently in various great ape lineages.

Loss of terminal array function took place fairly late in each great ape lineage by independent mutational mechanisms rather than by a shared disabling mutation in a common ancestor. Residual function may or may not be the same in those great apes that have retained the proximal portion of the gene. Partial pseudogenization is structurally acceptable in chimeric domain proteins if domains fold independently and do not significantly interact.

This scenario is strongly supported by alignment of manually curated primate PRDM7/9 sequences up to but not including the final array. If PRDM7 had been inactivated early after duplication, it would have accrued a large number of non-synonymous changes by now, changes oblivious to the conservation status of individual residues in the early domains. The alignment below shows preferential retention of conserved residues, as well as PRDM7 and PRDM9 clustering into distinct gene sub-trees as expected from the time of duplication. Gene conversion can keep duplicated genes synchronized for a time but that mechanism is not applicable over such a time span for non-tandem genes on unrelated chromosomes.

Earlier diverging primates such as new world monkeys and lemurs have a single PRMR7 gene adjacent to GAS8. Although a PRDM9 duplicate could occur within an genome assembly gap, a large multi-exon gap is implausible in multiple assemblies with respectable Sanger trace read coverage, especially given the pedestrian chromosomal location of catarrhine PRDM9. The tarsier situation however is syntenically unclear -- the gene occurs in five separate contigs, mostly single reads. Tree shrew also has unsatisfactory coverage (six exons spread out over two contigs and 3 unassembled traces, a string of Ns in the terminal zinc finger domain, and undeterminable synteny). These scattered contigs could conceivably represent two or more separate genes.

PRconfusedSyn.jpg


Within Rodentia, the single mouse PRDM7/9 gene lies in a region of confused synteny (relative to human) attributable to chromosomal rearrangements in the rodent clade. The browser screenshot above shows an unrelated region of human chr5 -- not the part that bears human PRDM9 -- as right-syntenic neighbor to mouse PRDM7. The left-syntenic human chr6 segment does not carry human PRDM7 (human chr16). The mouse gene thus has no informative neighbors (not even flanking debris) from GAS8 or cadherins. Similarly the mouse orthologs of GAS8 and cadherins do not contain PRDM7/9 debris.

The rat gene occurs in the same syntenic context as mouse but other rodent genomes (including the new hamster assembly) are too incomplete for synteny to be assessed. Thus the genetic rearrangement taking PRDM7 from its location facing GAS8 to its current position in rodents cannot be accurately timed relative to rodent divergences. The rabbit assembly of Apr 2009 is still quite garbled in the PRDM7-related region and also contains a spurious assembly stutter duplication. The syntenic location is unlike mouse/rat or any other mammal and again there is no debris at the relevant locations in other species. The other lagomorph assembly (pika) is missing its first and last exon so provides no syntenic information.

Thus the history of chromosomal rearrangements of PRDM7-like genes in Glires requires better assemblies in more species before gene rearrangements, gains and losses can be understood. It would be more useful to finish genomes already begun rather than generate thousands of additional fragmentary assemblies as in the 10k vertebrate genome project.

Conceivably, ancestral euarchontoglire PRDM7 duplicated twice to its current locations in rodents and lagomorphs from the ancestral location adjacent to GAS8 with the parental gene later lost twice. However even in this non-parsimonious scenario, the mouse gene cannot legitimately be called PRDM9 because it is still not a strict ortholog of primate PRDM9. A simpler scenario envisions two lineage-specific chromosomal rearrangements of PRDM7 with no gene gain or loss, consistent with Laurasiathere outgroup data indicating a single copy of PRDM7 at euarchontoglire divergence.

Since human PRDM9 arose in early primates as a gene duplication of a much older PRDM7, it was not present at the time of mouse/human divergence (Euarchontoglires). Hence the mouse gene cannot correspond to it. The mouse gene is best taken as a straightforward ortholog of primate PRDM7. Mouse has a great many chromosomal rearrangements relative to ancestral Euarchontoglires, so a translocation here of PRDM7 is unremarkable. The mouse gene is still called PRDM9 in the scientific literature despite the Jan 2002mouse assembly establishing its lack of synteny to the catarrhine-specific gene!

The PRDM7 protein is evolving conservatively in murid rodents though rather rapidly in the amino acids contacting the hotspot dna motif. There are substantial differences between common strains of lab mouse and unsurprisingly these cannot always interbreed (shown below in first six lines as genome strain C57BL/6J, WSB/EiJ, MOLF/EiJ, PWD/PhJ, CAST/EiJ, and C57BL10.F). Note mouse strains vary considerably in the number of zinc finger repeats -- 11 in CAST/EiJ, 12 in the reference genome strain C57BL/6J, 13 in C3H/HeJ and 14 in strain PWD/Ph -- and so in their dna-contacting residues.

The species barrier between B6 and C3H mouse strains is said entirely attributable to a single difference in the number of zinc finger repeats (loss of repeat 10 in B6). As the extra repeat in C3H intercalates a new set of dna-contacting residues, its array recognizes a dna sequence with a 3 bp insertion relative to the recognition sequence of B6 (ie the barrier does not arise from repeat number variation per se). However it has not been established why a mouse heterozygous for separately meiotically functional PRDM7 genes cannot carry out meiosis.

While the species barrier result implicates distal zinc fingers in meiotic recombination, no meiosis occurs in retina, the primary source of (unsought) mouse PRDM7 transcripts at GenBank. Mouse PRDM7 may be multi-functional, with a distinct role regulating gene expression in retina (in the manner of conventional ZNF genes). The proximal block of zinc fingers could be used there for dna recognition, giving rise to dual (or overlapping) selection on the array.

While consistent with meiosis site recognition requiring less than half of the array, a conflict arises because the mysterious mechanism generating mutational variation specifically at the dna-contacting residues for meiosis would be maladaptive for continuing recognition of fixed retinal gene regulatory targets (if any). Here it is imperative to understand what other genes are acting upstream to confine PRDM7 expression to testis and retina. If transcription in retina is specific to one of its many structural components, that could provide insight into its functionality there.

MouseSpeciation.gif


PRDM7_musMus1   SIERQCGQYFSDKSNVNEHQKTHTGEKPYVCRECGRGFTQNSHLIQHQRTHTGEKPYVCRECGRGFTQKSDLIKHQRTHTGEKPYVCRECGRGFTQKSDLIKHQRTHTGEKPYVCRECGRGFTQKSVLIKHQRTHTGEKPYVCRECGRGFTQKSVLIKHQRTHTGEKPYVCRECGRGFTAKSVLIQHQRTHTGEKPYVCRECGRGFTAKSNLIQHQRTHTGEKPYVCRECGRGFTAKSVLIQHQRTHTGEKP-YVCRECGRGFTAKSVLIQHQRTHTGEKPYVCRECGRGFTQKSNLIKHQRTHTGEKPYVCRECGWGFTQKSDLIQHQRTHTREKP--------------------------------------------------------
PRDM7_musMus2   ....................................................................................................................................................................................................................................................................................................A..V..Q.................R......N..K......G...YVCRECGWGFTQKSDLIQHQRTHTREK.............................
PRDM7_musMus3   ........................................K.D..K........................V....................................................A..N..Q.....................A.....Q.....................Q..D..K..............................................................................E..S................................................R...A..V.........G...........................................................
PRDM7_musMus4   ........................................K.D..K........................V....................................................A..N..Q.....................A.....Q.....................Q..D..K.................................................E..S..K.........................N...........................V....................R...A..V.........G...........................................................
PRDM7_musMus5   .......................................AK.N...........................V..Q.................................................A..N..Q.....................E..S....................W......N........................Q..S..K........................N.............A.......W...Q..N..K.................W......D..Q......R..-----------------------------........................................................
PRDM7_musMus6   ...............................................................................................V..V.........................N.H..Q.....................A.....Q.....................QN.H........................Q..D..K.....................Q.....K......................Q..N..K.................W......D..Q......R..-----------------------------........................................................
PRDM7_musMol2   .......................................AK.N...........................V..Q.................................................A..N..Q.....................E..S....................W......N........................Q..S..K........................N.....................W...Q..N..K.................W......D..Q......R..-----------------------------........................................................
PRDM9_musCas    .......................................AK.N...........................V..Q.................................................AR.N..Q........................D...........................N........................E..S..K.................W......N.........................Q..S..K.....................A.....Q........................N..K......G...YVCRECGWGFTQKSDLIQHQRTHTREKP............................
PRDM9_musPah    ....................R...................K.N..T.....................G..P..R........................N..T.....................G..P..R........................H........................E..N..K.....................Q..P..R.............T.......Q..N..T....N......------------------------------------------------------------------------------------........................................................
PRDM9_musMac    ........................................K.D..K.....................V..............................N..Q........................D........................V..H.TQ.....................Q..D..K........................H..K.....................Q..N............................N..K......................N.H.TQ.........S..........K.........................................................................
PRDM9_musSpi    ........................................K.N............-..............N..Q.....................A...........................V..H.TQ........................D...........................H.T......................Q..............................N..K......................QN.H.T..........S.......W..K...D..Q......R...----------------------------........................................................
PRDM7_musMol1   .......................................AK.N...........................V..Q.................................................A..N..Q.....................E..S....................W......N........................Q..S..K........................N.....................W...Q..N..K.................W......D..Q......R...----------------------------........................................................
PRDM9_merUng    GTG.E...C.......S...R.................M.R.N..S....................M.R.N..S.....................V..V..S.....................V.PH..S..........H...........R.N..R.....................V.PH..S.....................V.PH..S.....................V.....S......................V.....R................R.....R.T..R..........H......R...RG.H.LR......G.VL........................................................
PRDM9_micAgr    RVGGER..C...........R..................RK.N.NV.....................R.AL..S.......................AL..S........................Y..L.....................G..N.NV.....................Q..Y..L.....................G..L..R.....................Q..YP.L...........------------------------------------------------------------------------------------........................................................
PRDM9_arvTer    RV.GE...C.N.......R.R..................RK.V..L........................V..N........................H..F........................H..L.....................W.....L........R............R..H..L.....................Q..H..L.....................R.....L......................R.....N..........--------------------------------------------------------........................................................
PRDM9_perPol    R..TE...R.........S.R..SE..........Q..I.K.V..C.................Q...W..H..R.................K..IR..H..C.................Q..I...H..C.................Q.........C.................Q..IR..Y..C.................K...W..V..R......V...----------------------------.------------------------------------------------------------------------------------........................................................
PRDM9_perLeu    R..TE...R......A..S.R..SE..........Q...RK.Y..C.................Q..I...V..R.................Q...R..Y..C.................Q..I......R.................Q...W.....C.................Q...R..Y..C.................Q...W..H..R.................Q...R..Y..C..................Q..IQ..H..C.................Q...R..Y..C.................Q...W..V..R......A...........................................................
PRDM9_perMan    RT.TE...H......A..S.R..SE..........Q...WK.V..R.................Q...W..V..C.................Q...W..V..C.................Q..I...H..R.................Q..IR..H..C.................Q..AQ.....Y.................Q...R..H..C.................Q..AQ.....C..................Q...W.....C.................Q..I...H..R.................Q..I...H..R......G...........................................................
PRDM9_apoSyl    RV...R..C.......S.R.G.......C...........K...NR..........H.............H.NR..........H..........L..N.NR..........C.......A.....D..Q........................N.NQ.....................R..L........................Q..D.NR...................L.Q..N.........................L..D........................R..D.NR.................R......N.........G...YVCRECGRGFTLKSDLIQHQRTHTGEKPYVCRECGRGFTRKSDLNRHQRTHTGEKP
PRDM7_ratNor    R.......C.......S...R........I........S.K.D..K......E....I......................E....I...........................I............D.........E....I............S..R...........I.....L...Q..N..R.L.........I.....L...R.................I.....Q.L.W..S...............I.........W..S.........V...--------------------------------------------------------........................................................

Laurasiatheres have a quite different history of gene duplication. Many clades simply retain the ancestral condition of a single PRDM7 gene adjacent to GAS8. Vampire bat (but not brown bat) has an additional segmental duplication to a novel location that is today a pseudogene. Insectivores, perissodactyls and early-diverging artiodactyls (alpaca, pig, dolphin) have a single PRDM7 gene in ancestral syntenic location (when determinable), though some genes have too few zinc fingers to define genome-specific hotspots in the manner of primates.

The dog reference genome inexplicably has a PRDM7 full-length pseudogene yet no PRDM9-like gene duplication despite a rather complete assembly, and possibly stable recombination hotspots according to a new low resolution study. This is not an inbreeding artifact because five other species of canids share a frameshift within the early zinc finger of exon 7. Red fox (the outgroup) lacks this frameshift as well as a later shared frameshift in the third terminal zinc finger (thus timing them on the canid gene tree) but has an exon 7 frameshift of its own.

Here it should be stressed that partial pseudogenization can only be ruled out in chimeric domain proteins by sequencing the entire gene, not done here. However based on several early inactivating mutations in dog, these canid PRDM7 are unlikely to be even partially functional. Thus some other mechanism must suffice for initiation of meiotic recombination in canids. Recall PRDM9 in humans explains only 40% of the events so a second mechanism (not necessarily that of canids) seem operative there too.

PRDM7 from gray fox, the ultimate canid outgroup, unfortunately has not been sequenced and may still be functional. The alignment of exon 7 in 31 Laurasiatheres below shows rather few substitutions relative to the outgroup, establishing that pseudogenization is relatively recent. Thus PRDM7 was likely lost in canids around 8 myr ago and so was presumably functional during the 40 myr since divergence.

However it is not so clear that PRDM7 is functional (in the sense of marking up meiotic recombination sites with a terminal zinc finger array) in the next outgroup (mink + bear). The first two repeats in the three species available have lost key conserved repeat residues for zinc binding and may be dysfunctional. Panda has an additional 3 repeats but this is still not sufficient to provide a recognition system of sufficient specificity as seen in mouse and human (or for that matter cat or bat). The ends of the mink and ferret PRDM7 genes are not satisfactorily covered by contigs so the number of zinc fingers there cannot be determined.

Carnivores -- but not bats or horses -- have an intervening cadherin gene (CAD1) between GAS8 and PRDM7 which should not be confused with the weakly related cadherins (CAD10 and CAD12: 36% identity to CAD1) flanking primate PRDM9. This rare genomic event does not represent the ancestral state but is unfortunately too restricted in distribution to resolve the status of Pegasoferae.

Given the well-established phylogeny of canids within carnivores, the first indel in the alignment below (a deletion of 4 amino acids) is perplexing because it unifies mink with canids which do not share a common ancestor to the exclusion of other carnivores according to the species tree. The tree topology may be slightly wrong (despite overwhelming statistical support), with mink sistered to canids, not bears. An early mutation followed by lineage-sorting seems implausible as the heterozygous state would have had to persisted 6 myr until mink/bear divergence. Convergent evolution -- an independent deletion in mink of the same length at the same site (respectively an independent insertion in bear) -- seems equally implausible unless special predisposing local dna attributes exist. Sequencing error can be ruled out since two mink, bear and panda, and seven canids provide a consistency check. The second indel -- a single amino acid insertion (serine) in ancestral canid -- is fully consistent with the gene tree. Given that this portion of exon 7 seems under little selectional constrain, neither indel is likely to have functional significance.

CanidExon.jpg


Difference alignment of exon 7 relative to dog shows relatively few substitutions given the rapid overall rate of evolution of the inter-domain region:

PRDM7_canFam    EPNPEIHPCPSCSLAFSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTT----CEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
PRDM7_canLup    ................................................................................................................................................
PRDM7_canAur    ................................................................................................................................................
PRDM7_lycPic    ...................................................................S..........................................................................M.
PRDM7_canMes    ....................................Q...........................................................................................................
PRDM7_speVen    ....................................-................................................R..................................S.......................
PRDM7_vulVul    ......Y.......S........................I....Q....................C........................K.....................................................
PRDM7_neoVis    ..K.........T.............KC...........AG...Q.E.....E..H.........S...K.....V..S....LE......N....P.......G....Y..M.E..S.T.-......E.E...M....S.M..
PRDM7_musPut    ..K.........T..............R...........AG...Q.E.....E..H.........N...K....DV..S....LE.....KN....PI..E...G....Y....E....T.-......E.....M....S....
PRDM7_ailMel    ..K................................S.K.AS...QQE.....H...........H....K.....V.......L.............S......RSSTV...M.E......-......E.....M....SG...
PRDM7_felCat    ..Q.D..R.................V.CK.S..S..Q..A.K..Q.EN....D...........HS...K..C..V...SR..L...K...............MGSSRV...M.E.G..M.-.N..S.......M....S..V.
PRDM7_equCab    ..KL.....................V.R........GT.A.N.LQ.E..S..D......-....HS.K.K.HS..V...S...L.K......P....Y.P...MENFRMR.R.ME.K..I.-R.V.........LEMR.S.NV.
PRDM9_pteVam    ..K...............R......MKRS....S..G..A.K.LQS.E.H.ED.S......T..CS...K.E...V...S..MLERNG..K......K.P...MGSPRE..RMMEA...TS-..V...N...SSV...AS..V.
PRDM7_pteVam    ..K.A............G.......MKRS....S..G..A.K.LQS.E.H.ED.S...--.N..RS...K.E...V...S...LERN...K.F....K.P...MGSPREY.RMMEA...TS-..V...N...SSV...AS..VI
PRDM7_myoLuc    ..K..........V.....T.....GKR....E...GAPAGN.LQSEE.G.ER.......QTG.HG...K.E...V.G.S...L.R....GT...SFK.PNRHMGSSSER.R.RE....T.-.NV.HKN.....V..KRSKSVT
PRDM9a_bosTau   .SK.K....A...............VQ......T.L.P.A.DYLQ.E.....S.....R-Y...HSPS.KPE.R.V.D.PQ..L....LK.....S.YSPR..MGASGVH.R.TE.-..TS-..P.........M.A.VSG..K
PRDM9b_bosTau   .SK.K....A...............VQR.....T.L.P.A.D.LQ.E.....N.....R-Y...HSPS.KPE.RKA.D.PQ..L...KLK.....S.YSPR..VGRSGVH.R.TE.-..TS-............M.A.VSG..K
PRDM9d_bosTau   ..K.K.Y..A..C.S..........VQR.......L.P.IGD.LQ.E.....S.....R-Y...HSLS.KPE.R.P...PH..L.G..PK...T.S.Y.P...MGGSEVH.RMTE.-..TS-............MEA.VSG.V.
PRDM9e_bosTau   ..K.K.Y..A..C.S..........VQR.......L.P.IGD.LQ.E.....S..E..R-Y...HSLS.KPE.R.P...PH..L.G..LK...T.S.Y.P...MGGSEVH.RMTE.-..TS-............MEA.VSG.V.
PRDM9a_oviAri   ..K.K....A....S..........VQRS......L.P.P.D.LQ.E.....K.....R-Y...HSPS.KPE...P...PH..L.G..LK...T.S.YTP...MGGSEVH.KMTE.-..TS-......N.....MEA.VSG.V.
PRDM9b_oviAri   .LK.K....A...P..........YVQP.......L.P.A.D.LQ.E.....N..E..--Y...HSPS.KPE.CKA...PPW.L..MSV-...M.S.YSP...MRGSETHYRMTE.-..TS-.......I....M.T.VSG..K
PRDM9d_munMun   ..K.K....A....T..........IQCS..P.T.L.P.E.DLLQ.E.....N.....R-Y...HSPS.KPE.H.A.D.PQ..L....LK.....S.CSPR..MGGSGVH.RMTE.-..TS-.....G...T.LT.A.VSG.MK
PRDM9c_munMun   ..K.K....A...............IQRS....T.L.P.E.DLLQ.E.....N...--R-F...H.PS.---------.PQ..L....LK.....S.YSPR..MGGSGVH.LMTE.-..TS-H........T.LM.A.VSG.M.
PRDM9b_munMun   ..K.K....A...............IQRS....T.L.P.E.DLLQ.E.....S...--R-Y...HSPS.KPE...A.D.PQQ.L....LK.....S.YSPG..MGGSGVH.RMTE.-..TS-.........T.LT.A.VSG.M.
PRDM9a_munMun   ..K.K....A......T........IQRS..A.T.L.P.E.NLLQ.EH....S...--R-Y...HSLS.KPE...A.D.PQ..L....LK.....S.YSPG..MGGSGVH.RMKD.-..TS-.........T.LT.A.VSG.M.
PRDM9a_odoVir   ..K.K....A...............IQCS....TP..P.E.DLLQ.E.....N...R---Y...HSPS.KPE...A.D.PQ..L....LK.....S.YSPG..MGGSGVH.---------------------------------
PRDM7_turTru    D.K.K.Q..G..........I....V.CS....V...T.A.DRVQ.E.....Y..R...-Y...HS.SNKPEC..V...S...L.R..LG.......SSP...MGSSRAH.RMMEAG..T.-..V...A....LI.A.VS.VVK
PRDM7_susScr    ..K.K..............R.....V.RS....S...A.A.RGLQ.EG...DN.Q...P-YP..HS.DGTSES.DV..GS..FLERR.L.KT...S.YAPE..MRSSRVR.RMTE......-..V......T..TVA.ES----
PRDM7_lamPac    --E.K.YL.................VK..........TAAGR.LE.E.....N..E...-...QHS...KPE...A...S..FL.R..L....G...YSH...MGNSRVHDRMIE....T.-..V..K......TWA.VS.TVE
PRDM7_sorAra    ..K...Y...C......N.....R.V..S...L...GT.A.T.PKSVNF...D...W..HSDPDEP...KLENHKS.G.S.....RMG.K...T..PNLRSSKMGSSNKH.T.MDKINTG--..E..K..YRV.A.I..P....
PRDM7_echEur    ..K..............A....N..VK.S.......GT.T.KQPQVEN..LSN....K.-..NF.NQH.STES..AI.K....L.M.K.KT..NG..KLP.E.IGSSREH.KTKE..-.NSC..M.....SE.LV.L..S..V-
PRDM9_homSap    ..K.........C............V.R..S..NF.GP.A.KLLQ.EN....D...E..-YP..HSR..KT....I...S.L.N.RTW..E......S.P...MGSCRVGKR.ME..SRT.-..V..GN.....V...IS..AK
PRDM7_canFam VKYRGCGRGFNDRSHLSRHQRTHTGENP YVCRECGRGFIHRTNLIIHQRTHTGEKP YVCRECGrGFIQRSNLSIHQRTHTGEKP
PRDM7_canLup VKYRGCGRGFNDRSHLSRHQRTHTGENP YVCRECGRGFIHRTNLIIHQRTHTGEKP YVCRECGrGFIQRSNLSIHQRTHTGEKP
PRDM7_canAur VKYRGCGRGFNDRSHLSRHQRTHTGENP YVCRECGRGFIHRTNLIIHQRTHTGEKP YVCRECGRGFTQRSTLNEHQRTHTEEKP
PRDM7_lycPic VKYRGCGRGFNDRSHLSRHQRTHTGENP YVCRECGRGFTHRTNLIIHQRTHTGEKP YVCRECGrGFIQRSNLSIHQRTHTGEKP
PRDM7_canMes VKYRGCGRGFNDRSHLSRHQRTHTGENP YVCRECGRDFTHRTNLIIHQRTHTGEKP YVCRECGrGFIQRSNLSIHQRTHTGEKP
PRDM7_speVen VKYRGCGRGFNDRSHLSRHQRTHTGENP YVCRECgRGFTHRTNLIIHQTTHTGEKP YVCRECGrGFIQRSNLSIHQRTHTGEKP
PRDM7_vulVul VKYRGCGRGFNDRSHLSRHQRTHMGENP YVCRECGRGFTHRTNLIIHQRTHTGEKP YVSWECGRSFTRRSNLITHQRTHTGEKP
PRDM7_neoVis VKYRGSGQGFDDRSHLSRHQRTHKEEKP SVGKELRREFIHKSVLVTHQRTHTEALP
PRDM7_musPut VKYRGSGQGFDDRSHLSRHQRTHKEEKP SVGKEPRREFIHKSVLVTHQRTHTGEKP YVCRECGRGFTQRSHLIRHQR
PRDM7_ailMel VKYRGCGRDFSDRSHQSGHQRRH-QKKP SVCKKVKREFSHKSVLITHQRTHTGEKP YVCRECGRGFTQRSNLIRHQRTHTGEKP
PRDM7_felCat IKNRGCEQGFNDRSHFSRHQRTHKEEKP SVCNEFRRDFSHKSALITHQRTHTGEKP YVCRECGRGFTQRSNLFRHQRTHTGEKP
PRDM7_equCab VQYGGCGRGFNDRASLIKHQRTHTGEKP YVCRECEQGFTQKSSLIAHQRTHTGEKP YVCRECEQGFSEKSHLIRHQRTHTGEKP
PRDM7_pteVam VKYGGCEHGFDDGSHLIMHQRTHSGEKP FVCRECERGFSKKSNLITHQRTHSGEKP FVCRECERGFTRKSSLITHQRTHSGEKP
PRDM9_pteVam VKYGGCGHGFDDGSHFIRHQRTHSGEKP FVCRECERGFNEKSSLTMHQRTHSGEKP FVCRECE-GFSVKSSLIRHQRTYSGEKP
PRDM7_myoLuc IKHGGCGQGFNDGSHIDTHQRTHSGEKP YICRECGGFTHKSDL IRHQRTHSQENP YVCRECGRGFRDRSTLITHQRTHSGEKP 
 gene_genSpp   %id  chr          strand     start       stop   span

PRDM7_canFam   82%  chr5             ++   66560684  66567275   6592 dog 
CAD1           75%  chr5             ++   66571832  66581008   9177
GAS8           93%  chr5             +-   66587321  66604940  17620

PRDM7_ailMel  100%  GL193502         +-     628987    644235  15249 panda 
CAD1           73%  GL193502         +-     620344    624223   3880 
GAS8           91%  GL193502         ++     594843    609901  15059

PRDM7_felCat  100%  Un_ACBE01450414  +-      10493     13105   2613 cat 
CAD1           75%  Un_ACBE01450414  +-       3902      4280    379
GAS8         

PRDM7_equCab  100%  chr3             +-   36378853  36387224   8372 horse 
GAS8            93% chr3             ++   36348528  36361906  13379

PRDM7_pteVam  100%  ABRP01250178     +-                             bat 
GAS8                ABRP01250178     ++

PRDM7_myoLuc  100%  AAPE02062260     +-                             bat  
GAS8                AAPE02062260     ++

Pecoran ruminants (cow, sheep, muntjak) present a vastly more complicated situation. Cows -- even in the revised assembly -- have a PRDM7 pseudogene adjacent to GAS8 accompanied by 5 PRDM9 copies in other locations (all distinct from the primate cadherin secondary site). This is neither a recent development nor an artifact of domestication because a similar expansion is seen in provisional assemblies of sheep and muntjak (wild deer) but not dolphin, pig or vicuna, dating the expansion to stem pecoran ruminant within artiodactyls. It is not clear which if any (or several acting in tandem) of these gene copies play a role in recombination -- the primate paradigm for meiotic markup is not immediately applicable to these species.

Atlantogenata (Afrotheres + Xenarthra) have yet another history. Elephant (best of the five available assemblies) has three loci: an old PRDM7 pseudogene in GAS8 syntenic position, a seemingly functional PRDM9a with 12 terminal zinc fingers and novel syntenic location, and a fairly recent pseudogene PRDM9b. Extinct mammoth shows the same three genes with the same pseudogenization pattern. Although the sequences diverged separately after speciation, three identical inactivating mutations occur in both mammoth and elephant but not hyrax, thus dating gene loss within afrothere speciation. This is shown for exon 9 below:

1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGR 1 PRDM9_conSeq  wildtype consensus reference
1 YVNCIQD*KEQNLVAFQYHRQIFHWTCCTIRPGCELLVWYGDNYSQELGIKWGSR*KKELTSGT 1 PRDM9b_loxAfr gg bad acceptor, early stop codon,   internal stop codon
1 YVNCTRDKEEQNLVAFQYHRQIFYWTCHTIQPGCelLVWYGDNYGQELGIKWGSR*KKELTSGT 1 PRDM9b_mamPri gg bad acceptor, two 1 bp deletions, internal stop codon
1 YVRRARDTEERNLVAFQYHRQIFYRTCCTVRPGCELLVWRGAEDSQALG    SRRTMELTSQK 1 PRDM9b_proCap pseudogene with 4aa deletion
1 YVNCARDEEEQNLVAFQYHRQIFYRTCRTIQPDCELLVWYGDEYGQELGIKWGSRWKKELTSGT 1 PRDM9a_loxAfr wildtype
1 YVNCARDEEEQNLVAFQYHRQIFYRT                                       1 PRDM9a_mamPri fragmentary coverage
1 YVNCARDEDEQNLVAFQYHGQIFYRTCRPVQPGCELLVWYGDEYGQELGIQRGSRQMKALSSQT 1 PRDM9a_proCap 17 zinc fingers
1 YVNGTQDEKEQNLVFFQYHRQIFYQTCYAVWPGCQLLVWYRDECGQELGIKWDNRGKKEFTVGT 1 PRDM7_loxAfr  bad acceptor, bad donor
1 YVNGTQDEKEQNLVFFQYHRQIFYQTCYAVWPGCQLLVWYRDECGQELGIKWDNRGKKEFTVGT 1 PRDM7_mamPri  bad acceptor, bad donor, 1 synon bp difference
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRAIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAEK 1 PRDM7_choHof  wildtype
1 YVNCAWDDKEQNLVAFQYHRQIFYRTCRTIRPGCELLVWYGDEYGQELGIKWGSKWKKEFMTGT 1 PRDM7_dasNov  wildtype

Correct gene tree for PRDM7 and its spin-off PRDM9s

PRDMLtree.gif

At left is the gene tree summarizing the evolutionary relationships of the 80-odd PRDM7/PRDM9 homologs currently available from GenBank genome and targeted sequencing projects. Since the mammalian species tree is well-known, the gene tree can be clamped to it rather than derived ab initio (which won't work because some loci that must be included are pseudogenes in various states of degeneration.

The gene tree shows PRDM7 (the fundamental gene here) spinning off various copies of itself at various times in various lineages over the last 102 million years of placental mammal evolution. Each spin-off has been offset and given a slightly different nomenclature to remind us that the primate PRDM9 gene duplication (called PRDM7L9 in the figure) should branch off at old world monkey and bear no special relationship to unrelated spin-offs in artiodactyls and afrotheres. The genes without offsets are conventional orthologs in the GAS8 PRDM7 qTer syntenic position, which has been stable for several billion years of summed branch length geologic time.

These spin-offs had different subsequent histories. In some lineages, like primates, the spin-off PRDM9 took over from a pseudogenized parental gene PRDM7; in others, it became a pseudogene; in others, both genes seem to have persisted.

Note neither carnivores nor rodents ever had a gene duplication of PRDM7. These species do not now contain a counterpart to human PRDM9 and never did. There is no evidence whatsoever for surviving pseudogene debris between CDH12-CDH10 (the syntenic location of all primate PRDM9), despite the extreme sensitivity possible with localized tBlastn searching.

The fact that neither dog nor mouse has PRDM9 is not about naming conventions. It is about shifting functionality and shifting mechanisms for initiating meiotic recombination over evolutionary time. To discuss that intelligently, the genetic loci involved are best given names that are in themselves informative about gene evolutionary relationships, ie be compatible with their placement in the gene tree. That in a nutshell it is wrong to call the dog homolog PRDM9. In fact, it clusters by its synteny with the PRDM7s (including human) whereas the primate PRDM9s are off on their own subtree. (Put another way, if this is dog PRDM9, then where is dog PRDM7?)

Human gene names are set by definition by HUGO and used exclusively in scientific journals by international agreement, the idea being to create a stable terminology (human genome is complete) and to avoid endless lab-specific synonyms, use of greek letters, roman numerals, subscripts, superscripts, upper/lower case, hyphens etc unsuitable for the bioinformatic era.

HUGO attempts to give full length paralogs (above a certain percent identity) the same base name followed by consecutive numbering. This is not done consistenly as seen from PRDM* which is a pseudo-family of 16 genes with only a small PR(SET) domain in common (or PRNP/PRND which as full length homologs should have been PRNP1 and PRNP2). Pseudogenes are sporadically named. Despite the many flaws in HUGO names, it is unlikely that they will ever be significantly revised from where they are now.

However the international agreement does not provide for official names or acronyms for the corresponding proteins and here the Wild West usage still prevails in journals. Just attaching a p as in PRDM9p to the HUGO name would work but people who work only at the protein level don't cooperate. However there is increasing pressure to standardize to allow computer mining of the biomedical literature. PubMed could require abstracts to contian a tag that would allow Blast searches against them (ie get around nomenclature variation). So far that hasn't happened.

While human gene names are by definition correct, their underlying gene models are not. HUGO does not involve itself in gene curation but simply defers to a RefSeq at NCBI (which has no formal mechanism to correct errors). There are legitimate issues involving the significance, if any, of alternative splices and exon skipping and when something is a pseuogene. Thus human olfactory genes are difficult to sort out; in folate metabolism, a former DHRF pseudogene got upgraded to DHFL1 only in Oct 2011.

All of the above just applies to humans, no other vertebrates. Mouse has its own official gene nomenclature committee (based at Jackson Laboratories). Here lower case is used for orthologs of HUGO gene names when possible (eg Prdm7) which doesn't scale to the other 5400 mammals.

So how should genes be named in other vertebrates? Note humans have lost quite a few genes relative to other species (120 or more relative to last common ancestor with chicken, including whole subfamilies of opsins). So those genes cannot inherit names from HUGO human nomenclature unless it is ghosted forward to include lost genes.

However in other mammals, simple 1:1 syntenic orthologs to human genes can be given the same name (eg dog or cat or panda PRDM7). This may covers 15,000 genes, a good start. For a segmental translocative duplication to a different chromosome like the PRDM7 -> PRDM9 case, PRDM7 is the parent gene and human PRDM9 the secondary derived feature. The syntentic gene in old world monkeys can safely be called PRDM9 as well. PRDM9 never existed in Carnivora and was not lost. Use of PRDM9 there would require a strange and different type of ghosted nomenclature than for lost genes.

So what to call the extra copies of PRDM7 in elephant? Recall they have an old PRDM7 pseudogene in GAS8 syntenic position, a fairly recent retroprocessed pseudogene, and a seemingly functional copy with 12 fingers which has nothing to do with the human PRDM9 syntenic location.

The name for this lineage-specific duplication in afrotheres should not confuse it with the unrelated lineage-specific duplication in primates (PRDM9) because these gene clades have no special relationship. Primate PRDM9 will branch out from the PRDM7 gene tree at primates, but the elephant copy from within afrothere PRDM7s .

The nomenclature proposal here follows the HUGO template for the folate gene DHFR. That is, PRDM7 and numbered PRDM7L for Lineage-specific duplication. Here the primate PRDM9 would be PRDM7L9, elephant might be PRDM7L1, PRDM7L2, PRDM7L3, PRDM7L4 etc etc for the duplications in artiodactyls.

The tree will need periodic revision as new mammalian genomes come in or as existing loci are re-interpreted. The Newick format that generates the tree is:

(((((((((((((PRDM7_homSap,PRDM7_panTro),PRDM7_gorGor),PRDM7_ponAbe),PRDM7_nomLeu),((PRDM7_macMul,PRDM7_macFas),PRDM7_papHam)),(((((._._.PRDM7L9_homSap,._._.PRDM7L9_panTro),._._.PRDM7L9_gorGor),._._.PRDM7L9_ponAbe),._._.PRDM7L9_nomLeu),((._._.PRDM7L9_macMul,._._.PRDM7L9_macFas),._._.PRDM7L9_papHam))),(PRDM7_calJac,PRDM7_saiBol)),PRDM7_tarSyr),(PRDM7_micMur,(PRDM7_otoGar,._._.PRDM7L8_otoGar))),PRDM7_tupBel),((((((PRDM7_musMus,PRDM7_ratNor),PRDM7_musMol),PRDM7_criGri),PRDM7_dipOrd),PRDM7_speTri),(PRDM7_oryCun,PRDM7_ochPri))),((((((((((((PRDM7_canFam,PRDM7_canLup),PRDM7_canAur),PRDM7_lycPic),PRDM7_canMes),PRDM7_speVen),PRDM7_vulVul),((PRDM7_neoVis,PRDM7_musPut),PRDM7_ailMel)),PRDM7_felCat),PRDM7_equCab),(PRDM7_myoLuc,(PRDM7_pteVam,._._.PRDM7L7_pteVam))),(((((((PRDM7_bosTau,._._.PRDM7L5_bosTau),PRDM7_oviAri),(PRDM7_munMun,PRDM7_odoVir)),((((._._.PRDM7L1_bosTau,._._.PRDM7L1_oviAri),._._.PRDM7L1_munMun),((._._.PRDM7L2_bosTau,._._.PRDM7L2_oviAri),._._.PRDM7L2_munMun)),(((._._.PRDM7L3_bosTau,._._.PRDM7L3_oviAri),._._.PRDM7L3_munMun),(._._.PRDM7L4_bosTau,._._.PRDM7L4_oviAri)))),PRDM7_turTru),PRDM7_susScr),PRDM7_lamPac)),(PRDM7_sorAra,PRDM7_echEur))) ,(((((((PRDM7_loxAfr,._._.PRDM7L2_loxAfr),PRDM7_proCap),(._._.PRDM7L1_loxAfr,._._.PRDM7L1_proCap)),PRDM7_echTel),(PRDM7_dasNov,PRDM7_choHof)),((PRDM7_macEug,PRDM7_monDom),PRDM7_sarHar)),PRDM7_ornAna));

The genusSpecies acronyms are in alphabetic order below:

ailMel Ailuropoda melanoleuca (panda) 
bosTau Bos taurus (cattle) 
calJac Callithrix jacchus (marmoset) 
canAur Canis aureus (golden jackal)
canFam Canis familiaris (dog) 
canLup Canis lupus (gray wolf)
canMes Canis mesomelas (black-backed jackal)
choHof Choloepus hoffmanni (sloth) 
criGri Cricetulus griseus (hamster) 
dasNov Dasypus novemcinctus (armadillo) 
dipOrd Dipodomys ordii (kangaroo rat)
echEur Erinaceus europaeus (hedgehog) 
echTel Echinops telfairi (tenrec) 
equCab Equus caballus (horse) 
felCat Felis catus (cat) 
gorGor Gorilla gorilla (gorilla) 
homSap Homo sapiens (human) 
lamPac Lama pacos (llama)  
lycPic Lycaon pictus (painted dog)
macEug Macropus eugenii (wallaby) 
macFas Macaca fascicularis (crab-eating 
macFas Macaca fascicularis (crab-eating 
macMul Macaca mulatta (rhesus)  
micMur Microcebus murinus (lemur) 
monDom Monodelphis domestica (opossum) 
munMun Muntiacus muntjak (muntjac) 
musMol Mus molossinus (wild mouse)
musMus Mus musculus (mouse) 
musPut Mustela putorius (ferret) 
myoLuc Myotis lucifugus (bat) 
neoVis Neovison vison (mink) 
nomLeu Nomascus leucogenys (gibbon) 
ochPri Ochotona princeps (pika) 
odoVir Odocoileus virginianus (deer) 
ornAna Ornithorhynchus anatinus (platypus) 
oryCun Oryctolagus cuniculus (rabbit) 
otoGar Otolemur garnettii (galago) 
oviAri Ovis aries (sheep) 
panTro Pan troglodytes (chimp) 
papHam Papio hamadryas (baboon) 
ponAbe Pongo abelii (Sumatran 
pteVam Pteropus vampyrus (bat) 
ratNor Rattus norvegicus (rat) 
saiBol Saimiri boliviensis (squirrel monkey)
sarHar Sarcophilus harrisii (tasmanian devil)
sorAra Sorex araneus (shrew) 
speTri Spermophilus tridecemlineatus (squirrel) 
speVen Speothos venaticus (bush dog)
susScr Sus scrofa (pig) 
tarSyr Tarsius syrichta (tarsier) 
tupBel Tupaia belangeri (tree shrew)
turTru Tursiops truncatus (dolphin) 
vulVul Vulpes vulpes (red fox)

Marsupials and platypus: the mystery of exon 5

Tracking PRDM7 back to marsupials and beyond is problematic. The three available marsupial assemblies are seriously incomplete, causing gene prediction issues as exons are spottily represented and spread over multiple small contigs which cannot be tiled up into full-length genes, much less yield syntenic information. Because PRDM7/9 contain domains found in many other chimeric proteins, isolated exons cannot always be assigned correctly to their parent gene.

Further, some exons in PRDM7/9 have weak amino acid conservation and so fail to give definitive blast matches to placental queries, a problem exacerbated for short exons and decayed pseudogenes (opossum). No expression data exist to bridge uncertain regions, meaning missing diverged exons cannot be located. Because the domains here occur widely in other combinations in other proteins, a full length marsupial sequence is critical to testing whether the domain shuffle resulting in PRDM7 and PRDM9 was a placental innovation.

The most favorable situation occurs in the Monodelphis domestica assembly. Although exons 1 and 5 are missing, eight of the ten expected exons are readily located in a single assembly region of length 33,449 bp containing a single internal gap (estimated at 270 bp). It is not surprising that exon 1 cannot be located because it contains no known Pfam domain or reason for fixed length and diverges rapidly in placentals. However locating exon 5 is important for distinguishing between two adjacent small genes evolving into a single fused gene only in the placental branch versus a full length gene already present in the last common ancestor.

Unless exon 5 lies within the assembly gap, it should be locatable in the 25,548 bp separating exon 4 and exon 6 (of which 8,263 bp remains after application of RepeatMasker). However blastx against a panel of 54 exon 5 sequences from placental mammals fails to give any suggestion of match in any species, despite plausibly adequate length (all placental exon 5 sequences have 52 amino acids).

Gene prediction tools such as GenScan, NScan, Ensembl and Gnomon give unsatisfactory results: a few exons are correctly predicted but are otherwise embedded in time-wasting rubbish. The poor reliability of these tools does not justify GenBank clutter (eg XM_001369137) providing their predictions. The 46-species whole genome alignment at UCSC (starting with PRDM7/9 'ProteinFasta' link at the description page) is a better starting point.

Here it should be noted that exon 5 has not diverged especially rapidly from the last common ancestor of placentals. Aligned to human, the full range of sequences has overall identity of 69%. Exon 5 has a number of invariant and semi-invariant residues, only possible over this time span if maintained by selective pressure. Thus it has some function even though it contains no known Pfam domains and has no crystallographic structure match.

Because exon 4 has a splice donor of phase 0 and exon 6 a splice acceptor of phase 2, the putative exon 5 in marsupials must take the form 0 xxx...xxx 1 to conserve reading frame. This rules out non-use of exon 5 in marsupials (alternative splicing) followed by mutational decay to unrecognizability. In the scenario of two adjacent genes not yet fused, the distal region would need a new exon containing the initial methionine and phase 1 splice donor because no iMet occurs in the extended reading frame of exon 6.

The opossum gene is peculiar in that 7 of the 8 exons available are quite conventional in sequence but the terminal zinc finger exon is completely broken up by frameshifts and stop codons and barely recognizable. It could not be used to initiate meiotic recombination, yet no substitute homolog is at hand. The other exons return only PRDM7/9 as significant matches when back-blasted against the human genome establishing that they have not been confused with the many hundreds of partial homologs with KRAB, SSXRD, PR (SET) or C2H2 domains. However human (and other placentals) could easily have lost even better blast matches since divergence from marsupials. Thus it remains unclear whether marsupials have a full length counterpart to placental PRDM7.

The Sarcophilus harrisii assembly is missing the same two exons but has a conventional terminal exon with an intact zinc finger region of seven repeats (with two distal frameshifts however). Here exons 2 occurs in contig AFEY01202902 and exons 3-4 in AFEY01156721 with 1,436 bp left over to host exon 5; exons 6-10 are found in a third contig AFEY01386448 with 8,331 bp available upstream for exon 5. It can't be established that these contigs are actually adjacent in the genome. The six exons comparable between tasmanian devil and opossum are 82% identical to each other as proteins and 67% identical to those of human, not indicative of anomalous or especially rapid evolution in the context of entire proteome rates.

The Macropus eugenii (wallaby) assembly is least complete, with no contig containing more than a single exon. Here exons 1, 4, 5 and 8 are missing altogether but the terminal zinc finger exon is intact with 7 C2H2 domains. It is worth noting that the exon 10 is so long and distinctive with its phase 2 reading frame and early zinc finger that there is no possibility of confusing it with the closest human homologs (HKR1, ZNF133, ZNF169, ZNF343, ZNF589). However, humans could have lost an even better homolog of this exon.

The gene adjacent to PRDM7 in mammals, GAS8, is an ideal probe, being single-copy and quite conserved in vertebrates. In the ancestral placental mammal, GAS8 and PRDM7 are convergently transcribed. Thus a marsupial contig containing the last exons of GAS8 might contain the last exon (or 3' UTR) of PRDM7. Even a partial exon or pseudogene remnant could be recognized with great sensitivity in such a contig. However none of the marsupial GAS8 contigs contain any information on PRDM7 or any other gene.

PlatySxChr.gif

The situation in platypus and echidna is curious according to 18 recent articles. Note first that the chain of ten X and Y chromosomes (which is unprecedented in mammals) segregates during meiosis into either an X chain or Y chain, requiring crossovers in the 9 paired pseudoautosomal regions. Homology of key genes is to chicken, not theran mammals whose sex chromosomes thus arose after divergence at 165 million years. As with meiosis initiation, sex chromosomes seem never to stop evolving.

It is not clear whether some form of PRDM7/9 is operative outside of placental mammal -- meiotic events have not been experimentally characterized to date in either marsupials or monotremes. Bird, alligator, and lizard (7 genomes) all lack candidate orthologs. Thus it is uncertain whether the massive restructuring of sex determination around this time correlates with the switchover to PRDM7/9 for meiotic recombination (in view of the sex chromosome recombination bottleneck) or is simply coincidental.

In terms of platypus PRDM7/9 candidate orthologs, only distal exons 6-10 can be reliably recognized in the current assembly, ie KRAB, SSXRD and exon 5 are missing but the knuckle, PR and zinc finger domains are present with 3-4 repeat units. However the early zinc finger in the last exon is not present. Nonetheless, the best back-blast to human is still PRDM7/9. These exons occur in two tandem copies on the same strand but differ significantly from each other and so do not represent mis-assembly duplications. The intervening area is gapless so the missing exons should be locatable if present.

However they are not. Upon blastx of the repeatmasked sequence against Genbank tetrapod sequences, no matches occur, other than three worthless platypus gene models (XP_001507240, XP_001509482, XP_001509433) that predict earlier exons which however are wholly lacking in any support in any other species. Thus it appears that the gapless region does not contain any counterpart to exons 1-5 of theran mammals. Either this region has been lost in platypus or it is a stand-alone shorter distal version of PRDM7/9.

The first identifiable exons begins with the expected phase 2 reading frame in both tandem copies and do not contain an in-frame methionine upstream prior to a stop codon. Hence there must be at least one earlier exon. However tblastx of the appropriate regions of repeatmasked marsupial and platypus again does not identify noteworthy candidates.

Perhaps the corresponding ancestral region was shuffled together with a gene providing the proximal regions in the theran branch only, giving rise to the full length gene there. However tblastn queries of the platypus assembly, while locating numerous appropriate KRAB_A domains with the correct 0 xxx...xxx 1 reading frame that back-blast to other human proteins, do not find counterparts of the exon 1-5 region beyond exon 2. Hence there is no obvious donor for the proximal half of PRDM7/9.

Given that the PRDM and zinc finger families are greatly expanded with extensive domain shuffling in mammals with difficulties already tracing back PRDM7/9 to marsupials and monotremes, it comes as no surprise that bird, lizard and frog genomes shed no further light on the evolution of this gene. The situation in non-placental mammals could theoretically be resolved by sequencing transcripts, but these are exceedingly rare for PRDM7/9 even in placentals and so will not emerge unless explicitly sought.

Conservation of exon 5 within placentals; invariant residues in red

PRDM9_homSap    GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL
PRDM9_panTro    .......N.........GMP....T............P..............
PRDM9_gorGor    .....................................P..............
PRDM9_ponAbe    .......N.........G.Q....T............P..........T..I
PRDM9_nomLeu    .................GA..................P..............
PRDM9_macMul    .......N.......V.GM.....T............P...R..........
PRDM9_papHam    E...T............G.P...ST.........A..P..............
PRDM7_calJac    .......G......K..G...V..T..P.........P..............
PRDM7_micMur    ...R.PL.DG.......G......T.....P......PR..........R..
PRDM7_otoGar    ...R.PL.DG.......GP.S.P.I.....H..HM.SPR.........GR.S
PRDM7_tarSyr    ...R.PL.IV.......EM.....T.D....W......R.....E....K..
PRDM7_oryCun    ...RLPVN.........GI.....TT...ED...SF.PK.TR......TR..
PRDM7_ratNor    ET.RMPL.DK..V..VFGIE....T....H.....CSPE.GN.....FGK..
PRDM7_musMus    ESSRMP..G..NV..G.GIE....T....HV.....SLE.GN......GK..
PRDM7_speTri    LK.EVLL..........G......T.....V......LR...A.R....R..
PRDM9e_bosTau   ..SR.PL.K.......PGA.K..KT..CK....L.P.PRK.R.PE..P.Q.V
PRDM9c_oviAri   ..S..LV..K.....MPGASK..KTR.PK...I..PAPR.P...E..P.Q.V
PRDM9a_munMun   ..SR.PLIK.......LGA.K.MKT...K...N..PHPRK.R.P...P.Q.V
PRDM7_turTru    AV.PVPL.......K.PGA.Q.QK...PA...S.AP.P.A....AW.T.Q..
PRDM7_lamPac    ...RGPL..Q.......G..KP.KT...G.....FP.L.......R...Q..
PRDM7_susScr    SDSRVPL..K......LT..EVPET.......E....P......RRR.GQE.
PRDM7_canFam    .I.RVPL..K.......E..K...T.SP..G..S..LP.K.....H.T.Q..
PRDM7_felCat    .THRVPL.K.....DF.E..K...T.....G.....LP.......H...R..
PRDM7_ailMel    .I.R.PLR.........E..K...T....LG.....LP.......HD.LQ..
PRDM7_musPut    .V.R.PL..........E..K...T....HD.....HP.......H..LR..
PRDM7_pteVam    A..RVPL...P......VI....K......D....F.P.K..A.R....Q..
PRDM7_myoLuc    AKSR.PL..........G.....TT.....T..T.P.P.........P.S..
PRDM7_equCab    R.RT.PL....R.....G..K..KT.S...V......L....S.E....R..
PRDM7_sorAra    .RSRTPI.....S....G.RT...TKCTK.....LF.P.......HY.KP..
PRDM9a_loxAfr   .T...LLG.......V.G..I...TT..........SP......D.P..W..
PRDM7_echTel    ...GV.LR...N..V..G..I..T.AEP..PH-.G..P...T..HE.L.Q.V
PRDM7a_proCap   .T...LLG.......V.G..I...TT..........SP......D.P..W..
Consensus       GMPRAPLSNESSLKELSGTANLLNTSGSEQAQKPVSPPGEASTSGQHSRQKL

Comparative genomics: sequence availability

As of Sept 2011, some 72 PRDM7 and PRDM9 genes from 45 species can be recovered from mammal genome projects. The encoded proteins are parsed into exons in the Curated reference sequences section. Due to gaps in coverage, full length gene models could not always be established.

There has been no gain or loss of introns -- all genes have the same identically phased ten exons. No retroprocessed (intronless) genes occur in any species despite transcription in germline tissues. However 83 of 710 expected exons could not be found for lack of coverage or (for marsupials and monotremes) possibly too much divergence.

In low coverage genomes, internal frameshifts and stop codons cannot easily be distinguished from sequence error even by consulting raw trace reads. However multiple disabling changes accompanied by an amino acid substitution pattern incongruent with conservation profile are strong evidence of pseudogenization, at least past the point of the first inactivating mutation. In chimeric proteins, the proximal region of the protein could continue to be functional.

Since typically only one individual of unspecified gender of a species is sequenced on just one of two relevant autosomal chromosomes, an aberrant gene could reflect a bad heterozygous allele, an atypical homozygous individual (who might have impaired meiosis), or a balanced polymorphism that advantageously reduces copy number. A population survey is necessary to distinguish between these possibilities and overall SNP variation. In some genes, the zinc finger array seems too short to have sufficient site specificity. However these are known to contract and expand in the two intensively studied species (mouse, human), so here too the sequence from a single individual can be misleading. Without this data, it can difficult to say whether a given PRDM7/9 locus is a pseudogene.

Supporting transcripts do not resolve the issue, first because pseudogene can continue being transcribed for millions of years after losing all functionality at the protein level and second because PRDM7 and PRDM9 are barely represented among the millions of mammalian transcripts at GenBank. That rarity might be explained by low levels of transcription in tissue types not widely used as experimental sources. However testis is frequently studied and one or more members of this gene family is essential for meiosis. This illustrates the futility of undirected transcript sequencing projects for determining the full coding potential of the genome. Global expression chips to date have not produced results here either.

MouseTranscripts.gif

The transcripts from mouse, rat and pig do not support the widely propagated concept that PRDM7/9 function solely in meiosis (which would limit them in effect to testis) as most transcripts arise elsewhere. In mouse, the PRDM7 role in meiosis has strong experimental support, yet many transcripts come from non-meiotic tissues. Human PRDM9 experimental transcripts mostly derive from a single unpublished 2011 project entitled "Exhaustive RT-PCR and sequencing of all novel TWINSCAN predictions in human" which unhelpfully pooled tissue from adrenal gland, bone marrow, brain, cerebellum, brain (whole), fetal brain, fetal liver, heart, kidney, liver, lung, placenta, prostate, salivary gland, skeletal muscle, thymus, thyroid, trachea, uterus, and spinal cord with testis.


Transcripts at GenBank on 22 August 2011 (est database):
DB452778 PRDM9  homSap  testis
DB636359 PRDM9  homSap  testis
DB024448 PRDM9  homSap  testis
DB080053 PRDM9  homSap  testis
DT932634 PRDM9  homSap  pooled including testis
DT932633 PRDM9  homSap  pooled including testis
DV080525 PRDM9  homSap  pooled including testis
DV080526 PRDM9  homSap  pooled including testis
DV080328 PRDM9  homSap  pooled including testis
DV080173 PRDM9  homSap  pooled including testis
DV080174 PRDM9  homSap  pooled including testis
DV080327 PRDM9  homSap  pooled including testis
BU194881 PRDM9  homSap  melanotic melanoma
AL704902 PRDM9  homSap  not reported
GU216230 PRDM7  musMus  testis
FJ212287 PRDM7  musMus  testis
HQ704390 PRDM7  musMus  testis?
HQ704391 PRDM7  musMus  testis?
CK032493 PRDM7  musMus  placenta
CJ235803 PRDM7  musMus  amnion
CN723438 PRDM7  musMus  4-cell embryo
BI737497 PRDM7  musMus  retina
BB642583 PRDM7  musMus  retina
BC012016 PRDM7  musMus  retina
BC023014 PRDM7  musMus  retina
BG288443 PRDM7  musMus  eye
FM103467 PRDM7  ratNor  body fat
GO353654 PRDM7a bosTau  4-cell embryo
EF432551 PRDM7  bosGru  testis
BX673635 PRDM7  susScr  pooled including testis
CO991452 PRDM7  susScr  oviduct
EW469934 PRDM7  susScr  mucosal membrane

The table below shows the number of zinc fingers in the second column, phylogenetic clade in the third, and adjacent gene (synteny) in the fifth. The number and character of zinc fingers is quite variable in human populations and likely so in all mammals; the table provides that of the individual selected for reference genome project which may not be representative of the species.

These zinc finger arrays have been corrected in low coverage genomes for common sequencing errors -- frameshifts and premature stop codons arising from nucleotide run length mis-calls (eg, ggggg read as gggg) -- though they could actually represent valid mutant alleles in the heterozygous state (assuming the gene essential for meiosis). Indeed, these errors seem far more common than in what is seen in housekeeping genes for the same genome.

The PRDM7 genes are all orthologous in the classical sense (as can be seen by adjacency to the unrelated gene GAS8) but various PRDM9 genes arose as different lineage-specific segmental duplications so are orthologous within a delimited phylogenetic clade. There is currently no suitable nomenclature for different gene duplications in different clades of the same parental gene so they are just called PRDM9 here, with PRDM7 reserved to genes adjacent to GAS8. In some species such as mouse, chromosomal rearrangements have scattered syntenic relations and orthology remains slightly uncertain but the single gene in the genome probably represents simple descent from the single euarchontoglire PRDM7 gene.

  • PRDM7: genes with ancestral location GAS8 synteny
  • PRDM9: lineage-specific segmental duplications of PRDM7
  • Pseudogenes: multiple disabling frameshifts and stop codons in parental gene (not a retrogene)
  >PRDM9_homSap   13  prim  gene  CDH12  Homo         sapiens      (human)         NM_020227
  >PRDM9_panTro   19  prim  gene  CDH12  Pan          troglodytes  (chimp)         GU166820
  >PRDM9_gorGor    -  prim  gene  cdh12  Gorilla      gorilla      (gorilla)       CABD02290264
  >PRDM9_ponAbe   10  prim  gene  CDH12  Pongo        abelii       (orangutan)     XR_093432
  >PRDM9_nomLeu   10  prim  gene  cdh12  Nomascus     leucogenys   (gibbon)        ADFV01015315
  >PRDM9_macMul    9  prim  gene  CDH12  Macaca       mulatta      (rhesus)        XM_001083675
  >PRDM9_papHam   11  prim  gene  cdh12  Papio        hamadryas    (baboon)        genome
  >PRDM7_homSap    3  prim  gene  GAS8+  Homo         sapiens      (human)         genome
  >PRDM7_panTro    2  prim  pseu  GAS8+  Pan          troglodytes  (chimp)         genome
  >PRDM7_gorGor    3  prim  pseu  GAS8+  Gorilla      gorilla      (gorilla)       genome
  >PRDM7_ponAbe    4  prim  gene  GAS8+  Pongo        abelii       (orangutan)     genome
  >PRDM7_nomLeu    5  prim  pseu  gas8+  Nomascus     leucogenys   (gibbon)        ADFV01125891
  >PRDM7_macMul    2  prim  pseu  GAS8+  Macaca       mulatta      (rhesus)        genome
  >PRDM7_papHam    2  prim  pseu  gas8+  Papio        hamadryas    (baboon)        genome
  >PRDM7_calJac   12  prim  gene  GAS8+  Callithrix   jacchus      (marmoset)      XR_090591
  >PRDM7_tarSyr    -  prim  pseu  gas8+  Tarsius      syrichta     (tarsier)       ABRT011082008
  >PRDM7_micMur    8  prim  gene  gas8+  Microcebus   murinus      (lemur)         ABDC01433247
  >PRDM7a_otoGar  10  prim  gene  GAS8+  Otolemur     garnettii    (galago)        genome
  >PRDM7b_otoGar   8  prim  gene  GAS8+  Otolemur     garnettii    (galago)        genome
  >PRDM7_tupBel    9  prim  gene  noDet  Tupaia       belangeri    (tree_shrew)    genome
  >PRDM7_oryCun    4  glir  gene  other  Oryctolagus  cuniculus    (rabbit)        genome
  >PRDM7_ochPri    -  glir  gene  noDet  Ochotona     princeps     (pika)          AAYZ01312269
  >PRDM7_ratNor   10  glir  gene  PDCD2  Rattus       norvegicus   (rat)           NM_001108903
  >PRDM7_musMus   12  glir  gene  PDCD2  Mus          musculus     (mouse)         NM_144809
  >PRDM7_musMol   11  glir  gene  noDet  Mus          molossinus   (wild_mouse)    GU216230
  >PRDM7_criGri    3  glir  gene  noDet  Cricetulus   griseus      (hamster)       AFTD01086355
  >PRDM7_dipOrd    -  glir  gene  noDet  Dipodomys    ordii        (kangaroo_rat)  genome
  >PRDM7_speTri    -  glir  gene  noDet  Spermophil   tridecemlin  (squirrel)      AAQQ01308561
  >PRDM9a_bosTau   7  laur  gene  noDet  Bos          taurus       (cattle)        NW_003053109
  >PRDM9b_bosTau   5  laur  gene  noDet  Bos          taurus       (cattle)        DAAA02065087
  >PRDM9c_bosTau   -  laur  gene  noDet  Bos          taurus       (cattle)        XM_002699750
  >PRDM9d_bosTau   9  laur  gene  noDet  Bos          taurus       (cattle)        genome
  >PRDM9e_bosTau   9  laur  gene  noDet  Bos          taurus       (cattle)        genome
  >PRDM9e_oviAri   -  laur  pseu  noDet  Ovis         aries        (sheep)         genome
  >PRDM9d_oviAri   -  laur  gene  noDet  Ovis         aries        (sheep)         genome
  >PRDM9c_oviAri   4  laur  pseu  noDet  Ovis         aries        (sheep)         genome
  >PRDM9b_oviAri   2  laur  pseu  noDet  Ovis         aries        (sheep)         genome
  >PRDM9a_oviAri   9  laur  gene  noDet  Ovis         aries        (sheep)         genome
  >PRDM9d_munMun   4  laur  gene  noDet  Muntiacus    muntjak      (muntjac)       AC216498
  >PRDM9c_munMun  15  laur  gene  noDet  Muntiacus    muntjak      (muntjac)       AC154919
  >PRDM9b_munMun  13  laur  gene  noDet  Muntiacus    muntjak      (muntjac)       AC218859
  >PRDM9a_munMun   7  laur  gene  noDet  Muntiacus    muntjak      (muntjac)       AC225653
  >PRDM7_bosTau    -  laur  pseu  GAS8+  Bos          taurus       (cattle)        genome
  >PRDM7_turTru    9  laur  gene  gas8+  Tursiops     truncatus    (dolphin)       ABRN01441536
  >PRDM7_lamPac    2  laur  gene  noDet  Lama         pacos        (llama)         scaffolds 
  >PRDM7_susScr    9  laur  gene  GAS8+  Sus          scrofa       (pig)           FP476134
  >PRDM7_canFam    5  laur  pseu  GAS8+  Canis        familiaris   (dog)           genome
  >PRDM7_felCat   11  laur  gene  GAS8+  Felis        catus        (cat)           genome
  >PRDM7_ailMel    6  laur  gene  GAS8+  Ailuropoda   melanoleuca  (panda)         GL193502
  >PRDM7_musPut    3  laur  gene  noDet  Mustela      putorius     (ferret)        AEYP01035077
  >PRDM7_neoVis    2  laur  gene  noDet  Neovison     vison        (mink)          JF288183
  >PRDM9_pteVam   15  laur  pseu  noDet  Pteropus     vampyrus     (bat)           ABRP01232219
  >PRDM7_pteVam    7  laur  gene  GAS8+  Pteropus     vampyrus     (bat)           ABRP01250178
  >PRDM7_myoLuc    6  laur  gene  gas8+  Myotis       lucifugus    (bat)           AAPE02062260
  >PRDM7_equCab    4  laur  gene  GAS8+  Equus        caballus     (horse)         genome
  >PRDM7_sorAra    8  laur  gene  noDet  Sorex        araneus      (shrew)         AALT01000095
  >PRDM9a_loxAfr  12  afro  gene  noDet  Loxodonta    africana     (elephant)      genome
  >PRDM9b_loxAfr   3  afro  pseu  noDet  Loxodonta    africana     (elephant)      genome
  >PRDM7_loxAfr    5  afro  pseu  GAS8+  Loxodonta    africana     (elephant)      genome
  >PRDM7_echTel    5  afro  pseu  noDet  Echinops     telfairi     (tenrec)        genome
  >PRDM7a_proCap  17  afro  pseu  noDet  Procavia     capensis     (hyrax)         ABRQ01392668
  >PRDM7b_proCap  13  afro  pseu  noDet  Procavia     capensis     (hyrax)         ABRQ01227339
  >PRDM7_dasNov    9  xena  pseu  noDet  Dasypus      novemcinctus (armadillo)     AAGV020462211
  >PRDM7_choHof    2  xena  pseu  noDet  Choloepus    hoffmanni    (sloth)         ABVD01893961

Gene trees based on domains

PRDMcompBio.jpg

PRDM9 is a chimeric protein consisting of 6 domains and linker regions. These domains occur in various combinations in many other human proteins without however known variability in domain order. The evolutionary relationships between all these proteins is necessarily complex, but taking the PR(SET) histone methylase as common denominator, the [gene tree at left emerges after structural alignment considerations.

While informative, this is really just a domain tree. A different tree would result based on the KRAB domain because it involves a different (though overlapping) set of proteins which had a partially independent history of duplication and shuffling from the PR(SET) domain. That precludes a meaningful joint tree based on KRAB + PR(SET) for those proteins that have both.The SSXRD domain has quite limited distribution but is considered further below. The knuckle and early zinc finger domains are rather short for domain tree inference, leaving presence/absence as the main consideration.

A domain tree based on the terminal zinc finger array is problematic due to long independent histories of expansion and contraction. Here the main handle is the C2H2 classification (based not only on residues binding zinc but also their spacing). Main other types of zinc fingers occur in the human proteome. Some blur into C2H2 but others -- like the intertwined CCHC and HCCC in DRMT1 -- are structurally quite distinct. DRMT1 is the sex-detemination gene in birds and a major regulator of gene expression in mammalian Sertoli and germ cells. It dramatically affects expression of mouse PRDM7 (called Prdm9) but apparently indirectly as the mouse gene lacks close-in upstream binding site according to genome browser wig tracks.

The traditional PR(SET) domain seems too small for an enzyme with such distinctive substrates so flanking sequence can be added consistent with observed amino acid conservation. Using S-adenosyl methionine as donor, PRDM9 places the third methyl group only on the fourth position lysine in mature histone H3 (which is actually position 5 prior to iMet removal: MARTKQTARK...), just one of this histone's 27 modified residues. There are many such epigenetic methylases in the human genome. PRDM9 has no applicable crystallographic structures, leaving undefined the residues involved in substrate binding and catalysis.

The histone orthology class, methylation position and methylation extent of these methylases correlates poorly with evolutionary grouping by PR(SET) domain (figure), suggesting gene duplications can readily diverge in their properties. PR(SET) domains can even lose catalytic competence yet retain recognition capacity and recruitment of other proteins. However loss of constraints might lead to anomalously fast divergence and so to misplacement in the domain tree.

The upper left corner shows variability in domain structure. While PRDM9 and PRDM7 share the same domains (an upstream KRAB domain is not shown), of PR-class homologs, PRDM11 shares only the PR(SET) domain despite nesting deep within the PRDM9 subtree. PRDM4 has both the PR(SET) and C2H2 domains, possibly sharing the early zinc finger in an exon beginning with a phase 2 splice acceptor (marked up with color in reference sequence collection). Overall however, PRDM9 and PRDM7 have no full length homologs with matching exon structure.

Note PR(SET) domain is even intronated differently within PR-class proteins, suggesting ancient divergence from a common pattern since intron gain/loss is exceedingly rare in vertebrates. These incongruities may have arisen from domain shuffling, gain and loss. Intron phasing provides a very important constraint on domain shuffling because the downstream reading frame must be preserved.

Intronation patterns of PRDM9 domains fit the standard eukaryote pattern: domains evolved first, introns inserted later at random sites. Domain shuffling might be even more pervasive if domains corresponded cleanly with exon breaks and all introns were phase 0. However this is almost never the case, another instance of what is sometimes called 'unintelligent design'.

The human PRDM9 sequence below is annotated in color for domains relative to exon breaks. The protein can be best understood in terms of concatenated domains, not all of which may be present in antecedent and descendant homologs. The first two domains KRAB and SSXRD likely interact with transcription factors, though these have not been specifically characterized in meiosis.

Each terminal zinc finger type C2H2 array potentially recognizes a specific trinucleotide and so a large concatenated array quite specific binding sites in the genome, though tolerance of nucleotide variability and overlapping interactions between adjacent units make it difficult to read out these sites precisely, despite immense efforts. However aberrant individual zinc fingers are common in arrays; not all contribute directly to dna binding specificity.

The concatenated C2H2 domains, conserved at the amino acid level so necessarily similar at the dna level, are apparently prone to replication slippage (or mis-registered gene conversion). Both processes can give rise to associated point mutations as well as leading to different repeat number distributions in human populations.

Taking the extremes of variations, it is a wonder that humans can still interbreed, yet Haldane's Rule so far has not been invoked as a cause of human infertility. PRDM9 allelic differences may provide an importent speciation barrier (ie, infertility of F1 males), yet introgression has been reported for denisovan, neanderthal and earlier African hominid dna into contemporary human genomes. By way of comparison, mice with 13 zinc finger repeats form sterile hybrids when crossed with mice differing merely by an extra repeat.

Many other unrelated proteins with internal repeats (such as the octapeptide region of the prion gene PRNP) are also affected by replication slippage. These events, though rare, have been intensively studied because they cause toxic gain of function (Creutzfeldt-Jacob disease). Repeat expansions here too are accompanied by localized point mutation. The PRNP repeats have anomalously high GC content prone to self-similarity loop-outs unlike the C2H2 repeats of PRDM9.

Both PRDM9 and PRDM7 contain a seldom-mentioned zinc finger early in the final exon, as annotated by SwissProt and readily found by the online domain tools such as SMART regardless of species. This domain conserves the four critical residues needed for zinc binding (and so the associated fold) but lacks the terminal cap TGEKP which otherwise serves to lock down a C2H2 zinc finger after it has scanned along genomic dna to an appropriate trinucleotide. The function of this early domain and the following 112 highly variable residues are unknown -- no demonstrably homologous sequence occurs in other human proteins with the possible exception of PRDM4 and PRDM15.

The main zinc finger array also resides in this long distinctive terminal exon of splicing phase 12 that has been shuffled together into various contexts during mammalian evolutionary time. For once, intron phase is not so informative because the preceding PR(SET) domain with its codon overhang of 1 bp can accept any shuffled domain with overhang of 2 bp and still maintain reading frame. Since the KRAB domain also terminates in a phase 12 splice site, proteins can also skip the PR(SET) domain entirely, as in ZNF133 and many others. Concepts such as paralogy and orthology thus need piecewise definitions in these composite proteins.

The first C2H2 of the main repeat region is proximally degenerate, beginning in VKY in all species (instead of YCE). The lysine cannot plausibly replace the usual cysteine for zinc binding though the other three needed residues are present and may suffice. This domain ends in a typical cap region TGEKP. Humans are the exception here where the conserved helix-ending proline has been replaced with leucine in the reference human genome, with unknown functional consequences. This replacement is not recent since it is found in all human populations including the extinct Denisovans (41 kyr) and the basal (70 kyr) bushman lineage for which fragment VKYGECGQGFSVKSDVITHQRTHTGEKL YVCRECGRGFSWKSHLLIHQRIH is available from read 20_@FQ2QD2002IAZ67.

Another overlooked zinc finger domain occurs in the same exon as the PR(SET), preceding it. Being short, it is sometimes called a zinc knuckle rather than finger. There can be no doubt about its occurence because a crystallographic study has confirmed the expected fold and zinc atom.

As noted, PRDM7 occurs immediately telomeric to the unrelated single-copy conserved gene GAS8 (with the two genes convergently transcribed). PRDM7 is otherwise the last gene on the q arm of its chromosome in many species which may predispose it to copy number dispersal events, which may in the past have resulted in juxtaposition and functional fusion to other genes. PRDM9 is not consistently present in placental mammals and each clade with it has a different syntentic location, suggesting numerous independent gene duplications (rather than many rearrangements and gene losses).

PRDM7dot.gif


>PRDM9_homSap Homo sapiens (human) Q9NQV7 10 exons chr5:23,509,579 span 18,301 bp KRAB SSXRD zinc knuckle PR(SET) early ZNF C2H2 cap
0 MSPEKSQEESPEEDTERTERKPM 0
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPWMALRVEQRKHQK 0
0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL 1
2 ELRKKETERKMYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
VKYGECGQGFSVKSDVITHQRTHTGEKL
YVCRECGRGFSWKSHLLIHQRIHTGEKP
YVCRECGRGFSWQSVLLTHQRTHTGEKP
YVCRECGRGFSRQSVLLTHQRRHTGEKP
YVCRECGRGFSRQSVLLTHQRRHTGEKP
YVCRECGRGFSWQSVLLTHQRTHTGEKP
YVCRECGRGFSWQSVLLTHQRTHTGEKP
YVCRECGRGFSNKSHLLRHQRTHTGEKP
YVCRECGRGFRDKSHLLRHQRTHTGEKP
YVCRECGRGFRDKSNLLSHQRTHTGEKP
YVCRECGRGFSNKSHLLRHQRTHTGEKP
YVCRECGRGFRNKSHLLRHQRTHTGEKP
YVCRECGRGFSDRSSLCYHQRTHTGEKP YVCREDE* 0
         -1  23  6           traditional numbering of dna recognizing amino acids
LYCEMCQNFFIDSCAAHGPPTFVKDSAV alignment of zinc knuckle
HPCPSCCLAFSSQKFLSQHVERNH     alignment of pre-array zinc finger
  *  *            *  *       zinc liganding positions

Segmental duplications creating PRDM9s from PRDM7

PRDM7segDup.gif

In humans, PRDM9 and PRDM7 are related by a 26 kbp segmental duplication of chr16:90123419-90147718 that begins about 8 kbp upstream of the start codon and continues through most of the 3' UTR. Since the retroposon patterns are nearly identical, the duplication must be fairly recent. The overall percent identity of non-coding dna is about 93%, again inconsistent with either early (stem placental) or late divergence (great ape). The duplication contains a potentially diagnostic 1845 bp retroposon-free region upstream of the first coding exon.

PRDM7 is situated at the extreme tip of chromosome 16q, perhaps predisposing it to chromosomal copy number variation (segmental duplications to other other chromosomes), ironically mediated by meiotic recombination. The syntenic context TUBB3+ DEFB+ AFG3L1+ DBNDD1- GAS8+ PRDM7- qTel means PRDM7 is transcribed convergently with GAS8, a non-homologous conserved single copy gene whose distal exons are often detectable even in low coverage genomes in the contig containing PRDM7. This association has been extremely stable over placental mammal evolutionary time and so serves to reliably distinguish PRDM7 orthologs from its spin-offs.

The elephant genome has an old PRDM7 pseudogene adjacent to GAS8 in the expected opposite orientation. It has a second PRDM9-like copy in a novel syntenic location (ie unrelated to the CDH10-CDH12 location in primates) also seen in mammoth. Since afrotheres (plus xenarthrans) are the basal placental mammal, it follows that this locus too was spun off from PRDM7, establishing a 110 myr history of telomeric susceptibility of PRDM7 to repeated rearrangements.

Gene copy variation may be common in individual inheritance but a paralogous copy seldom becomes established across a species and even more rarely displaces the parental gene completely. Yet this scenario is repeatedly observed in evolutionary history of PRDM7. Thus the telomeric location of PRDM7 may predispose it to these events, but their persistance is not accidental: the erasure of meiotic recombination iniation sites by biased gene conversion drives evolution of PRDM7/9 at three different scales -- point mutation at key amino acid positions, expansion/contraction of zinc finger tandem repeat number, and whole gene copy number.

This history was not initially appreciated. Recall two genes in two species are orthologous only when they are vertically descended from the same gene in their last common ancestor which for human and elephant is post-marsupial mammal which had a single copy of PRDM7 adjacent to GAS8. The respective PRDM7 genes, still adjacent to GAS8 today are orthologous. The respective 'PRDM9' genes are however not descended from a common ancestral PRDM9 gene but from independent gene duplications of PRDM7 at different times during the course of afrothere and primate speciations.

Human PRDM9 lies in a retroposon-rich gene desert, flanked by two pairs of cadherin genes at a larger scale of 7 mbp. In rhesus, these same genes are seen (with some minor rearrangements), by parsimony establishing this PRDM9 segmental duplication preceded the divergence of old world monkeys.

Marmoset has a seemingly functional PRDM7 in the usual position facing GAS8, still at the extreme end of Callithrix chromosome 20. The cadherin cluster is intact on chr2:178,954,165-180,696,523. However Blastx of the intervening dna -- which is similar in size to rhesus and human so not suggestive of large deletions -- shows no suggestion of PRDM9. The assembly is gapless here. Blastx is sensitive enough to detect pseudogenes of this age provided they decayed only by small indels and nucleotide substitutions.

Thus PRDM7 had not yet duplicated in the primate stem placing that event just prior to old world monkeys/great apes divergence. Note that the marmoset PRDM7 has a respectable terminal zinc finger array of twelve units, enough to specify an adequately specific dna recognition sequence. Tarsier assembly has poor coverage and only a fragmentary PRDM7 gene presumed adjacent to GAS8.

Gene  Strand Protein      Start     Species
CDH18    -   cadherin 18  19981287  homSap  ponAbe  macMul
CDH12    -   cadherin 12  22853731  homSap  ponAbe  macMul  calJac
PRDM9    +   human PRDM9  23528704  homSap  ponAbe  macMul  
CDH10    -   cadherin 10  24644911  homSap  ponAbe  macMul  calJac
CDH9     -   cadherin 9   27038689  homSap  ponAbe  macMul

Lemurs present a new complication. The Otolemur assembly has two distinct and possibly functional PRDM7 copies with 8-11 zinc fingers, according to how distal stop codons and frameshifts are interpreted in low coverage assemblies. One of these lies in a contig AAQR03144890 also containing GAS8 end-sequence in expected opposite orientation but this copy of GAS8 is a segmentally duplicated pseudogene, representing a new type of lineage-specific larger segmental duplication. Authentic GAS8 lies in a different Otolemur contig AAQR03166494 lacking any sign of a zinc finger protein. The second PRDM7 gene lies in a contig AAQR03189271 with novel synteny to the gene ARFGEF1. There is no sign of primate PRDM9 (a homolog intercalated between cadherins CDH10 and CDH12).

The other lemur with an assembly, Microcebus murinus, has but a single presumptive PRDM7 with seven zinc fingers. The only relevant contigs (ABDC01433247 and ABDC01371462) contain no informative syntenic information so this gene cannot be associated with GAS8 with any confidence. However the contigs cannot be tiled and possibly belong to distinct genes.

The basal euarchtonal species, tree shrew Tupaia belangeri, has an unsatisfactory assembly. A putative PRDM7/9 gene can be put together utilizing raw traces reads located with lemur blastn queries. These cannot be convincingly tiled and thus could originate from multiple genes including related chimeric domain proteins, even though best reciprocal blast of each exon calls up established PRDM7/9 matches.

Moving on to laurasiatheres, Bos taurus presents a much more complicated situation. First, the GAS8 locus on chr18 contains the first two exons of a PRDM7 pseudogene in expected orientation but distal regions of the gene are completely deleted. The cadherin locus on chr20 is also intact but the 2.6 mbp region between CDH12 and CDH10 contains no indication of PRDM9, consistent with that segmental duplication being primate-specific and PRDM7 being the older parental location. This holds in the Baylor 4.0 assembly carried at UCSC, the Baylor 4.2 assembly, and the alternative assembly of the same data, UMD3.1. The latter two can be queried by the genomic blast server at NCBI.

A third locus on chr 1 hosts an unreviewed GenBank pipeline entry called PRDM9, derived as NW_003053109 from the alternative bovine assembly UMD3.1. NCBI staff corrected an unspecified frameshift to fix the reading frame -- a dangerous practice in a gene family prone to pseudogenization. The gene, called PRDM9a here, resides on the extreme end of chromosome 1 and differs from the Baylor 4.0 assembly at two amino acids outside the zinc finger region. The syntenic context here is novel: EFHB- RAB5A+ PCAF+ ZNF596- PRDM9a- which corresponds overall to human chr 3. The juxtapositioning of two zinc finger proteins on the same strand causes PRDM9 alignments to extend spuriously into the 12 zinc fingers of ZNF596, jumping over its 5 earlier coding exons.

ZNF596 contains a KRAB domain but no PR(SET) methylase. Humans encode a best-blast protein with the same assigned name on chr 8 (77% identity). Note the early exons of ZNF596 can be added to end of PRDM9a to form an artificial probe for this association in other species, though the two genes have a 43,400 bp spacer in cow, which is large relative to contig size in low coverage assemblies. The sole fragmentary transcript from yak testis (EF432551) is nearly identical to this PRDM9a, suggesting that the gene -- and perhaps its syntenic location -- became established prior to yak-cow divergence at 2.5 myr and is still functional. Its array of seven zinc fingers could recognize at most a region of 21 bp.

ZNF596 did not arise from a PRDM9-like gene through loss of the SET domain, though it is one of the better matches within the large zinc finger family. Excluding the zinc finger domain, ZNF343, ZNF133 and ZNF169 provide much higher blastp scores, as they also do just comparing the zinc finger arrays. The juxtaposition of ZNF596 and PRDM9a is likely coincidental rather than a consequence of inhomogeneous recombination between zinc fingers bringing PRDM9 to this site.

The fourth PRDM9 locus of interest, called here PRDM9b, is still not mapped to any bovine chromosome. It resides in contig DAAA02065087 in the UMD3.1 assembly and is temporarily assigned to chr Un.004.649 at Baylor assembly. Here the reading frame in exon two can be restored if a run of 5 A's is corrected to 6 A's, as homopolymer run length error is common in assemblies. The protein has a full set of domains KRAB SSXRD SET C2H2 with a moderate zinc finger array of five. Synteny cannot be determined in chr Un features which simple abuts unplaceable contigs into a manageable unit. Flanking dna in DAAA02065087 maps to several places in the cow genome, suggesting this feature has copy number attributes, perhaps of telomeric repeat type. PRDM9b is not a recent feature (or assembly stutte artifact) because it differs at toom any amino acids from other PRDM9 features in the cow genome. These substitutions avoid highly conserved residues, not consistent with cryptic pseudogenization. PRDM9b is capable of histone markup but it is not clear whether it does so.

Yet another locus in the Baylor 4.0 assembly, called PRDM9c here, could not initially be placed on a cow chromosome. While such features are often assembly artifacts, this one is supported by a transcript from 4-cell embryos (GO353654) consistent with a role in or after meiosis. In UMD3.1, this gene has been placed on chr X. Despite a very large contig, no zinc fingers occur in any reading frame, suggesting that the gene was transferred here without the last exon or it subsequently got deleted. In any event, the penultimate exon does not have a phase 1 splice donor in expected position and so would terminate at the next stop codon downstream. The protein retains the KRAB, SSXRD and SET domains but does not possess the ability to scan or bind dna. It has accrued various amino acid substitutions relative to other bovine PRDM9 that rule out recent establishment.

Finally, two additional genes, denoted PRDM9d and PRDM9e, are located as a parallel tandem pair in a higher quality region of bovine chr X. These are 96% identical as proteins, consistent with one being derived fairly recently from the other. Synteny here will not be informative until other ruminant genomes become available.

Overall the situation in cow is very different from primates and rodents. Results there about the function of single-copy autosomal PRDM9 genes in meiosis markup can scarcely be carried over to a species with five seemingly intact genes, three of which are on chr X. Ruminants have a well-characterized small pseudoautosomal region on which crossovers with chrY can occur.

The cow situation cannot be limited to the Hereford breed used for the genome project because the PRDM9 are too diverged from one another outside the zinc finger region. Indeed there is some suggestion from non-NCBI sheep genome that it too has many of these copies. Muntjak too seems similar to cow. However other cetartiodactyl genomes (dolphin, pig and alpaca) and other laurasiatheres (panda, dog, cat, shrew, bats) are not so expanded, suggesting that this unprecedented complexity could be limited to pecoran ruminants. The PRDM7 pseudogene is presumably parental to all these ruminant genes based on other laurasiatheres and placentals overall.

All-vs-all blastp percent identities are consistent with this, though rates of evolution in this gene family hardly fit standard paradigms for quantification. Results for bovine are summarized in the table below:

Gene   #ZNF  Status  Chr  Synteny  cDNA  Accession    9a_bosTau 9b_bosTau 9e_bosTau 9a_oviAri 9a_turTru 7_ailMel

PRDM7    -   pseudo  18    GAS8     no   none           --        --        --        --        --       --
PRDM9a   7     ok     1    ZNF596   yes  NW_003053109  100%      85%        81%       82%       76%      72%
PRDM9b   5     ok     ?    not det  no   DAAA02065087   81%     100%        78%       79%       72%      68%
PRDM9c   0     ok     X    not det  yes  XM_002699750   80%      80%        82%       83%       74%      73%
PRDM9d   9     ok     X    ---      no   none           80%      78%        96%       93%       73%      67%
PRDM9e   9     ok     X    ---      no   none           81%      78%       100%       93%       73%      68%

Human PRDM9 variation

A great deal of attention -- and rightly so -- has been expended on cataloging variation in the zinc finger array at the level of both individuals and populations. While not the whole story of PRDM9 functionality by any means, this region is the primary determinant of recombination hotspot locations in meiotic dna. These sites greatly influence observed haplotypes and so the zinc finger array and its changing specificity over time must be understood to make reliable inferences about recent human evolutionary history and indeed speciation.

The zinc finger array is roughly analogous to tRNA. Both bind trinucleotides, the former in double-stranded dna and the latter in single-stranded messenger rna. Both are somewhat fuzzy in binding specificity, the zinc fingers only partly specifying a sequence (eg CCNCCNTNNCCNC) and tRNA accepting wobble codons. Both require an array, these are covalently joined and consecutive in the zinc finger array but are discrete and sequentially acting in tRNAs.

However this analogy only goes so far: the anticodons of tRNA have been fixed for billions of years whereas the four amino acid 'anticodons' of PRDM9 zinc fingers must undergo very rapid but highly restrictive mutation to keep up with an ever-changing recognition site (which obliterates itself with gene conversion, often the outcome of double-stranded break repair instead of recombination). Further, while all tRNAs recognize at least one codon, only a fraction of the zinc fingers in the human PRDM9 array can be utilized -- 13 fingers specify 39 nucleotides whereas observed sites are far shorter, some 13-17 base pairs. What selective pressure then maintains the unused fingers?

That is but one of many remaining questions about PRDM9. Expression in some mammals is not restricted to germ line cells, suggesting other functionalities in the regulation of gene expression. The PRDM9 locus on chr5 itself does not contain a notable recombination hotspot (relative to its own zinc finger array) so gene conversion here cannot explain its mutational frequency, focus on the four determinative residues, and restricted compositional outcome (to nine of twenty amino acids).

Selectional pressure on this gene is highly unusual in that an amino acid substitution in a germline cell yielding a zinc finger that cannot recognize a meiotic target is eliminated right away because recombination is essential to the meiotic process, meaning that no correctly divided haploid cell is available for fertilization. Other regions of the same protein evolve much more conventionally, with human PRDM9 diverging overall from other primates at unremarkable rates.

The zinc finger array varies not only pointwise but also in number of repeats, from 13 or fewer to 20 or more, in contrast to many other stable 'polydactylic' zinc finger proteins. The mutational mechanism by which repeat numbers contract and expand has not been established but is presumably replication slippage, as in other unrelated proteins (such as the octapeptide repeat region in human PRNP). It is unclear what happens to individual zinc finger utilization after an expansion or contraction.

Note in males, recombination must occur in the two short pseudoautosomal regions of homology between chrX and chrY where few base pairs are available (relative to much longer autosomal chromosomes) for the recognition sequence to occur randomly with reasonable probability. Thus in humans PAR1 on the short-arm ends of chrX and chrY is 2.6 mbp whereas as PAR2 on the long arms ends only comprises 320 kbp. By comparison, the shortest human chromosome, chr22, has 50 million bases to host recombination recognition sites (16x as much). Thus the PARs may provide the do-or-die selectional bottleneck driving zinc finger array evolution.

Given that small surveys in moderately inbred populations (such as Iceland) already find considerable variation in both number and sequence particulars of PRDM9 zinc finger arrays, it seems inevitable that many individuals must be heterozygous, sometimes radically so. However these would not necessarily be reported from sequencing projects where commonly only one allele is determined. It is not known whether both alleles in a heterozygous individual would be expressed and participate on an equal footing in meiosis in the same dividing cell. If so, the repertoire of recognizable sites would be expanded, with complications for understanding haplotype evolution if common.

One last immense complication is that human and mouse do not speak for the rest of mammals. There, multiple copies are present in some major lineages, in some cases with zinc finger arrays too short to determine an adequately restrictive suite of recombination sites. Here the possibility must be considered that paralogous copies can act in tandem with short arrays acting in concert to define adequate length sites. The pseudoautosomal regions are by no means strictly conserved phylogenetically. Here adequate data may well be available from horse and cattle breeders but it has not surfaced to date.

The role of CpG mutations

Human PRDM9 has 39 CpG sites in its coding exons, potentially methylated on the C, subject to spontaneous deamination to uracil and mis-repair, and so mutational hotspots. After attempted dna repair, the resulting change can be either CpA or TpG. These changes alter the encoded amino acid at non-synonymous sites. Some 28 of the CpG sites of PRDM9 are at arginine CGn codons (of which the protein has 90 overall).

These always result in a substitution: G -> A mis-repair yields histidine for CGT and CGC and glutamine for CGG and CGA; C -> T mis-repair leads to cysteine for CGT and CGC and tryptophan and stop codon for CGG and CGA. These changes indeed occur in reported human and mammal sequences where they are perhaps best viewed as cSNPs in an individual rather than representing the species as a whole. The display below shows wildtype human PRDM9 in the top lines and the effects of G -> A and C -> T in the next.

In terms of upstream CpG islands that would protect against methylation of CpG in coding regions, PRDM9 has none. While three occur somewhat near the start of PRDM7, these do not extend into coding exons and may not even be associated with this gene. The composite snapshot below from chr5 and chr16 of the UCSC human genome browser displays these CpG islands relative to the two genes. Thus CpG cytidines would be methylated in coding regions of both PRDM7 and PRDM9, rendering them susceptible to hotspot mutations.

CpGislandsPR.gif


In the terminal zinc finger array of the human PRDM9 reference sequence, position -1 is sensitive to the CpG hotspot effect. However rapid rapid evolution in the zinc finger array, which is overwhelmingly concentrated in the four dna-recognizing residues, cannot be explained by the CpG effect. On the other hand, the common alteration of the terminal partial finger YVCREDE* to Y*CREDE* in some species likely is a CpG effect but one that is insufficient for loss of function.

PRDM9_homSapWT   MSPEKSQEESPEEDTERTERKPMVKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITIGLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQVKPPWMALRVEQRKHQKGMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKLELRKKETERKM
PRDM9_homSapCA   ...................Q.............................H...................Q......Q...................................H...................................................................
PRDM9_homSapTG   ...................W.............................C...................*......*...................................C........V..........................................................

PRDM9_homSapWT   YSLRERKGHAYKEVSEPQDDDYLYCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWLITKGRNCYEYVDGKDKSWANWMRYVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDE
PRDM9_homSapCA   ...Q...........K........................................H.........................................Q....K......................................Q.....................Q...............
PRDM9_homSapTG   ...*............L.......................................C..............................L..........*...........................................W.....................*...............
                                                    
PRDM9_homSapWT   YGQELGIKWGSKWKKELMAGREPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
PRDM9_homSapCA   .S..............................................H.....................................H............................................................................
PRDM9_homSapTG   ................................................C.....................................C............................................................................

........-1..23..6..........   ........-1..23..6..........   ........-1..23..6..........   ........-1..23..6..........
VKYGECGQGSVKSDVITHQRTHTGEKL   YVCRECGRGSRQSVLLTHQRRHTGEKP   YVCRECGRGRDKSHLLRHQRTHTGEKP   
...........................   .......Q..Q................   .......Q.HN................   
...........................   .......W..W................   .......W.C.................   
YVCRECGRGSWKSHLLIHQRIHTGEKP   YVCRECGRGSWQSVLLTHQRTHTGEKP   YVCRECGRGRDKSNLLSHQRTHTGEKP   
.I.....Q...................   .......Q...................   .......Q...................   
.......W...................   .......W...................   .......W...................   
YVCRECGRGSWQSVLLTHQRTHTGEKP   YVCRECGRGSWQSVLLTHQRTHTGEKP   YVCRECGRGSNKSHLLRHQRTHTGEKP   
.......Q...................   .......Q...................   .......Q...................   
.......W...................   .......W...................   .......W...................   
YVCRECGRGSRQSVLLTHQRRHTGEKP   YVCRECGRGSNKSHLLRHQRTHTGEKP   YVCRECGRGRNKSHLLRHQRTHTGEKP   YVCRECGRGSDRSSLCYHQRTHTGEKP   YVCREDE
.......Q..Q................   .......Q...................   .......Q.H.................   .I.....Q..N................   .I.....
.......W..W................   .......W...................   .......W.C.................   .......W...................   .......

A weblogo based on alignment of placental mammal PRDM7 and PRDM9 genes (with pseudogenes excluded) illustrates the location of expected CpG mutations relative to conserved residues. These will be relatively high frequency loss-of-function alleles (not affecting health per se if only reproductive meiosis is affected).

In the initial KRAB domain, the potentially affected arginines are not especially well-conserved. However, at the first site, neither histidine nor cysteine is part of the reduced alphabet so these changes are unlikely to be tolerated in meiotic functioning. At the second and third sites, glutamine does occur secondarily in some species (cow, sheep and muntjac) and murid rodents, respectively. These changes are thus borderline for adverse effects on functionality.

KRAB9logo.png

Sequence analysis of human variation

The PRDM9 terminal zinc finger array varies extensively in human, with significant consequences for hotspot recognition motif, distribution of recombination location options along the chromosomes, population history (linkage disequilibrium), and chromosomal rearrangement diseases. No other species -- notably other great apes -- has been surveyed to any extent for individual variation (with the exception of mouse PRDM7 where hybrid sterility was first mapped).

For these species, we have only the sequence of the animal selected for genome sequencing and so have no idea whether human variation is unique or typical. With high priority chimp, Genbank contains only an uncurated erroneous gene prediction XM_517829 and an array fragment GU166820 with a disturbing number of differences to chimp reference genome. Gorilla is worse. Mouse has considerable variation in its zinc finger array but the strains involved are highly inbred and not necessarily representative of wild mouse diversity.

Cheap short reads mapped to human reference as SNPs prove highly unsatisfactory for genes like PRDM9 where individuals differ not only at pointwise sites but also in wholesale repeat number. Several labs have reported novel repeat multiples but found an hour of re-sequencing too tedious; others assumed all possible arrays had already been reported and forced reads into one of these pre-existing classes; others left their discoveries as article graphics, behind firewall or in supplemental, not troubling themselves with GenBank entries, with laudable exceptions. Even if certain arrays are rare, they provide invaluable information on the genetic mechanisms by which repeat number variation arises.

PRDM9gubi.gif

It appears that few individual human genome or exome projects really gathered enough data to allow ab initio assembly of the zinc finger repeat array, or even when they did, walked away from that exercise, deposited a mess of indels and base miscalls at the Short Read Archive and then claimed SNPs relative to human reference, contaminating that resource with error.


This is very unfortunate in the case of both basal and ancient human dna, which might record intermediate or population-specific stages in the evolution of human PRDM9. Extracting accurate bushman, paleo-eskimo, neanderthal, and denisova PRDM9 zinc finger arrays requires starting from scratch from raw read data. This may however be impossible due to inadequate coverage and confusion of short reads with PRDM7 and even within PRDM9, not to mention other closely related zinc finger proteins.

Here PSU provides an excellent display of reads (along with quality scores) reported by the various projects. The final exon of PRDM9 can be viewed (noting PSU uses hg18 coordinates) at chr5:23562098-23562523 for the early region and chr5:23562524-23563636 for the terminal zinc finger array. Viewing the display to dense mode shows the extent of tiling: it does not appear that adequate coverage was obtained in the critical cases. Here it cannot be assumed that the zinc finger array of bushman (who represent the earliest diverging living relative of Europeans) will closely resemble extensively sequenced West African variants (Yoriba). The best that can currently be done with bushman genome is VKYGECGQGFSVKSDVITHQRTHTGEKL YVCRECGRGFSWKSHLLIHQRIH ... YHQRTHTGEKP YVCREDE* which matches hg19 human reference sequence without shedding any light on internal repeat length or sequence variation.

Although the zinc finger array conveniently resides in a single exon, that exon is almost never sequenced in its entirety. It has never been sequenced as a byproduct of an expression project. Consequently we have no idea its early zinc finger covaries with the terminal array nor any understanding of the constraints acting on the long bridging domain.

                      10        20        30        40        50        60        70        80        90       100       110       120       130       140       150       160       170
                       |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
PRDM9_homSap   EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAKVKYGECGQGFSVKSDVITHQRTHTGEKL
PRDM9_panTro   ...............................................................R................................................................A........................D.............G.P
PRDM9_gorGor   .........................................T.....................R.........................................................................................................P
PRDM9_ponAbe   .......................................................H....S..R.C.......................................................................................D.............GRS
PRDM9_nomLeu   ...A......................A.H.............F.................S..R.C...............................S..V...........I..-.............Q...........E............................
PRDM9_macMul   ...............................T.........R.F....L.S.........S..R.C.....................PK................S...E.M....Y........E...........................D.....I.........P
PRDM9_papHam   ...............................T...R.....R......L.S.........S..R.C....................R.K................S...E.M...........S.E.I.........................D....VI.........P
PRDM7_calJac   .S.....................H.............T.T............K.KE....F..CNS........T........I......MA....N........S..EE.M.............VD...............A..........DM...TG.........P
PRDM7_micMur   ............S.............KHT....IS.RT.G..H................HS....C...A.D..V...P.PFH.K.Q..G...........K.....E........P......G..D.D..CAAG.....SR....DS..S..D..N..I.........P
PRDM7_otoGar   ............S....T..........T.P..ISQ.T.G..N.R.QT...R.E.....HS..N..........V..M..TSH.K.Q.SR...I..C........S.E.E.MI...P.PD...G..D.E.FC.AI...G.V...NR..V.S..N..N-LR.........P

A terrible error was made early on in human PRDM9 variant nomenclature. It is completely unacceptable for PRDM9 to have a private system for naming zinc fingers that stands in conflict with dozens of previously established crystallographic structures, SwissProt, SCOP and PFAM practice, and nomenclature for the other 842 zinc fingers encoded in the human genome.

Wrong as it is, the current nomenclature will not be easy to displace. However this site uses a nomenclature consistent with physical structure, comparative genomics and historical precedent throughout and only provides a partial translation table to the numerous misguided motif naming systems.

The mistake arose because the first and last zinc fingers in primate PRDM9 are mildly anomalous. However it is exceedingly common even for internal zinc fingers to depart from canonical form, even to admit different spacings and substitutions in the C2H2 ligands, as well depart in length and cap domain. Zinc finger arrays commonly terminate in fragmentary motifs that often continue for a while in another reading frame (ie, represent non-3n indels with run-on to the next encountered stop codon).

Even when each zinc finger is letter-perfect, only a small subset seem to function in dna recognition -- thus 15 zinc fingers in a PRDM9 variant could theoretically recognize a 45 bp dna sequence but a look at meiotic events show that 17 bp seems the upper limit for specificity, meaning no more than 6-7 motifs are utilized in vivo. Nomenclature must acknowledge all zinc fingers whether they are anomalous or not (or functional or not).

Some 7,000 of the overall ten thousand zinc fingers end in a structurally distinct cap unit, typically TGEKP. This was shown long ago to lock the zinc finger down after scanning and has found the recognition sequence. Proteins with a single zinc finger still have this motif. It occurs at the end -- not the beginning -- of the main zinc binding region. Proline is no accident here: as a cyclic imino acid, it is structurally terminating for helix and sheet.

In summary, zinc fingers begin 5 residues before the second zinc cysteine, not at the second cysteine as in the 'ABCD...' nomenclature. Human PRDM9 begins with a full length zinc finger, but with a lysine at position 2 replacing the usual branched aliphatic, a tyrosine at position 3 replacing the first cysteine and a leucine replacing the terminal proline: VKYGECGQGFSVKSDVITHQRTHTGEKL. These oddities became stably established in the theran ancestor 135 myr ago (though departures -- and even the expected residues -- are seen in some species). Otherwise, the first zinc finger is quite conventional. The terminal leucine surprisingly is seen in all reported human variants. While the first zinc finger assuredly has the zinc finger fold and likely binds zinc to some extent, it likely does not function directly in specific dna motif recognition. Its role may more that of a macro cap, facilitating the lineup of downstream zinc fingers.

Similarly, the terminal YVCREDE* fragment, with its anomalous charged aspartate and glutamate in place of cysteine and glycine, is not zinc binding or part of a dna recognizing motif but simply a partial end cap. It has persisted (imperfectly) since the boreoeutheran ancestor so evidently provides significant value. In many laurasiatheres it is YCRECE or even YRCREG. Even a canonical hexapeptide cannot reach across the preceding TGEKP cap to displace zinc binding residues of the last full repeat, nor can the six residues circle around to displace the first five residues of first repeat. Instead, these residues form the start of an additional fold, enough to that keep the repeat array from unraveling.

Below the available diversity at GenBank is shown, with the 0th GEKL repeat removed because it has no variation. Also the longest allele has its last two repeats removed to shorten the display width. The terminal fragment is also not shown. Redundant sequences have been largely removed from the set of 42. The alignment is shown at the protein level because synonymous dna variation is largely irrelevant to function.

Prdm9HumVarAlign.gif


If all 42 human variant zinc finger array alleles at GenBank are collected, parsed into their zinc fingers and aligned for their differences relative to the genomic reference sequence, 25 variant fingers emerge at varying frequencies of occurrences. These are provided below, ordered by subgroup. The full sequence, allele name of the original investigators and representative accession are also given.

As previously observed, variation at the amino acid level is overwhelmingly concentrated at that handful of internal positions recognizing dna bases in the major groove. Furthermore, the amino acid substitutions are strongly concentrated within only 9 of the 20 available amino acids. These observations raise the question of how ordinary random mutational processes could possibly have produced these results. Perhaps variation elsewhere results in failed meiosis, causing these to disappear immediately, leaving only the observed variation.

Note in the table below (whose underlying data is here) that threonine appears as a very common alternative to isoleucine outside the critical region (between the two zinc-binding histidines): YVCRECGRGFSWKSHLLIHQRIHTGEKP. This is actually an oddity of the first GEKP repeat: T is found here in all other primates (ie ancestrally), not I. As bushmen also have I here, this allele was fixed prior to their divergence at 70,000 years.

            Human Variation in 507 Zinc Fingers in 42 PRDM9 Variants
Difference to NM refSeq     Freq   Full length zinc finger      Accession Allele   Great Ape Zinc Finger Variation

YVCRECGRGFSWKSHLLIHQRIHTGEKP   39  YVCRECGRGFSWKSHLLIHQRIHTGEKP NM_020227 ref      YVCRECGRGFSWKSHLLIHQRIHTGEKP    homSap
......................R.....    1  YVCRECGRGFSWKSHLLIHQRIRTGEKP FJ899869    7      .................S...T...... 1  panTro
............Q.V..T...T......  100  YVCRECGRGFSWQSVLLTHQRTHTGEKP NM_020227 ref      ...........V..S..S...T...... 6  panTro
............Q.V..S...T......   22  YVCRECGRGFSWQSVLLSHQRTHTGEKP GU216222    A      ...........V..S..S.RTT...... 1  panTro
............Q.V..R...T......   13  YVCRECGRGFSWQSVLLRHQRTHTGEKP GU183919  CH3      ...........VQ.N..S...T.....L 1  panTro
......R.....Q.V..T...T......    1  YVCRECRRGFSWQSVLLTHQRTHTGEKP HM211000  L18      ...........QQ.N..S...T...... 1  panTro
............Q.VP.T...T......    1  YVCRECGRGFSWQSVPLTHQRTHTGEKP FJ899895  18a      ...........RQ.A......T...... 1  panTro
...........N.....R...T......   65  YVCRECGRGFSNKSHLLRHQRTHTGEKP NM_020227 ref      ......E....QQ....R...T...... 1  panTro
..........RN.....R...T......   39  YVCRECGRGFRNKSHLLRHQRTHTGEKP NM_020227 ref      ...........QQ....R...T...... 2  panTro
..........RK.....R...T......    1  YVCRECGRGFRKKSHLLRHQRTHTGEKP GU183915  AA2      ...........QQ....S...T...... 2  panTro
..........RD.....S...T......   14  YVCRECGRGFRDKSHLLSHQRTHTGEKP GU216229    I      ...........KQ....S...T...... 2  panTro
..........RD.....R...T......   27  YVCRECGRGFRDKSHLLRHQRTHTGEKP NM_020227 ref      ...........RQ.V......T...... 1  ponAbe
..........RD..N..S...T......   48  YVCRECGRGFRDKSNLLSHQRTHTGEKP NM_020227 ref      ...........RR.V......T...... 1  ponAbe
..........RD..P..S...T......    1  YVCRECGRGFRDKSPLLSHQRTHTGEKP GU183915  AA2      ...........QQ.V......T...... 1  ponAbe
..........RD..N..S...T...D..    4  YVCRECGRGFRDKSNLLSHQRTHTGDKP GU183915  AA2      ...........RR.V......T...... 1  ponAbe
..........RDE.N..S...T......    2  YVCRECGRGFRDESNLLSHQRTHTGEKP HM211006  24L      ..............V..R...T...... 1  ponAbe
..........RDQ....S...T......    1  YVCRECGRGFRDQSHLLSHQRTHTGEKP GU183919  CH3      ...........QQ.VVF....T...... 1  ponAbe
...........RQ.V..T...T......    2  YVCRECGRGFSRQSVLLTHQRTHTGEKP FJ899905  10b      ...........G..V.FR...T...... 1  ponAbe
...........RQ.V..T...R......   79  YVCRECGRGFSRQSVLLTHQRRHTGEKP NM_020227 ref      ...........D..GVCY...T...... 1  ponAbe
...........RQ.V..T...G......    2  YVCRECGRGFSRQSVLLTHQRGHTGEKP FJ899872   10      ...........V..N..S...T..E..L 1  ponAbe
...........RQ.V..S...T......    1  YVCRECGRGFSRQSVLLSHQRTHTGEKP GU216228    H      ...........D..S..R...T...... 3  nomLeu
...........NQ.V..T...T......    1  YVCRECGRGFSNQSVLLTHQRTHTGEKP GU183916 AA11      ...........K..N..S...T...... 1  nomLeu
...........DQ.V..T...T......    1  YVCRECGRGFSDQSVLLTHQRTHTGEKP GU183916 AA11      ...........V..N..S...T...... 1  nomLeu
...........DR.S.CY...T......   37  YVCRECGRGFSDRSSLCYHQRTHTGEKP HM210983   L1      ...........Q..S..S...T...... 3  nomLeu
...........DR.S.CY...T..MSKS    5  YVCRECGRGFSDRSSLCYHQRTHTMSKS GU183916 AA11      .L.........V..S..S...T...... 1  nomLeu
                              507

When the 42 variants are aligned at the dna level, synonymous variation might be anticipated more or less evenly across the repeat array under the assumption that natural selection acts here only at amino acid level. However this is not the case as shown in the graphic below. For example, the GEKL repeat has no variation whatsoever despite numerous 4N codons. Elsewhere, synonymous variation is again highly concentrated at residues important to meiotic repeat recognition. This suggests a novel mutational mechanism exists that focuses change at the key regions, at a rate far above the genomic average. Conceivably the dna itself might have additional hairpin structure that exposes the critical regions to enhanced mutation. Such a speculative structure would fit with replication slippage varying the number of array repeats. This mechanism can also sweep out variation. Alternatively, the observed distribution of synonymous variation could arise via hypothetical mRNA editing in conjunction with a retroposon-like or copy-editing mechanism. A third option envisions another protein recognizing the dna encoding the repeats and acting upon them to provide variation.

PRDM9syn.gif

The terminal zinc finger array in the human reference sequence (but not chimp or orangutan) has a two-block structure. That is, the repeats 3-7.5 have a high degree of internal self-similarity as do repeats 7.6-13.4. However these two blocks are markedly dissimilar to each other, primarily due to transversions (rather than transitions C<->T or A<->G). The genetic code is such that transversions give rise to markedly less conservative amino acid substitutions in both physical and dna binding properties, as can be readily seen at the protein level for human PRDM9.

The origin of the two-block feature cannot be dated accurately because of limited sampling of individuals in great apes but is likely specific to human (or even to some human populations). It is closely correlated with the history of repeat contraction and expansion in this rapidly changing region of the gene. Note the zinc finger array is neither a microsatellite being 84 bp long vs the requirement of 1-6 bp nor a minisatellite.

Dotplots can create visual artifacts, depending on scanning window and mismatch settings. Here the two-block structure is highly robust to exploration of parameter space and its basis is readily apparent at both the dna and protein sequence levels.

Prdm9Blocks.gif
A very recent PNAS article looks at many human meioses and assigns the recognition sequence to the distal region of the zinc finger array (in Fig 1D and supplemental S2), which corresponds to the second block identified above. That raises the question whether the two blocks evolve by different non-mixing mutational mechanisms and leaves unexplained the functional tasks implied by observed conservation of the first block. The lack of block structure in chimpanzee PRDM9 illustrates once again that meiotic initiation is evolving in many different directions.

BergRecogn.gif


Rate of proximal PRDM9 evolution in primates

The rate of evolution of human PRDM9 at the protein level -- excluding special evolution in the terminal zinc array -- is rapid but perhaps not unusually so. A rate anomaly can only be defined relative to the rather skewed rate distribution of the human proteome (20,000 loci). However a better comparison might be just to rates of the many other KRAB, SSXRD and PR(SET) domains in the proteome and to linker regions which are often under little selection. These regions have mediocre conservation in general and so a rapid rate there for PRDM9 has no immediate implications for its association with meiosis or protein binding partners.

The fact that PRDM9 is a recent gene duplicate of PRDM7 adds another rate complication, as gene duplicates often exhibit rapid initial evolution as the copies subfunctionalize, a problem exacerbated here by functional persistence of a variously truncated PRDM7 in some primate lineages. Independent duplications of PRDM7 (eg afrotheres and pecorans) further complicate rate considerations outside of primates.

Together, these considerations make it difficult to define a meaningful 'peer group' in any major clade by which to benchmark the rate of PRDM7/9 evolution. However by any measure this gene family is not evolving slowly in placental mammals, perhaps surprising because excluding the zinc finger array leaves domains with seemingly fixed and demanding functionality. That is, the KRAB domain is co-evolving with its protein binding partners which are under many other constraints. The histone substrate for methylation is exceedingly conserved but the PR(SET) catalytic domain of PRDM9 is not, despite its narrow specificity.

The difference alignment below shows change localization relative to human functional domains within other primate PRDM9. The comparison includes catarrhine PRDM7 corrected where needed for frameshifts and stop codons as well as PRDM7 from euarchontal species that diverged before the gene duplication. The 532 residues are relatively free of deletions or insertions.

None of the four sites where human diverges from long-established consensus (R5K, P155S, G178R, R445H) are CpG hotspots. With the exception of G178R, these are conservative substitutions in linker regions and likely near-neutral. G178R represents a radical change in amino acid properties within the SSXRD domain. However this is not a conserved residue in the parental SSX1 domain.

Sequencing accuracy is an issue here because some genes are missing exons altogether and other exons have only single trace coverage. Outside of human and mouse, only a single individual has been sequenced. However humans are not especially variable in the proximal region of the gene, only a single coding SNP is known to date (R113C), in marked contrast to the zinc finger array. Much more intensive sequencing of primates is essential to quantitative understanding recent evolution or PRMD9 -- the 16 species sampled so far represent only 5% of living primate diversity. For example, the flying lemur divergence node is not represented at all.

                                      <------------------------ KRAB domain ------------------------>                 cSNP:R113C                                                        <-------- SSXRD domain ---------><-------- zinc knuckle ---->                <---------------
PRDM9_homSap   MSPEKSQEESPEEDTERTERKPMVKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITIGLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQVKPPWMALRVEQRKHQKGMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKLELRKKETERKMYSLRERKGHAYKEVSEPQDDDYLYCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWN
PRDM9_panTro   ....R...................................................................................................L.................................................P................K.....G....................................................................................
PRDM9_gorGor   ....R...................................................................................................C.................................................P......................G............................................I.......................................
PRDM9_ponAbe   ....R.......D.........T.....................................................................................................N.........E...................P.................S....GNT.............I.........-....................................T.....................
PRDM9_nomLeu   ....R..............Q..T......................................................................................M........................GA..................P.................R....G.....*............................T...........I...T.G...............................
PRDM9_macMul   ....R.................T....................................................................................V....S...........N.......V.GM.....T............P...R.............R....G..............................................I.....E...............................
PRDM9_papHam   ----------------------------------------------------------------------------------------------------.......F....S....E...T............G.P...ST.........A..P.................R..A.G..................L.................................N...............................
PRDM7_homSap   ....R.......G..........................................M.......V...........................................F.G..S...........N.....R...G.P....T.D..........P.................R....G...............I....................................................................
PRDM7_panTro   ....R...................................................................................................L.................................................P................K.....G....................................................................................
PRDM7_gorGor   ....R.......G........................................................Q.V............................-----------------.......N.........G.P....T............P...........R.....R....G...............I.K....................................R.............................
PRDM7_ponAbe   ....R......KG...........................T.................KT...............................................F.G..S...........N.........G.Q....T............P..........T..I...R....G.T..................................................................................
PRDM7_nomLeu   ----------------------------------------------------------------------------------------------------I.S....V....S...........N...G.....GSQ....T..*...R.....P...........Q.....R....G.....*............................T.......................H.........................
PRDM7_macMul   ----------------------------------------------------------------------------------------------------.......F....S....E...T..N.........G.P...ST.D..*....A..P.................R....G.........R.....A..L.H............................N..N...............................
PRDM7_papHam   ....R..............W.......................................................................................V....S...........N.......V.GM.....T............P...R.............R....G..............................................I.....E...............................
PRDM7_calJac   ....R.......G..G...Q............M..S.................M..................................................G..F..G.S...........G......K..G...V..T..P.........P.................R.D..E..........L.................I.............................HA........................
PRDM7_tarSyr   ...DR.P.D...G..G...C.SA.........................I..........T..A.....P........KR...PL.......................F....N.......R.PL.IV.......EM....^T.D....W......^.....E....K.I.F....I.VN........DC.....N...........Q..........T..I...IN....................................
PRDM7_micMur   ...N........V.AG..GW..TD...........S.....Q......I..........V........P.............H.................----------------------------------------------------------------------------------------------............K.......................................K.R.............
PRDM7_otoGar   ----------------------------------------------------------------....P...........T.YK..................H....F.M..S.R..ILK.CML.FNMH.....GP.S.P.I.....H..HM.SPR.........GR.SD..I..I.VR...........................K.......N..V.........T..E.......V....S..G.RT.......F....

               ---------------------------- PR(SET) domain ------------------------------------------------------->                         <- early zinc finger -->
PRDM9_homSap   EASDLPLGLHFGPYEGRITEDEEAANNGYSWLITKGRNCYEYVDGKDKSWANWMRYVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIkWGSKWKKELMAGREPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
PRDM9_panTro   ..............K.......................................................................................................................................................................R................................................................A.............
PRDM9_gorGor   ..............K.................................................................................................................................................T.....................R..............................................................................
PRDM9_ponAbe   ...................K..........................................................................................................................................................H....S..R.C............................................................................
PRDM9_nomLeu   ..................................................................................Q.......P........................T.E....A......................A.H.............F.................S..R.C...............................S..V...........I................Q...........E
PRDM9_macMul   ...................Q..................................................................................................................................T.........R.F....L.S.........S..R.C.....................PK................S...E.M....Y........E................
PRDM9_papHam   .....................K.................................----------------------------------------------------------------...............................T.........R......L.S.........S..C.C......................K................S...E.M.............E.I.....E........
PRDM7_homSap   ..........................S......................S............................................S.................................................................................R..S..RCC.......................................S...E.M..............................
PRDM7_panTro   ..............K...................................................................................................................................................-.....*.......R..S..RCC........V.........W............L.......S...E.M..............................
PRDM7_gorGor   .....................K....S...........................................L............................................T............................................................R..S..RCC..................^....^...............S...E.M..............................
PRDM7_ponAbe   .....................K......................................W.......................................................P...........................................H...A..............S..DCC...............................SA......S...E.M.....G........................
PRDM7_nomLeu   .................................................*....K.......H...................Q.......P........................T.E...............V.T..........C.................R..............S.SR.C...............-...I...K.......L.......S...E.M..............................
PRDM7_macMul   .............C.......K....S........................K...----------------------------------------------------------------......Y................^....................S..............S..S.C.........................L...T.........S...E.M....F.....A............E......
PRDM7_papHam   ...................Q.........................................................................................................Y......................................S..............S..S.C....................R..Q.L...T.........S...E.M.K..F.....A............E......
PRDM7_calJac   .................V.......SS.............................................................................................S.....................H.............T.T............K.KE....F..CNS........T........I......MA....N........S..EE.M.............VD...............
PRDM7_tarSyr   ...E............Q..D......S........................................................I....................................T..K.L..S..S..L.....F....KC..PP.I...T....YV.......E.L.....QS....W...S.C..A.....PMH...Q...S..SL.N..TE.TE.S.EKE.M.K..PS.S...HL.D..YE.HHI.A.AAR-
PRDM7_micMur   ...E............QV........S....................D..............E...................Q.............................E..TIRQ............S.............KHT....IS.RT.G..H................HS....C...A.D..V...P.PFH.K.Q..G...........K.....E........P......G..D.D..CAAG.....SR
PRDM7_otoGar   .....Q..........QV........S....................E.QG...........E....................................................T..Q............S....T..........T.P..ISQ.T.G..N.R.QT...R.E.....HS..N..........V..M..TSH.K.Q.SR...I..C........S.E.E.MI...P.PD...G..D.E.FC.AI...G.V-

As expected, percent identity declines monotonically with increasing time of divergence. The rate of amino acid substitution, subject to the caveats above, places PRDM9 in the lowest quartile of human protein conservation, but with thousands of proteins evolving still faster. Variability is noticeably but not exclusively concentrated in the linker between the KRAB and SSXRD domains and in the long terminal linker. Variation within the PR(SET) domain largely avoids deeply conserved residues defined from comparison of the 16 distinct PRDM genes and 35 additional SET domains in human.

The table below shows percent amino acid difference relative to human, first for the entire 523 residues preceding the array and then separately for the three domains. Note the KRAB and PR(SET) are evolving slower than the overall proximal region while the SSXRD domain is changing more rapidly (however it is short so subject to wide rate swings).

Missing exons were supplied here by merging incomplete sister taxa (lemurs) or taking them from the closest source (gibbon, gorilla, tree shrew PRDM7). Taken human/tree shrew divergence at 90 million years, roughly one substitution per million years has been occurring, much of it in the last exon between the early zinc finger and terminal array.

In summary, the proximal region of PRDM9 is evolving quite differently than the zinc finger array. It is difficult to distinguish here between adaptive change, neutral drift, and substitutions driven by the role of PRDM9 in meiosis and recombination.

       KRAB  SSXRD  PR(SET)                
100%   100%   100%   100%    PRDM9_homSap    Homo       sapiens     (human)
 98%   100%    93%    99%    PRDM9_panTro    Pan        troglodytes (chimp)
 98%   100%    96%    99%    PRDM9_gorGor    Gorilla    gorilla     (gorilla)
 96%   100%    84%    99%    PRDM9_ponAbe    Pongo      abelii      (orangutan)
 94%   100%    90%    98%    PRDM9_nomLeu    Nomascus   leucogenys  (gibbon)
 94%   100%    93%    99%    PRDM9_macMul    Macaca     mulatta     (rhesus)
 94%    96%    90%    97%    PRDM7_homSap    Homo       sapiens     (human)
 96%   100%    93%    99%    PRDM7_panTro    Pan        troglodytes (chimp)
 94%    96%    87%    97%    PRDM7_gorGor    Gorilla    gorilla     (gorilla fusion)
 93%    95%    90%    98%    PRDM7_ponAbe    Pongo      abelii      (orangutan)
 91%    n/a    90%    95%    PRDM7_nomLeu    Nomascus   leucogenys  (gibbon fusion)
 93%   100%    93%    99%    PRDM7_papHam    Papio      hamadryas   (baboon)
 90%    95%    87%    97%    PRDM7_calJac    Callithrix jacchus     (marmoset)
 80%    87%    78%    95%    PRDM7_tarSyr    Tarsius    syrichta    (tarsier)
 81%    90%    84%    92%    PRDM7_micMur    Microcebus murinus     (lemur fusion)
 73%    76%    75%    92%    PRDM7_tupBel    Tupaia     belangeri   (tree shrew)

Variation in closely related ZNF proteins

Among the 843 human genetic loci encoding zinc fingers proteins, the arrays most closely resembling PRDM9 in length, structure and amino acid composition are ZNF133, HKR1, ZNF343, ZNF589, ZNF169, ZNF596. While the functions of these proteins are largely unknown, the first two have a KRAB domain, a spacer, early zinc finger in the terminal phase 2 exon, and a zinc finger array similar in size to human. The next two are similar but lack the spacer, with the KRAB domain encroaching into the final exon. The final two have only the KRAB domain and terminal array. Some 290 human gene products encode a KRAB domain.

Here ZNF133 and the misnamed HKR1 are the best candidates for donating (via inhomogeneous recombination) the zinc finger array to the nascent PRDM7 which was already a chimer of KRAB, SSXRD and PR(SET) domains. The relationships here might instead go the other way (domain loss in PRDM) but different intronation of the KRAB domain is incompatible with that scenario. While none of the six ZNF is capable of histone methylation, KRAB domains are capable of recruiting SETDB1, a H3K9 methylase, partnering with the TIF1ß co-repressor protein (encoded by TRIM28), which interacts with many KRAB domains).

Phylogenetic variation in the zinc finger arrays of these proteins is potentially quite informative, the question being whether their variation too is focused on the four amino acid positions providing dna binding specificity in PRDM7/9. This next sections examine each protein separately for mutational variation in the zinc fingers over placental mammal evolutionary time.

Here the 46-species genomic alignment at UCSC serves as initial source of zinc finger arrays, which are then tested by blat back into individual species and then parsed into separate fasta files for each protein finger (the formats needed by the Multalin2 variable width differential aligner, weblogo and DotPlot tool).

ZNF133 and HKR1

Human ZNF133 is a conventional KRAB-zinc finger array (that lacks however the PR(SET) domain). Although the KRAB domains are only 31% identical, the array provides a better model for PRDM9 than the other 14 PRDM* loci in terms of zinc repeat character and length. However rodents cannot be used here as a model system for ZNF133 as the mouse syntenic counterpart is a known pseudogene -- as is rat but not guinea pig or rabbit. ZNF133 is yet another protein in this class that does not readily track back into marsupials or earlier vertebrates.

As with PRDM7/9, the C-terminal run-off of ZNF133 is subject to frameshifts. However elephant and human are still 86% identical in their last exon, with zinc finger arrays even higher. Armadillo, another mammal diverging from human at 101 myr, is 91% identical in this region and has exactly the same number of zinc fingers (14.7). This suggests that the dna binding target is strongly conserved, just the opposite of PRDM7/9. However this conservation in ZNF133 weakens markedly in the distal 3 repeats.

The 11 conserved zinc fingers in ZNF133 are long enough to specify nearly unique dna sites in a 3 gbp genome, even if not all fingers take part in a given site recognition. Note the SGEKP lockdown cap departs from canonical form in repeats 5, 7, 12, and 13 perhaps impacting binding site utility. Human variation in repeat numbers has not been studied but it appears from phylogenetic considerations to be far less common than in PRDM7/9. Dotplots of ZNF133 show far less agreement across repeats at the dna level, indicating that neither homogenization, expansion, nor contraction of repeats by replication slippage has occurred recently in this gene (unlike PRDM9).

                            Alignment of human ZNF133 zinc finger array to orthologs in Primates, Glires, Laurasiatheres, Xenarthra and Afrotheres
               z  z            z   z        z  z            z   z        z  z            z   z        z  z            z   z        z  z            z   z      
homSap       VNCGECGLSFSKMTNLLSHQRIHSGEKP YVCGVCEKGFSLKKSLARHQKAHSGEKP IVCRECGRGFNRKSTLIIHERTHSGEKP YMCSECGRGFSQKSNLIIHQRTHSGEKP YVCRECGKGFSQKSAVVRHQRTHLEEKT
calJac       ............................ ............................ ............................ ............................ ............................
oryCun       ........G...LA.............. ............................ ............................ ...T........................ ............................
equCab       ........G................... ............................ ............................ ............................ ............................
canFam       ...R....G................... ............................ ............................ ...................R........ ............................
dasNov       I..A....G................... ............................ ............................ ............................ .......................S....
proCap       ...E....G................... ............................ ............................ ........R................... .......................S....

homSap       IVCSDCGLGFSDRSNLISHQRTHSGEKP YACKECGRCFRQRTTLVNHQRTHSKEKP YVCGVCGHSFSQNSTLISHRRTHTGEKP YVCGVCGRGFSLKSHLNRHQNIHSGEKP IVCKDCGRGFSQQSNLIRHQRTHSGEKP
calJac       ............................ ............................ ............................ ............................ ............................
oryCun       ...G........................ ............................ ............................ .....................T...... ...Q......................R.
equCab       ............................ ............................ ............................ .........................D.. ............................
canFam       ...N........................ ............................ ............................ .........................D.. ............................
dasNov       ............................ ............................ ............................ ................I........D.. ............................
proCap       ............................ ...G........................ ............................ ................T........D.. ............................

homSap       MVCGECGRGFSQKSNLVAHQRTHSGERP YVCRECGRGFSHQAGLIRHKRKHSREKP YMCRQCGLGFGNKSALITHKRAHSEEKP CVCRECGQGFLQKSHLTLHQMTHTGEKP YVCKTCGRGFSLKSHLSRHRKTTS     VHHRLPVQPDPEPCAGQPSDSLYSL
calJac       ...A......................K. ............................ ............................ ..........I............N.... ....M..Q..............K.     ......L..G...R....A...C..
oryCun       ...Q............L.........K. ............................ .T.........S.........T...... .GGGQ...S.S......S..L..K.... H......Q...Q.........IKA     ...KP.LH..S.AYS...PGP....
equCab       ...E............I.........K. ............................ .T........S.........W......L ..........I.....V......Q...L .......Q...Q........RMK.     ..Q.P.PH.AS.A.S..S..P.H..
canFam       ...E......................K. ............................ ..........S......I...V...... ........D.I.....L......Q.... ....M.DK...H........RMK.     ..YK..LP....A....S..L.H..
dasNov       ...E............I.........K. ...................R........ .T........S...T......L...... ........S.I.R...I....I.KE... ...R...Q...Q.......SRMKC     ...KPLL...S.DYS..S..P....
proCap       ...ED...........I.........K. ............................ .A....R...N...T..A..QL...D.L .......ED.M.....LV.....K.... ..SR.H.Q..NQ......Y.RIK.     ...KS.F.S.L.T.S..S.VPV...
ZNF133function.png

The ubiquitously expressed ZNF133 has been established by experiment to be a transcriptional repressor, recognizing specific sites in dsDNA. Despite the presence of the KRAB domain (which usually has this task), the zinc finger array alone contributes to transcriptional repression, with this effect mediated by another gene product, PIAS1, which binds the main array and recruits histone deacylases. The early zinc finger is not necessary for the PIAS1 effect and though conserved, its role remains obscure. PIAS1 may also have a role in PRDM9 and recombination.

Znf133Freqs.gif

For ZNF133, the weblogo below based on 413 repeats from 32 placentals illustrates that quite different selectional pressures have been operative here than in PRDM7/9. First, variation is not concentrated at the four special amino acid positions (purple boxes between CxxC HxxxH) but instead is distributed (though unevenly) among the non-C2H2 positions. Some of this occurs at residues primarily concerned with the zinc binding fold and not targeting macromolecule interactions. This establishes structural variation in the fold can be tolerated, ie PRDM7/9 is the real oddity for not exhibiting it.
The early zinc finger (which is classified by Pfam as C2H2)in the terminal exon is rather variable. While a consistently found zinc finger in such a protein is suggestive, nothing can be said about its function at this time.

             early zinc finger of ZNF133   early zinc finger of PRDM7/9  early zinc finger of ZNF343   early zinc finger of ZNF589
            
homSap       YLDPFCPPGFSSQKFPMQHVLCNHPPW   HPCPSCCLAFSSQKFLSQHVERNHSSQ   YTCSSCLLAFSCQQFLSQHVLQIFLGL   YTCSSCLLAFSCQQFLSQHVLQIFLGL
panTro       ...........................   ...........................   ...........................   ....C.......P..............
gorGor       ...........................   ...........................   ..........L................   ...........................
ponAbe       ...........................   ...........................   ...........................   ...........................
rheMac       ...........................   .........................T.   .P.........................   ...........................
papHam       ...........................   .........................T.   .P.........................   ...........................
calJac       C..........................   .................H.........   .P.........................   .......VV..................
micMur       H.G..F..DL......V.R...S....   ......S.............KHT....   .P.......S.........T....Q..   ..FWL......................
otoGar       H.G.L...DL......R...P......   ......S....T..........T.P..   .P..................FR.....   (no seqs before duplication)
tupBel       H.SVS..LD...E......E....H..   ...L..S.........N....H...C.   (no seqs before duplication)
cavPor       Q.G..GG.D..A.R..V.....GQ...   ......S.....H......M.CS....
oryCun       H.G.L...DC.T..L.V..T..DP...   ...FL.S.........T....W..RTE
ochPri       S.G.C....L...N....QP.GDP.R.   ...A..S.............QH..P..
turTru       H.G..R..D....QLR...M..S....   Q..G..S.......I......CS.P..
bosTau       H.C.....DLC....H..Q...SP...   ......S......R........S.P..
equCab       H.C.....D.....VH..R........   .R....S..............CK....
felCat       H.C....SD..-L..H...M..T....   ......S............L.H..P..
canFam       H.C.L..SD.....RHT..M.......   ......SV.....T.....GK...P.E
myoLuc       H.CA....D......H...M..SN...   ......S.................P..
eriEur       PSC.SN..DI....SH...MP...C..   Y...C.S....N.....R...HS.P.L
sorAra       H.C....SD.....LHV.R........   ......R............MKHS.P.P
loxAfr       QPC.....D......H..R...SP...   N.....P..L...QLKHS.PFQSLPGT
proCap       Q.C.....N..G...H...A....R..   ......P....TP....H..KHS.PC.
echTel       QPC....LD..N...HK.....S.A..   ......P....TE.......Q...P..
dasNov       QFC.....D...K..H......S....   ......P....T.....Y..NHS...E

HKR1 is another zinc finger protein that often surfaces in PRDM9-related blast searches. Structurally it is very similar to ZNF133. The zinc finger array begins with two very degenerate units that cannot bind zinc but may still retain the fold. The next 9 fingers are conventional but the tenth is missing the last two amino acids of the SGEKP cap. The last repeat has an intercalating residue after the two cysteines and lacks the final 3 cap residues. These features were in place at the time of stem placental divergence.

This gene, sometimes called ZNF875, also arose in placental mammal as part of the dramatic expansion of zinc finger proteins. However regulation of gene expression is probably no more refined in placentals than in marsupials, birds and other vertebrates -- these just have different systems. Indeed, rodents seem to have lost both HKR1 and ZNF133 yet get along just fine with poor overall orthologous correlation to primates.

The intra-repeat pattern of variation is different than in PRDM9 and ZNF133. There is more of it and this variation is not concentrated on the macromolecule recognizing amino acid positions, in fact seems to avoid it. This implies that the binding partner is fixed. The single 1998 publication on this gene sheds no light on what this might be. Assuming the function is in regulation of gene expression, the recognition sites in human might be predicted approximately from the conserved zinc fingers. This would yield an association with specific genes including false positives and negatives. Repeating this exercise in a dozen mammals and identifying the commonalities to the human gene set would yield a much improved list of regulated genes. HKR1 is widely expressed in a variety of tissues.

                                                                 z        z  z            z   z        z  z            z   z        z  z            z   z
HKR1_homSap   IKYEEFGPGFIKESNLLSLQKTQTGETP YMYTEWGDSFGSMSVLIKNPRTHSGGKP YVCRECGRGFTWKSNLITHQRTHSGEKP YVCKDCGRGFTWKSNLFTHQRTHSGLKP YVCKECGQSFSLKSNLITHQRAHTGEKP
HKR1_panTro2  ............................ ..............I............. .G.......................... ............................ ............................
HKR1_ponAbe2  ........D.......F.F......... ..............I.........R... ............................ ....H...............GI...... .M..........................
HKR1_papHam1  ...........................A ..............I............. ............................ ............................ ............................
HKR1_calJac1  ............K......R.......A .V.....Q.........G.......... R........................... ..........S...........R..... ....D...............K.......
HKR1_tarSyr1  ..C.........N....NF...H....A .......Q..S.V.......K....E.. .M.........................A .........................V.. F...........................
HKR1_micMur1  .......R....DP...GF...H....T .......Q..S..............E.. ...G........................ A.......................V... M..........................
HKR1_dipOrd1  L...KL..R.M.....P.....HPR..S FIG.K..Q.LSRLP..M...K..V.D.. FL.Q.................M...... F....................I...V.. .M.Q.................S......
HKR1_equCab2  ...R...L..............H...I. R..S...Q..SN....T..QSMR..E.. ...G............V........... ....E....................VR. .......................S....
HKR1_canFam2  .......L..L..PK......MGA.... ......KQ..SKR.I....QKIP..EN. ...K........................ ....E....................V.. .......................S....
HKR1_proCap1  .G.GDL.L...RG.D......AY..G.T .LCN...RDL........KQ..R.R... H..S............L........... H..AE...A.A.R..........A.... HG.RD.....R..A..AA.R...A.AR.
HKR1_dasNov2  ..CTD..F.C..K..V......NIA.SS ...S...EG.N...I....R..Q.EE.. ..........N................. ....E................I...V.. .I.....................S....
HKR1_choHof1  M.CG...L....K..V......HI...A ...S..ERG.S...I....Q....EE.. ..........N......A.......... ....E................I...V.. .I.....................S....
                z  z            z   z        z  z            z   z        z  z            z   z        z  z            z   z        z  z            z   z
HKR1_homSap   YVCRECGRGFRQHSHLVRHKRTHSGEKP YICRECEQGFSQKSHLIRHLRTHTGEKP YVCTECGRHFSWKSNLKTHQRTHSGVKP YVCLECGQCFSLKSNLNKHQRSHTGEKP FVCTECGRGFTRKSTLSTHQRTHSGEKP
HKR1_panTro2  ......................................................... ............................ ............................ ................I...........
HKR1_ponAbe2  ............................ ............................ ............................ ............................ ................I...........
HKR1_papHam1  ............................ ............................ ............................ .A.......................... ...A............I...........
HKR1_calJac1  .......H........I..R........ .T.......................... ......W.Q................... ..F......................... ...MA.......R...I...........
HKR1_tarSyr1  ......E.........I..R.I...... .V....K..................... .....................M...... ........R..........R........ ................N...........
HKR1_micMur1  ................I........... .V......A................... ............................ ............................ ................I...........
HKR1_dipOrd1  ...K...S........I........... FV....Q.R.......V........... .I......G.......L........... ........S.......S...KA.A.... .G......S.....S.V...KK.....L
HKR1_equCab2  ................I........... .V.......................... ..........................R. .T......R.................... ..R............I...........
HKR1_canFam2  .......H........I........... .V....D.S................... .I.......................... ........R.................... ..R............I...........
HKR1_proCap1  H..A....A.G.S...A..A......R. HA.GQ...A.G.....V........... F........................I.. ......E................S..... ..Q.........T..V...........
HKR1_dasNov2  F......H....N...I..L........ .V.......................... ...P.....................I.. .M.....................S..... I.R............I...........
HKR1_choHof1  F......H....N...I..L........ .V.......................... .......................A.I.. ................S......S..... K.R...Q........IS..........
                z  z            z   z        z  z            z   z        z  z            z   z        z  z            z   z         z  z            z   z
HKR1_homSap   FVCAECGRGFNDKSTLISHQRTHSGEKP FMCRECGRRFRQKPNLFRHKRAHSGA   FVCRECGQGFCAKLTLIKHQRAHAGGKP HVCRECGQGFSRQSHLIRHQRTHSGEKP  YICRKCGRGFSRKSNLIRHQRTHSG
HKR1_panTro2  ............................ ..........................   ............................ ............................  .........................
HKR1_ponAbe2  ............................ ..........................   .......................S.... ............................  .........................
HKR1_papHam1  ...R............V........... ..........................   .......................S.... ..........N.................  .........................
HKR1_calJac1  ...R........................ .T........................   ....G...A..D.....N.H.E.S...L ..............Y.............  ...........W.............
HKR1_tarSyr1  ...R........................ ..........................   ...G.......D....L...KE.SA... ...P....D...K...............  .V......C.......V.......R
HKR1_micMur1  ...R........................ .V.......................S   C.......S..D...F.......L.... ............................  ........C...........K....
HKR1_dipOrd1  ...R..K.S....L..HT...I...... .......Q.................D   S..........D.......E...S.N.V .M..............L...........  ......A.A.......L.....I..
HKR1_equCab2  ...V........................ .I........G............A..   ...........D.....T.....S...S ................A....I......  .T....................G..
HKR1_canFam2  ...R.............A.......... .I.....K..S........R.....T   ...........D.....T..K..S.... .....................I......  ......E................P.
HKR1_proCap1  ...R....A.....A.L........... ...G......S.R......R.T....   L..K.......D....NA.....S..R. ...V......G.....V...........  .V....E..................
HKR1_dasNov2  ...R........................ .I..Q.....S...............   ...........D.....T.....S.... ............................  .........................
HKR1_choHof1  ...R........................ .I.K......S..............V   ....D......D.....T.....S.S.. ......R.....................  .V.......................

HRK1 is found within a cluster of ZNF genes on chromosome 19 but has no better than 50% identity to any of them. PRDM7, PRDM9, ZNF133, ZNF343, ZNF589, ZNF169 and ZNF596 are not found in tandem ZNF clusters nor in syntenic associations, as determined by setting the UCSC GeneSorter tool to gene distance and comparing gene neighbors.

HKR1cluster.jpg


ZNF343 and ZNF589

ZNF343 is another very closely related KRAB zinc finger array protein. It appears restricted phylogenetically to primates but may have earlier spin-offs reminiscent of PRDM7 (such as the microbat sequence below). Two species, baboon and tarsier have deletions of 2 and 1 zinc finger respectively. The new world monkey Callithrix has a moderately degenerated pseudogene. However it is not plausible that other mammalian species (such as rodents) ever had this gene.

No experimental study has ever considered the function of this gene though occasionally it surfaces in expression studies. It is quite conserved at least in apes, indicative of an important function in gene regulation via specific site recognition. Outside of the terminal zinc finger region, ZNF589 most closely resembles ZNF589 and ZNF133 and so has no direct bearing on PRDM7 or PrDM9.

Prior to ZNF gene family expansion, each of the proteins initially present may have had multiple functions (as proposed by Piatigorsky). With zinc finger arrays, different subsets of fingers may have recognized different dna sites, regulating different genes. After gene duplication, the descendent genes could then diverge to specialize on distinct subsets of these pre-existing functions (subfunctionalization). This allowed fine-tuning of regulation relative to a parent gene operating under slightly conflicting selectional pressures that had to be satisfied simultaneously.

Placental mammals today do not differ greatly from the stem placental mammal in which the expansion began. This expansion (and later contraction) continued into the present era, yielding many lineage-specific sets of ZNF gene families (ie lack of 1:1 orthologous correspondences). Evolution need not take the same path to reach the same end -- indeed, marsupials, birds and other vertebrates have attained excellent regulation of gene expression by other approaches.


ZNF343_homSap   INCREYEPDHNLESNFITNPRTLLGKKP YICSDCGRSFKDRSTLIRHHRIHSMEKP YVCSECGRGFSQKSNLSRHQRTHSEEKP YLCRECGQSFRSKSILNRHQWTHSEEKP YVCSECGRGFSEKSSFIRHQRTHSGEKP
ZNF343_panTro   ...................S........ ............................ ............................ ................S........... ............................
ZNF343_gorGor   ............................ ............................ ............................ ............................ ............................
ZNF343_ponAbe   .....C...................... ..............A............. ............................ ............................ ............................
ZNF343_nomLeu   .....C...............I...... .....................T...... ............................ ...........N................ ............................
ZNF343_macMul   .....C...RS................. ..............A......T...... ............................ ...........N....K........... ............................
ZNF343_papHam   .....C...RS................. ..............A......T...... ............................ ...........NN...K........... ....D.......................
ZNF343_tarSyr   N..K.R...YSP.....R.S..F..E.. CV......G..N....N..R.T..V... ....D.....KNR.T.I.......G... .VR.Q..RG.SQ..NVAQ..R...D... .I.R......RD..TLVI.E........
ZNF343_otoGar   V....F.S.C...........V.FRE.. .V.....PG.....I......T.TG... .E..............T..R........ ...........N....S.......G... .M....E....Q................
ZNF343_myoLuc   GS.N.H.L.CS.K...AV.QV..SEE.. .V.RE...G.NNK.N.N....T...... ...GD......LMAI.VH......G... .V.K...RG.SK..N....TE....... .L.R...QS.RNN.VL....WI......

ZNF343_homSap   YVCLECGRSFCDKSTLRKHQRIHSGEKP YVCRECGRGFSQNSDLIKHQRTHLDEKP YVCRECGRGFCDKSTLIIHERTHSGEKP YVCGECGRGFSRKSLLLVHQRTHSGEKH YVCRECRRGFSQKSNLIRHQRTHSNEKP
ZNF343_panTro   ............................ ............................ ............................ ............................ ............................
ZNF343_gorGor   ............................ ............................ ............................ ............................ ............................
ZNF343_ponAbe   ........G................... ...K........................ ...G........................ ............................ ............................
ZNF343_nomLeu   ........G................... ............................ ............................ ............................ ............................
ZNF343_macMul   ........G................... ............................ ............................ ............T............... ............................
ZNF343_papHam   ---------------------------- ---------------------------- .......G.................... ............T............... ............................
ZNF343_tarSyr   F..S.Y.QG.IQ..Q.LV...T....N. ---------------------------- ....K.....SW..H.LV.Q.K...... ...R....S..Q..CVIT.........P .I....G....K..S.........G...
ZNF343_otoGar   .I......G.S..........T...D.. ......R.....K.N..R.....SN... .I............N..V...M...... .T.S........................ ......G..Y.............A....
ZNF343_myoLuc   ...P....G.AY.........T...... .I.Q...H...EK.SF.R.....SG... F..L......G.....RK.Q........ .T.S....S.TQ..F..I..G....... ......G.S..Y........K...DV..

ZNF343_homSap   YICRECGRGFCDKSTLIVHERTHSGEKP YVCSECGRGFSRKSLLLVHQRTHSGEKH YVCRECGRGFSHKSNLIRHQRTH
ZNF343_panTro   ............................ ............................ .......................
ZNF343_gorGor   ............................ ............................ ..........G............
ZNF343_ponAbe   F........................... ................P........... .......................
ZNF343_nomLeu   ..............S............. ...................K........ .......................
ZNF343_macMul   ............................ .....................I...... ................V......
ZNF343_papHam   ............................ .....................I...... .......................
ZNF343_tarSyr   .V.K......SQ..Y..K.Q...LD... FI.R.......W...............P ...........Q..Y..K.E...
ZNF343_otoGar   .V.G..........A............. .IR.DR...S.Q....VS.........W ..........GY...........
ZNF343_myoLuc   ..........FY..D..I.......... ........S..Q..F.VI..G....K.. ....D...S..YR....T...K.

ZNF589 is also a primate-specific expansion within the KRAB ZNF gene family which may have expanded independently from the same parental gene in artiodactyls, again similarly to the separate expansions of PRDM7. It has been the subject of 3 publications under the name SZF1 and its consensus region identified experimentally as CCAGGGTAACAGCCG which is similar to that of ZBRK1. Regulation of gene expression reportedly takes place in hematopoietic progenitor cells.

In humans, ZNF589 has an internal stop codon at the second cysteine within the 5th repeat due to a T to A transversion. This is not an error or mutation in the reference genome hg19, nor a balanced polymorphism, nor 1% allele as no corrective SNP is known from the 1000 genome project or individual sequencing projects. It remains possible that some human populations (notably African because of greater diversity) will not have this stop codon if it is a very recent development. However all human populations sampled including bushman KB1 genomic reads all contain it, as do Neanderthal and Denisova fossil dna. (View chr3:48,285,273-48,285,286 on UCSC human genome browser hg19 with appropriate tracks opened.)

Past the stop codon, the zinc finger array continues on another nine repeats and do not seem impaired (strict conservation of cysteines, histidines, and invariant phenylalanine and leucine). It is not clear whether the mRNA would be targeted by nonsense mediated decay, whether a truncated and possibly still functional protein is produced, or whether that a suppressor mechanism that allows some read-through of the early stop codon. If ZNF589 functions with four repeats, the dna recognition sites would be truncated relative to what the full zinc finger array could have recognized. Terminal alternative splicing has been seen for ZNF589 but not rejoin the array.

Chimpanzee does not have this internal stop codon and has a full set of repeats. However the orthologous gene in gorilla (contig CABD02243014) has a frameshift near the end of its 10th repeat. Assuming this is not assembly error in a low coverage genome, this raises the same question about pseudogenization vs function-retaining truncation as in human. If this represents gene loss, the event is independent from the one in human and the resultant protein may have higher dna specificity (recognize a longer or different site).

Similarly orangutan has a frameshift at the end of the 7th repeat, a reading frame restoring frameshift 4 repeats later followed shortly by an early stop codon. Gibbon also has a frameshift. However macaque, like chimpanzee, has maintained a full length zinc finger array. New world monkey Callithrix has a much older pseudogene. This is truly an ortholog because biflanking synteny is still preserved (NME6+ ZNF589- CAMP-) from human to marmoset.

Tarsier also has severely decayed gene candidate. Its contig maps uniquely to the ZNF589 region of human by blastn but is too short to establish flanking synteny. Since ZNF589 appears missing in lemurs and tree shrew, the duplication event occurred in the tarsier divergence stem, or about 65 myr ago. Tarsiers are basal haplorrhine and not part of the strepsirrhine (lemur) clade.

Thus the gene duplicate ZNF589 persisted in the ancestor past the tarsier and new world monkey divergences and losses, kept a full length repeat role in old world monkeys and chimp, but may have carved out altered separate roles in great apes with utilizing recently truncated arrays.

The parental gene for ZNF589 -- based on the terminal exon minus the array -- appears to be ZNF133 or PRDM7, genes that arose about the same time in stem placentals.

ZNF589 Repeat Region in Apes: 
 nominal length of zinc finger array produced shown in blue
 stop codons and truncated repeats shown in red
 frameshifts and cryptic repeats shown in purple
>ZNF589_homSap AADD01032563
QVCRECGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSHCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGRGFREKSELIKHQRIHTGDKP
YVCRD*GRGFVRRSCLNTHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSSLKSHRRTHSGEKP
YVCGECGRGFSRRIVLNGHWRTHTGEKP
YTCFECGRNFSLKSALSVHQRIHSGEKP
YACTECGQGFITKSQLIRHQRTHTGEKP
YVCGECGRGFIAQSTLHYHRSTHSKEKP
YVCSQCGRGFCDKSTLLAHEQTHSGEKP
YVCGECGRGFGRKILLNRHWRTHTGEKP
YACIECGRNFSHKSTLSLHQRIHSGEKP
YACVECGQSFRRKSQLIIHQKIHSGKSF
RGARSEDVILATSQPSATPAEMLREKPCL
>ZNF589_panTro AADA01029841
QVCRECGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSHCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGRGFREKSELIKHQRIHTGDKP
YVCRDCGRGFVRRSCLNAHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSSLKSHRRTHSGEKP
YVCGECGRGFSRRIVLNGHWRTHTGEKP
YTCFECGRNFSLKSALSVHQRIHSGEKP
YACTECGQGFITKSQLIRHQRTHTGEKP
YVCGECGRGFIAQSTLHYHRSTHSKEKP
YVCSQCGRGFCDKSTLLAHEQTHSGEKP
YVCGECGRGFGRKILLNRHWRTHTGEKP
YACIECGRNFSHKSTLSLHQRIHSGEKP
YACVECGRSFRRKSQLIIHQKIHSGKSF
RGARSEDVILATSQPSATPAEMLREKPCL
>ZNF589_gorGor CABD02243014
QVCRDCGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSHCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGRGFREKSELIKHQRIHTGDKP
YVCRDCGRGFVRRSCLNTHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSSLKSHRRTHSGEKP
YVCGECGRGFSRRIVLNGHWRTHTGEKP
YTCFECGRNFSLKSALSVHQRIHSGEKP
YACTECGQGFITKSQLIRHQRTHTgEKP
YVCGECGRGFIAQSTLHYHRSTHSKEKP
YVCSQCGRGFCDKSTLLAHERTHSGEKP
YVCGECGRGFGRKILLNRHWRTHTGEKP
YACIECGRNFSHKSTLSLHQRIHSGEKP
YACMECGRGFRRKSQLIIHQKIHSGKSF
RGARSEDVILATSQPSATPAEMLREKTCL
>ZNF589_ponAbe ABGA01071880
QVCRECGRGFSRKSQLIIHQRTHTGEKP
YVCRECGRGFIVESVLRNHLSTHSGEKP
YVCSHCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGQGFREKSELIKHQRIHTGDKP
YVCRDCGRGFVRRSCLNTHQRIHSDEKP
FVCKECGRGFHAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSTLKSHRRTHSGeKS
YVCEECGRGFSRRIFLNGHWRTHTREKP
YTCFECGRNFSLKSALSVHQRMHSGEKP
YACTECGQGFITKSQLIRHQRTHTGEKP
YVCREWARLYSSDNPPLPPAYTLQGETp
YVCSQRG*GFCDKSTLLAHEQTHSGEKP
YVCGECGWGFGRKILLNRHWRTHTGEKT
YACIECGQNFSHKSTLSLHQRIHSGEKP
YACMECGRGFRRKSQLIIHQKIHSGKSF
RGASSEDVILATSQPSATPAEMLREKTCL
>ZNF589_nomLeu ADFV01172942
QVCRECGRGFSRKSQLIIQQRTHTGEK
YVCEECGRGFIVESVLRNHLSAHSAEKP
YVCSHCGRGFSCKPYLMRHQRTHTREKS
FMCTVCGRGFREKSELIKHQIIHTGGKP
YVCRDCGRGFVRRSCLNTHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEDCGHGFSQKSTLKSHRRTHSGEKP
YVCGECGQGFSRRIFLNGHWRTYTGEKP
YTCFECGRNFSLKSALSVHQRIYWGEkP
YACVECGRGFITKSQLIRHQRTHTGEKP
YVCGECGQGFIAQSALRYHRSTHSREKP
YVCSQCGrGEAFVINQLAHEQTHSGEKP
YVCGECGQGFGRKILLNRHWRTHTGEKP
YACIECGRNFSHKSTLSLHQRIHSGEKP
YACTECGRGFRRKSQLITHQKTHSGKSF
RGARSEDVILATSQPSATLAEMLREKACL
>ZNF589_rheMac AANU01238696
QVCGECGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSQCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGRGFREKSELIKHQRIHTGDKP
YVCRDCGRGFVRRSCLNTHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSTLKSHQRTHSGEKP
YVCGECGRGFSRRIFLSGHWRTHTGEKP
YTCFECGRNFSLKSALSVHQRIHSGEKP
YACAECGRGFITKSQLIRHQRTHTGEKP
YVCGECGRGFIAQSTLHYHRSTHSGEKP
YVCSQCGRGFRDKSALLAHEQTHSGEKP
YVCGECGWGFGRKILLSRHWRTHTGEKP
YACMECGRNFSHKSTLSLHQRIHSGEKP
YACTECGRGFRRKSQLSIHQKTHLGKSF
RGARSEDVIFASQPSAAPAEMLREKPCL
>ZNF589_papHam ti|2005908815
QVCRECGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSQCGRGFICKPYLIRHQRTHTREKS
FMCTVCGRGFRENSELIKHQRIHTGDKP
YVCRDCGRGFVRRSYLNTHQRIHSDEKP
FVCRECGRGFRAKSTLLLHQWTHSEVKP
HVCEECGHGFSQKSTLKSHRRTHSGEKP
YVCGECGRGFSRRIFLSGHWRTHTGEKP
YTCFECGRNFSLKSALSVHQRIHSGEKP
YACAECGRGFITKSQLIRHQRTHTGEKP
YVCGECGRGFIAQSTLHYHRSTHSGEKP
YVCSQCGRGFRDKSTLLAHEQTHSGEKP
YVCGECGRGFGRKILLSRHWRTHTGEKP
YACMECGRNFSHKSTLSLHQRIHSGEKP
YACTECGRGFRRKSQLNIHQKTHLGKSF
RGARSEDVIFASQPSAAPAEMLREKPCL
>ZNF589_calJac  ACFV01038884
QMCTVCGRGIRNKSHLIQHQRIHTGDKP
YVCRNCGRGFVRSCLIK HQRILSGEKP
FICRECGRGFRDKSTPHThQRAHSGEKP
sCGEECGRGFTRKSTLKSHRRTHSGEKP
YVYGECGWGFSSKGVLNTHWRTHTGAKP
YACRVATSPLsHKSTLSSHQRIHSGEKP
>ZNF589_tarSyr ABRT010411760
SVCREYGQSFSRKSHLLRHWRTHTGEKP
YVnGNCGHTFIDKSVLHNYQSTHSGKKP
YVCRECGCSLD*KSHLIRHQRTHTQERP
FMCTV

By comparing each sequence to itself and to PRDM9, it emerges that PRDM9 is highly unusual for its remarkable self-similarity in its zinc finger array. That strongly suggests some form of homogenization (master-slave) of repeats that is unique to it and very likely highly relevant to its role in defining recombination hotspots. Whatever the precise evolutionary relationships to the other closely related zinc fingers, that has not resulted in retention of close matching at the dna level to PRDM9.

DotPlotCompZNF.gif


The alignment below of the final exon (minus the terminal arrays) shows positions conserved at 60% identity. Overall, conservation is unremarkable outside the early zinc finger region. However several distal patches also suggest a moderate level of conservation pressure and thus some function beyond merely serving as a long linker between the terminal array (which is wrapped around the major groove of the dna target) and the early repeat (whose binding partner, if any, is unknown).

                                                                                                                                                                  first anomalous repeat
PRDM9_homSap  E.KPEI..CPSC.LAFSSQ.FLSQHV..NH..Q.F....A...L.P.NP.PGDQ.Q.-QQ..D.........GQE....S..L..RT..R....AFSSPP.-.Q..S.R.G.R..E.E....Q..NP..T.K............ ....ECG.GFS..S....HQRTHTGEK.
PRDM7_homSap  E.KPEI..CPSC.LAFSSQ.FLSQHV..NH..Q.F....A...L.P.NP.PGDQ.Q.-.Q..D.........GQE....S..L..RT..R....AFSSPP.-.Q..SSR.G.R..E.E....Q..NP..T.K............ ....ECG.GFS..S....HQRTHTG.KP
PRDM7_calJac  E.KPEI..CPSC.LAFSSQ.FLS.HV..NH..Q.F........L.P.NP.PG.Q...-QQ..D.........GQE....S..L..RT..R....AFS.PP.-.Q..SSR...R..E.E....Q..NP..T.K............ ....ECG.GFS..S....HQRTHTGEKP
ZNF133_homSap ...PE....P.C...FSSQ.F..QHV..NH....F....A.....P..P.PGDQ...-QQ............G.E.....-.L..RT..R-...AFS.PP.-.Q..SSR.G.R..E.E....Q..NP..T.K............ ....ECG..FS.......HQR.H.GEKP
ZNF589_homSap E.KPE...CPSC.LAF.SQ.FLSQ....NH....F.---A...L.P.NP.P.DQ.Q.-Q...D..........Q........L...T..R.....FSS...-....SS..G.R..E......Q..................... ....ECG.GFS..S....HQRTHTGEK 
ZNF343_homSap E.KPEI..C.SC.LAFS.Q.FLSQHV.-----Q.F....A.....P.N..PG...Q..QQ............GQE....S.....RT..R....AF.SP..-.Q..S.R.G....E.E....Q..NP....K............ ....E........S......RT..G.KP
HKR1_homSap   E.KPEI...PSC.L.FSSQ..LSQHV...H..Q.F....A...L......P.DQ.Q.----.D................S..L..R........A.SSPP...Q...S.....................T.K............ ....E.G.GF...S.....Q.T.TGE.P

Domain by domain structure/function

PRDM7 and PRDM9 are chimeric proteins comprised of 6 recognizable domains joined by linker regions. While multi-domain proteins are common in the overall human proteome, this particular combination occurs nowhere else. However some of the domains here occur in other combinations in other proteins, notable in the vast heterogeneous family of zinc finger proteins (gene names ZNFxxx).

KRAB_A Kruppel 
SSXRD
zinc knuckle
PR or SET domain
early zinc finger
terminal zinc finger array

Because the inter-domain linkers are evolving chaotically in terms of little amino acid property conservation and sometimes length, they cannot plausibly be under significant selective pressure, nor can they assume a stable structural fold. However this does not imply that the domains that they link do not have significant physical interactions important to the global tertiary protein structure. To date, only the isolated domains have been studied crystallographically (with the exception of the knuckle-PR combination).

While the domain folds individually are quite ancient and do not reflect de novo innovation in vertebrates from random dna strings, their assembly into PRDM7/9 is fairly recent, about 150 million years ago. Prior to this, a proto-PRDM7 containing the last 4 domains arose and persisted for 300 million years, giving rise to several gene duplicates, all with vaguely understood function related to transcriptional regulation.

The following sections consider what is known about each domain in turn primarily from the perspective of comparative genomics. As of July 2011, 51 land vertebrate genomes are available, providing a rich history of how PRDM7 has been evolving in various branches of the phylogenetic tree.

Reciprocal translocation: origin of the SSX1-PRDM chimera

Upon blastp of the first 6 exons of any PRDM7/9 protein against GenBank restricted to human, SSX1 emerges as the only full length non-self match. Comparison of its 6 exons establishes further that their intron phasing is an exact match. Since this is impossibly coincidental, it follows that PRDM7 (the immediate parent of PRDM9 in primates) arose as a chimera of ancestors to these two proteins prior to marsupial divergence. The percent identity has dropped from the initial perfect agreement to 32% today, without however loss of KRAB_A and SSXRD domain recognizability in either gene family. No other proteins in the human genome -- in particular no zinc finger proteins -- contain these 6 exons though the KRAB domain alone is widespread.

>SSX1_homSap                                       >PRDM9_homSap 
0 MNGDDTFAKRPRDDAKASEKRSK 0                        0 MSPEKSQEESPEEDTERTERKPM 0
0 AFDDIATYFSKKEWKKMKYSEKISYVYMKRNYKAMTKL 1         0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GFKVTLPPFMCNKQATDFQGNDFDNDHNRRIQ 1               2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VEHPQMTFGRLHRIIPK 0                              2 VKPPWMALRVEQRKHQK 0
0 IMPKKPAEDENDSKGVSEASGPQNDGKQLHPPGKANISEKINKRS 1  0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL 1
2 GPKRGKHAWTHRLRERKQLVIYEEISDPEEDDE*               2 ELRKKETERKMYSLRERKGHAYKEVSEPQDDDYL 1

PRDM9 MSPEKSQEESPEEDTERTERKPMVKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITIGLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ
      M+ + +  + P +D + +E++   K AF DI+ YF+K+EW +M   EK  Y  +KRNY A+  +G + T P FMC+ +QA   Q +D    D +   R Q
SSX1  MNGDDTFAKRPRDDAKASEKRSK---AFDDIATYFSKKEWKKMKYSEKISYVYMKRNYKAMTKLGFKVTLPPFMCN-KQATDFQGNDF---DNDHNRRIQ

PRDM9 VKPPWMALRVEQRKHQKGMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKLELRKKETERKMYSLRERKGHA-YKEVSEPQDDDYL 1
      V+ P M      R   K MPK    +E+  K +S       ASG +   K + P G+A+ S + ++     ++       + LRERK    Y+E+S+P++DD    
SSX1  VEHPQMTFGRLHRIIPKIMPKKPAEDENDSKGVSE------ASGPQNDGKQLHPPGKANISEKINK-RSGPKRGKHAW-THRLRERKQLVIYEEISDPEEDDE*  

This chimera arose subsequent to the duplication of proto-PRMD7 and its divergence to PRDM11, its nearest PRDM relative which has leading exons unrelated to SSX1. Indeed none of the other 14 PRDM proteins have a KRAB or SSXRD domain. The SSX1 gene itself, then and now, lies in a tandem array and so did not disappear as a standalone gene family as only one copy was used up in forming the hybrid protein. For viability, the event was likely a reciprocal translocation, accounting for the SSX array and PRDM7 being on different chromosomes today.

The SSX1-group genes occurs in the human reference genome as 11 features in two nearby clusters both on chromosome X. Some of these may be pseudogenes. The degree of similarity suggests recent gene duplication and/or gene conversion. The array is notorious for reciprocal translocations involving the one of 24 human synaptotagmins, the SYT4 gene on chromosome 18. These translocations fuse early exons of SYT4 with distal exons of an SSX gene, usually SSX1 or SSX2 but sometimes SSX4. The event takes place within intron 4 of the SSX genes and preserves reading frame, allowing for a chimeric protein with disastrous regulatory properties to emerge -- nearly all cases of synovial sarcomas arise from repeated occurrence of this event.

SSX1b  +  chrX:47967088-47980069  similar to SSX1
SSX5   -  chrX:48045656-48056199  synovial sarcoma X breakpoint 5
SSX1a  +  chrX:48114797-48126879  synovial sarcoma X breakpoint 1
SSX9   -  chrX:48154885-48165614  synovial sarcoma X breakpoint 9
SSX3   -  chrX:48205863-48216142  synovial sarcoma X breakpoint 3
SSX4   +  chrX:48242968-48252785  synovial sarcoma X breakpoint 4
SSX4B  -  chrX:48261524-48271344  synovial sarcoma X breakpoint 4B
SSX8   +  chrX:52651985-52662998  similar to SSX8
SSX7   -  chrX:52673111-52683950  synovial sarcoma X breakpoint 7
SSX2a  -  chrX:52725946-52736249  synovial sarcoma X breakpoint 2
SSX2b  +  chrX:52780308-52790617  synovial sarcoma X breakpoint 2

Possibly the SSX1 array has long been predisposed to translocation events. It might seem very difficult to establish the structure of the ancestral array at the time of PRDM chimera formation -- contemporary marsupial has barely related genes on different chromosomes; elephant and dog too lack a multi-gene array. However rhesus but not marmoset has a chr X cluster, so that aspect is restricted to old world primates. A single SSX1 gene can be recovered from elephant but is already quite diverged from human. Marsupials have no evident SSX1 genes today.

This gene fusion of SSX1 and PRDM brought together a negative regulatory domain for transcription with a histone methylase and dna site recognition domain. This new combination succeeded in replacing whatever prior mechanism existed for meiotic breakpoint pairing and recombination.

>SSX1_loxAfr
0 VNRDSSLAKSSKEDTQKPEKESK 0
0 AFKDILKYFSKEEWAKLGYSKKVTYVYMKRNYDTMTNL 1
2 GLRATLPPFMDPNRLATKSQLDESDEEQNPGTQ 1
2 DEPPQMASSVRESKHLM 0
0 MKPKKPSKEENGSKVVPGTAGLMRTSGPEQAQKQPCPPGKANTSGQQSKQTP 1
2 VPGKEETKVWACRLRERKNLVAYEEISDPEEED*

The zinc knuckle preceding the PR (SET) domain

A 2011 crystallographic study establishes that a short motif YC..C..........C..HGP found in 6 members of the human PRDM gene family binds zinc via the 3 cysteines and a histidine. The fold most closely resembles the previously known RanBP2 zinc finger domain which occurs in some 21 human proteins, notably nucleoporins NUP153, NUP358, NPL4, EWS, TLS, RBP56, RBM5, RBM10, TEX13A, RANDB2 and ZRANB2. Not all these domains are necessarily homologous because the fold is small and zinc fingers seem to have evolved numerous times. Such fingers can bind other proteins, ssRNA and likely DNA. Their function in PRDM genes is completely unknown but the aromatic residue preceding the first cysteine may contribute to a pi-bonding base stack with guanines.

KnuckleSET.jpg

The domain begins at a phase 2 exon, meaning that the first codon letter is borrowed from the preceding exon splice donor. A dozen earlier residues from this exon are also used but do not exhibit any conservation outside their orthology class. In most cases the knuckle domain exon also contains a downstream PR(SET) domain but at variable intervening lengths (distances shown are to conserved FGP in center of PR(SET) domain. The function of these intervening residues are unknown.

exon 6     splice exon 7                     SET  gene name
IPLNQHTSDPNN 1 2 RCDMCADNRNGECPMHGPLHSLRRLVG .49. PRDM6_homSap
PDPPRPFDPHDL 1 2 WCEECNNAHASVCPKHGPLHPIPNRPV .16. PRDM10_homSap
MAEDGSEEIMFI 1 2 WCEDCSQYHDSECPELGPVVMVKDSFV .99. PRDM15_homSap
GSKENMATLFTI 1 2 WCTLCDRAYPSDCPEHGPVTFVPDTPI .36. PRDM4_homSap
IVPKSFQQVDFW 1 2 FCESCQEYFVDECPNHGPPVFVSDTPV .42. PRDM11_homSap
KEVSEPQDDDYL 1 2 YCEMCQNFFIDSCAAHGPPTFVKDSAV .42. PRDM9_homSap
KEISEPQDDDYL 1 2 YCEMCQNFFIDSCAAHGPPTFVKDSAV .42. PRDM7_homSap
QEIWDPQDDDYL 1 2 YCEECQTFFLETCAVHGPPKFVQDSVM .42. PRDM7_monDom
NENYRPEDDDYL 1 2 YCEICQTFFLEKCVLHGPPVFVQDLPV .42. PRDM7_ornAna
EEQDDTFNDQPF 1 2 YCEMCQQHFIDQCETHGPPSFTCDSPA .42. PRDM7_danRer
TEEEELRDEEYF 1 2 FCEECKSFFIEECELHGPPLFIPDTPA .42. PRDM7_salSal
IKEEEADVKDFL 1 2 YCEVCKSVFFSKCEVHGPALFIADSPV .42. PRDM7_ictPun
                YVCRECGRGFSWQSVLLTHQRTHTGEKP comparison to longer zinc finger in main array of PRDM7/9

Structural alignment of all PRDM proteins

To determine the evolutionary relationship of the 16 human PRDM genes, it is useful (given the great divergence in primary sequence) to consider rare genomic events such as intron gain/loss and indels. Only 7 of the 16 contain the knuckle region. Of these PDRM11 is the most closely related to PRMD9.

This is fortunate because the 3D structure of PRDM11 was recently determined (PDB: 3RAY) from before the knuckle region on into the final exon, thus allowing threading of PRDM9 (whose structure has not been studied). The dozen-odd conserved patches in these widely diverged paralogs find their explanation in the atomic details of this structure. Note the PRA(SET) domain and zinc fingers are all that can currently modeled as the KRAB, SSXRD and final exon have no counterparts at PDB.

The knuckle region apparently represents a one-time domain acquisition relative to a knuckle-less ancestral state. The date of this event relative to species phylogeny and the source of the domain are unclear (it is very unlikely to have evolved in situ). Similarly, the internal phase 00 intron is ancestral even though it breaks up a coherent structural domain. Note the final 12 intron is also ancestral -- the PR(SET) domain never occurs without it even though zinc fingers are not always found in the next exon. However the later 21 intron is a newer acquired feature specific to PRDM9 and its closest associates, post-dating acquisition of the knuckle domain and predating duplication and divergence of the PRDM7/9 group. This again follows from gene tree and parsimony considerations.

Crystallographic coverage is excessive yet highly unsatisfactory -- the knuckle-PR(SET) domain is covered by 6 different structures, yet none of them are exactly what is needed (PRDM11 3RAY; PRDM4 2L9Z/3DB5; PRDM10 3IXH; PRDM1 3DAL; PRDM2 3JV0; PRDM12 3EP0). There is no coverage of the preceding KRAB or SSXRD domain or the following early knuckle. However on the knuckle-PR(SET) domain, all these structures could likely be superimposed simultaneously on the near-universal domains identified below. PRDM7/9 would then follow this fold trace as well, though it could be modeled directly from just PRDM11. The intervening regions between conserved anchors can be modeled for PRDM7/9 only to the extent that local conservation in length and residue can be found to a determined structure. For example, IFYRTCRVI in PRDM9 can be modeled by the PRDM11 structure since its internal residues contain three matches and no gaps, IFYRACRDI.

Humans have 51 genes encoding SET domains, with the PRDM group most diverged from the canonical structures. It is difficult enough to meaningfully align the PRDM and even more so to include all 51 of these lysine methylases. When that is done, most of the conserved patches below emerge as universal motifs yet others are restricted to the PRDM family. All of these proteins would likely bind S-adenosyl methionine and have a lysine pocket in addition superimposable global folds (neither relatable to the 45 human arginine methyltransferases).

PRDMs.gif


gapping:     uncertain between conserved markers                                       iM: initial methionine, protein thus too short for further comparison
knuckle:     shortened zinc finger motif                                               underlining: magenta coloring shows non-informative idiosyncratic introns
C2H2:        terminal zinc finger region following universal phase 12 intron           PRDM15: duplicated diverged exon removed 21 SWPASGHVHTQAGQGMRGYEDRDRADPQQLPEAVPAGLVRRLSGQQLPCRSTLTWGRLCHLVAQGR
0:           indel unifying PRDM9/7/11, cannot be resolved as insertion or deletion     7: near-universal motif NWMrYV  split by phase 21 intron gained by PRDM9/7/11/4
1:           arginine supporting PRDM6 as outgroup to the knuckle subgroup              8: inexplicable repositioning of 6 residues to previous exon in PRDM4
2:           near-universal motif SLP                                                   9: near-universal motif EQNL
3:           near-universal motif GF                                                   10: near-universal motif IFY
4:           indel unifying PRDM9/7/11, resolvable as an insertion                     11: near-universal motif ELLVWY
5:           near-universal motif FGP                                                  12: possible synapormorphy grouping first 9 genes
6:           near-universal motif WLI split by universal phase 00 intron               PRDM16: CVDANQAGAG insertion removed from ISEDLGSEKFCVDANQAGAGSWLKYIRVA
PRDM3:       inexplicably has official gene name MECOM                                 text-pdf version here
Applicable 3D structural determinations:
.... PRDM9   YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGI.PQAGLGVWNEASDLPLGLHFGPYEGRIT.....EDEEAANNGYSWLITKG.RNCYEYVD.......GKDKSWANWMRYVNCARDDEEQNLVAFQYHR..QIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR
3RAY PRDM11  FCESCQEYFVDECPNHGPPVFVSDTPVPVGIPDRAALTIPQGMEVVKDTS...GESDVRCVNEVIPKGHIFGPYEGQIS......TQDKSAGFFSWLIVDK.NNRYKSID.......GSDETKANWMRYVVISREEREQNLLAFQHSE..RIYFRACRDIRPGEWLRVWYSEDYMKRLHSMSQETIHRNLAR
2L9Z PRDM4   WCTLCDRAYPSDCPEHGPVTFVPDTPIE....SRARLSLPKQLVLRQSIV..GAEVGVWTG.ETIPVRTCFGPLIGQQSHSMEVAEWTDKAVNHIWKIYHN.GVLEFCII.......TTDENECNWMMFVRKARNREEQNLVAYPHDG..KIFFCTSQDIPPENELLFYYSRDYAQQI..............
3IXH PRDM10  WCEECNNAHASVCPKHGPLHPIPNRPVL....TRARASLPLVLYIDRFLG......GVFSK.RRIPKRTQFGPVEGPLV.....RGSELKDCYIHLKVSLDKGDRKERDLHEDLWFELSDETLCNWMMFVRPAQNHLEQNLVAYQYGH..HVYYTTIKNVEPKQELKVWYAASYAEFVNQKIHDISEEERK.
3DAL PRDM1                              DGGTSVQAEASLPRNLLFKYATN.SEEVIGVMSK.EYIPKGTRFGPLIGEIY..TNDTVPKNANRKYFWRIYSR.GELHHFID.......GFNEEKSNWMRYVNPAHSPREQNLAACQNGM..NIYFYTIKPIPANQELLVWYCRDFAERLHYPYPGELTMMNL.
3JV0 PRDM2                              LAEVPEHVLRGLPEEVR.LFPSAVDKTRIGVWAT.KPILKGKKFGPFVGDKK.....KRSQVKNNVYMWEVYYP.NLGWMCID.......ATDPEKGNWLRYVNWACSGEEQNLFPLEINR..AIYYKTLKPIAPGEELLVWYNGEDNPEIAAAIEEERASARSK
3EP0 PRDM12                             SGEVQKLSSLVLPAEVIIAQSSIPGEGL.GIFSK.TWIKAGTEMGPFTGRVI..APEHVDICKNNNLMWEVFNEDGTVRYFID.......ASQEDHRSWMTYIKCARNEQEQNLEV.VQIGT.SIFYKAIEMIPPDQELLVWYGNSHNTFLGIPGVPGLEEDQKK

Phylogenetic variability of the knuckle-PR(SET) domain for PRDM7/9, shown below, is complicated by the various gene duplications of PRDM7. Much less variability occurs between the universally conserved patches in the other five genes with a comparable domain, namely PRDM11, PRDM4, PRDM10, PRDM15 and PRDM6. These genes did not experience duplications during placental evolution. The fact that the entire domain is strongly conserved -- with vary different amino acids in each protein -- implies strong selective pressure acts along the entire domain in these five proteins so the 3D structure is not floppy (indeterminate random coil) between the universally conserved patches, and that whatever functions these genes have remained constant during placental evolution.

Note knuckle region in PRDM7/9 has moderate variability. Assuming on analogy with the terminal array zinc fingers that the residues between the second and third zinc ligands contain the residues that provide recognition specificity, these are QNFFIDS. This region has little phylogenetic variability in PRDM7/9. However overall PRDM11, PRDM4, PRDM10, PRDM15 and PRDM6 have even less variability. These regions could bind dna, single stranded rna or another protein involved in regulation. Those these partners may differ, the type of macromolecule will likely be the same because of underlying homology and implausibility of type change. The phylogenetic alignment of non-pseudogenes in the PRDM7/9 group is quite conservative from calJac (new world monkey Callithrix) to human:

PRDM9_homSap    YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWLITKGRNCYEYVDGKDKSWANWMRYVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR
PRDM9_panTro    .......................................................R.......P.....S.....Q.........S.............................E............S......S..........................................
PRDM9_gorGor    ...................I.....................................................K........................................................................................................
PRDM9_ponAbe    ................................................................................K......................................W.......................................................P..
PRDM9_nomLeu    .....................I...T.G...........................................................................................W.......................................................P..
PRDM9_macMul    .....................I.....E..................................................Q...................................................................................................
PRDM9_papHam    ...........................N....................................................K.................................................................................................
PRDM7_homSap    .....................................................................................S......................S.....................................................................
PRDM7_ponAbe    .....................................T........................................K...................................................................................................
PRDM7_calJac    ...I.............................HA.........................................V.......SS............................................................................................
PRDM7_micMur    ...K.......................................K.R................E............QV........S....................D..............E...................Q.............................E..TIRQ
PRDM7_otoGar    ...K.......N..V.........T..E.......V....S..G.RT.......F.........Q..........QV........S....................E.QG...........E....................................................T..Q
PRDM7_tupBel    ...K.........S.....I..........SL...V.........A.....E.......A.T.............Q.........S....................E.C..............................................E................S.WQ.E
PRDM9_oryCun    ...K.....L....V....I...............V...............E.......................Q...E.....S....................R.............N............K.......Q..K..........................E..T...
PRDM7_oryCun    ...K.....L....V....I...............V...............E.......................Q...E.....S....................R.............N............K.......Q..K..........................E..T...
PRDM7_ochPri    ..........E...V..S..............H..V....S..........E........TT.............QV..E...T.S...........R........P.Q...........N.....................AV.Q.........................E..T...
PRDM7_ratNor    ...K.........PN....V.....V..R....H.V...............E.............V.......K.Q.........S..................Q.E.Q.........................K............R.....................M..GFT...
PRDM7_musMus    ...K.........PN....L.....M..R....H.V.........S.....E.............V.........Q.........S..................Q.E.Q.........................K..................................M..GFT...
PRDM7_musMol    ...K.........PN....L.....M..R....H.V.........S.....E.............V.........Q.........S..................Q.E.Q.........................K..................................M..GFT...
PRDM7_dipOrd    ...Q......N..TV....I..R.NV.....YD..V.........RQ.S..E........E..............Q.....D...S....M........V........Q...........Y.......................KA.........................R..T...
PRDM7_speTri    ..DK.....M...PV......I...V.N.D.S.H.T....L.......S..E.........T...........R.Q.........S....................E.Q.................................................................S...
PRDM9_bosTau    ..QE.........D.............E...A...V.T.....S.KL....E..........H............Q..D.K..I.S...........S........T.L...........HY...........G.......Q.V...............EK....CE.RG.SMFA...
PRDM9_oviAri    ..QE......N..D.............E...A.....T.....S.RL....E..........H............Q..D.K..V.S....................T.L....................L..QG.......Q.V................D....RD.SG.S..A...
PRDM9_munMun    ...E......N.............C..E...A.....T..H..S.RL....D.......KV...A........K.Q..DN.....S..A.................T..........................G.......Q.V................DF...RN.RG.S..A...
PRDM7_turTru    ...K.............A.........E.........T.....S.R.....E.......................Q.........S....................T..............E.....................V..............S.....P...G..SQ.V...
PRDM7_lamPac    ...K.................................T.......R.....E.........H.............QV........S..........K..........Y...............................................E................S.WQ.E
PRDM7_susScr    ...K.................................T.......R.....E.........H.............QV........S.........................................................V..............................T..I
PRDM7_felCat    ...K..........V.........N..G.........T.......R..S..E...............T.......Q.........S....................N................................................................S..ST.K
PRDM7_ailMel    ...K..........V...............Q......T.......R.............................Q.........S....................N..............E.................................................S..A..K
PRDM7_pteVam    ...K.............S.I.....E..IR.......T.............E................L......QV........S.....QG.............E.R..............................................................R..T...
PRDM7_myoLuc    ...K..........V................A.....T.............E........EC...V...Y.....Q.....AI..S....................T.Q..................................V.K.........E...............T.PV...
PRDM7_equCab    ...N...............I.................T..L....R.....E.......................Q.........S....................I....................................V...........................R..T...
PRDM7_sorAra    ...N......NK.S...S.I....N..A...S.....T..H..........E....I..................Q..N......S..................V.E.L............Y....................I.K..........................S..T.DK
PRDM9_loxAfr    ...K.......T..V..A.M.....P..R....H...T..........S..K..........E............QV...K....S.........K..........E..............E....................T.Q.D.....................R.....TS..
PRDM7_choHof    ...K.....FEN........LL.....GQ.R.KH...V......L......E.......................QV......T.S......................C.................................A...............................T.EK
PRDM9_homSap    YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWLITKGRNCYEYVDGKDKSWANWMRYVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR

Central PR(SET) domain descended from PRDM11

Various additional sequences are relevant to understanding the curated placental mammal PRDM7/9 set. For example, the neanderthal genome despite being very far from satisfactory coverage can provide a PRDM9 sequence derived from the human reference sequence using non-synonymous SNPs reported in the corresponding UCSC browser track. The changes reported in the zinc finger domain (R HDL S R) may be enough to have created somewhat of a species barrier, though this involves comparing a fossil sequence to a contemporary human (which are today themselves quite variable). Similarly, the bushman genome sequence might yield an intermediate outgroup, though that assembly (like so many others) remains elusive.

Terminal sequences for 9 additional species of murid rodents have been determined but these have limited value for comparative genomics because they do not even cover the entire terminal exon and their syntenic contexts (and thus homological relationships) were not established. The single individual sequenced may not be representative of the overall population in the zinc finger region (based on the extensive diversity observed in human), diminishing their utility for predicting species barriers. These genes are most likely PRDM7 orthologs only secondarily related to the catarrhine primate PRDM9 set, ie descended from the unique locus present in stem euarchontoglires whereas the latter duplicated from a stem old world monkey PRDM7. It is worth noting that the reported sequences are very orderly and lack the overall chaos of frameshifts and stop codons so often seen in this gene family. The protein accessions are here.

A zebrafish protein put forward as an ortholog to placental mammal PRDM9 seems implausible given that birds, lizard and frog lack notable homologs. It lacks close counterparts in other species of fish with determined genomes and is not syntenic to mammalian gene locations. Thus it might represent an independent gene shuffle that resulted in a similar concatenation of domains (parallel evolution).

The protein lacks the KRAB and SSXRD domains but contains a standard knuckle, PR(SET), early ZNF finger and ZNF repeat domain (all in exons phased identically to human). Although back-blast restricted exons 3-5 to the human proteome has best matches to PRDM9, PRDM7 and the closely related PRDM11 (suggesting orthology of this region), the pre-zinc finger part of exon 6 does not give a clear signal despite its early C2H2 domain, perhaps because of few conserved residues after it. The same could be said for the pre-zinc finger of PRDM9 -- it is apparently just a fast evolving linker region not under selection for amino acid sequence.

While blastp of the zinc finger array is always a problematic exercise, here it gives closer resemblance to other zinc finger genes, notably ZNF658 and ZNF 585, than to any member of the PRDM family. The phase 12 intron here is moderately diagnostic in conjunction with the early zinc finger. The zebrafish terminal zinc finger array, while disorderly, does have several zinc fingers ending in the GEKP-like lockdown cap which supports a relationship with similar caps in PRDM7/9. Genes related to the zebrafish feature are found in salmon, trout, catfish and minnow but not stickleback, fugu, tetraodon or medaka. Transcripts are exceedingly common in contrast to mammals. The missing KRAB and SSXRD domains are believed critical in recruiting other essential proteins to the hotspot in the only systems with experimental data (mouse and human) so this gene cannot fulfill the same functional role.

Thus only central PR(SET) exons are established as directly relevant to the history of PRDM7/9, ie that it was present in the common ancestor of mammals and fish. The terminal exon could represent orthology with extreme relative divergence but the evidence favors a chimeric origin with a different zinc finger terminal exon. The zebrafish gene is thus only a partially verifiable member of the PRDM family, one lacking a convincingly orthologous terminal exon as well as the final fusion with SSX1 as in PRDM7/9. Early diverging tetrapods need re-examination to see if they too have a gene with central PR(SET) exons of PRDM7/9 in a gene with a following phase 12 exon.

Absence in frog, lizard and bird genomes would require persistence through the common ancestor but multiple independent loss events in the descendent lineages. Here frog still has a knuckle-PR(SET) domain most like that of PRDM7/9 but it is attached to a long BED domain and most resembles the human protein ZBED1 family overall.

Even more attractive is the hypothesis that nearest neighbor PRDM11 -- which is highly conserved and effortlessly located in all tetrapods including frog, birds, lizard and platypus -- gave rise to PRDM7/9 via gene duplication. The duplicated gene subsequently neofunctionalized by reciprocal translocation with SSXRD and a ZNF gene to acquire its current N- and C-termini. PRDM11 has hardly changed since the parenting event. Best-blast (of ancestral, consensus, or any individual species) to human proteins is far and away PRDM7/9. This scenario explains -- without multiple gene loss events -- why PRDM7/9 cannot be located in early diverging tetrapods.

Reported PRDM9 orthologs in early diverging bilatera such as Lottia, Capitella and Nematostella can be dismissed as independent occurrences of common ancient domain combinations. None of these domains are mammalian innovations -- PR(SET) traces back to bacterial methylases and zinc fingers also have a long and complex history. Without conservation of all mammalian domains, exon phasing, syntenic chromosomal location and demonstration of descent from a single gene in the last common ancestor, there is no basis for calling such genes orthologous nor assuming they function similarly in meiosis or illuminate mammalian PRDM7/9 evolution. Widespread expression in testes is not supportive as it conflicts with the very restrictive mammalian expression pattern. How could such a fundamental capacity be lost (and replaced by a non-homologous system) so many times in so many other lineages -- all of which have obligatory meiosis?

>PRDM7_danRer Danio rerio (zebrafish) Q6P2A1 transcript BC064665 no KRAB SSXRD or exon 5 but knuckle SET early ZNf C2H2 array
0 MSLSP 1
2 DLPPSEEQNLEIQGSATNCYSVVIIEEQDDTFNDQPF 1
2 YCEMCQQHFIDQCETHGPPSFTCDSPAALGTPQRALLTLPQGLVIGRSSISHAGLGVFNQGQTVPLGMHFGPFDGEEISEEKALDSANSWV 0
0 ICRGNNQYSYIDAEKDTHSNWMK 2
1 FVVCSRSETEQNLVAFQQNGRILFRCCRPISPGQEFRVWYAEEYAQGLGAIWDKIWDNKCISQ 1
2 GSTEEQATQNCPCPFCHYSFPTLVYLHAHVKRTHPNEYAQFTQTHPLESEAHTPITEVEQCLVASDEALSTQTQPVTESPQEQISTQNGQPIHQTENSDEPDASDIYTAAGEISDEI
HACVDCGRSFLRSCHLKRHQRTIHSKEKP
YCCSQCKKCFSQATGLKRHQHTHQEQEKNIESPDRPSDI
YPCTKCTLSFVAKINLHQHLKRHHHGEYLRLVESGSLTAETEEDHT
EVCFDKQDPNYEPPSRGRKSTKNSLKGRGCPKKVAVGRPRGRPPKNKNLEVEVQKIS
PICTNCEQSFSDLETLKTHQCPRRDDEGDNVEHPQEASQ
YICGECIRAFSNLDLLKAHECIQQGEGS
YCCPHCDLYFNRMCNLRRHERTIHSKEKP
YCCTVCLKSFTQSSGLKRHQQSHLRRKSHRQSSALFTAAI
FPCAYCPFSFTDERYLYKHIRRHHPEMSLKYLSFQEGGVLSVEKP
HSCSQCCKSFSTIKGFKNHSCFKQGEKV
YLCPDCGKAFSWFNSLKQHQRIHTGEKP
YTCSQCGKSFVHSGQLNVHLRTHTGEKP
FLCSQCGESFRQSGDLRRHEQKHSGVRP
CQCPDCGKSFSRPQSLKAHQQLHVGTKL
FPCTQCGKSFTRRYHLTRHHQKMHS* 0

>ZBED1_xenTro
0 MQAAEEACAQLEDELL 1
2 FCEDCRLYFRDSCPTHGAPTFILDTPVPENVPSRALLSLPEGLVVKERPQGGFGVWCTIPVIPRGCIFGPYEGDVIMDRSDCTVYSWA 0
0 VRENGSYFYIDASDDSKSSWMR 2
1 YVACASTEEEHNLTVFQYRGKIYYRASQVIPTGTELLVWIGEEYARTLGLKL 1
2 GEHFKYEFGEKELLMKLFQDLQLKPVDSISNHVSSQSQYMCNDMVTPVMQAHRTSYPLNNIGHTSSVFPLLEGTQNLVSLGRAQSRYWTFFGFQGDAYGRIIDKTKIICKLCGVRLSYSGNTTNLRQHLIYKHRRQYNDL
>PRDM11_conSeq consensus of 30 tetrapod PRDM11 orthologs
2 FCESCQEYFVDECPNHGPPVFVSDTPVPVGIPDRAALTIPQGMEVVKEASGENDVRCINEVIPKGHIFGPYEGQISTQDKSAGFFSWL 0
0 IVDKNNRYKSIDGSDETKANWMR 2
1 YVVISREEREQNLLAFQHSERIYFRACRDIRPGERLRVWYSEDYMKRLHSMSQETIHRNLAR 1

 PRDM9_homSap  YL Y..M..NF.I.S.AA....T..K.SA.DK.H.N.S..SL.P.LRIGPSGIPQAGLGVW..AL.L.LH......R.TEDEEA.NNY... .TKGR.C.EYV..K.KSW..... ..NCA.DDE....V...YHRQ.FY.T..V....CE.L...GDE.GQE.GIKWGSKWKKE.MA
 PRDM11_homSap FW FCESCQEYFVDECPNHGPPVFVSDTPVPVGIPDRAALTIPQGMEVVKDTSGESDVRCVNEVIPKGHIFGPYEGQISTQDKSAGFFSWL IVDKNNRYKSIDGSDETKANWMR YVVISREEREQNLLAFQHSERIYFRACRDIRPGEWLRVWYSEDYMKRLHSMSQETIHRNLAR
 PRDM11_panTro .. ........................................................................................ ....................... ..............................................................
 PRDM11_rheMac .. .........................................................I.............................. ....................... ..............................................................
 PRDM11_calJac .. ........................................................................................ ....................... ....................C.........................................
 PRDM11_otoGar .. ............................M..................EA...N....I.............................. ....................... ..A...............................R...........................
 PRDM11_musMus .. ................................................AG.......I.............................. ....................... ..................................R...........................
 PRDM11_ratNor .. ..............T................................EVG.......I...V.......................... ....................... ..................................R...........................
 PRDM11_cavPor .. .............................................I.EAG.......I.............................. ...............D......- ..................................R...........................
 PRDM11_speTri .. ...............................................EA........IS............................. ....................... ..........R.......G...............R......Q...R................
 PRDM11_oryCun .. ..........................................L...QEA........I.D.....R.........AA........... .....S................. ........Q.........N.H..........A..R......G....................
 PRDM11_ochPri .. ............................M..A...............EA........LSD............................ ....................... ....................H.........Q...R...........................
 PRDM11_bosTau .. ...............................................EA...N....I.......R...................... ....................... ........S.........................R...........................
 PRDM11_equCab .. ...............................................EA...N....I.......................T...... ....................... ..................................R...........................
 PRDM11_canFam .. ...............................................EA...N....I.............................. ....................... ..................................R......................H....
 PRDM11_myoLuc .. ..............K....M..........L.................AN..N....I.............................. ....................... ....................H.......................................T.
 PRDM11_pteVam .. ................................................A...N...SI.............................. ................S...... ....................H.............R...........................
 PRDM11_eriEur .. ..............K...........................V....EA........I.............................. ......H.........S...... ....................H.............R...........................
 PRDM11_loxAfr .. ...............................................EA...N....IS............................. ..........V............ .........................V........R......Q....................
 PRDM11_echTel .. ............................M..................EG...N....IS....T-..LR......Y.RN......... ....................... ....C...............H.............R.....GQ..................T.
 PRDM11_dasNov .. ...............................................EA...N....I.............................. ....................... .........................S........Q...............V...........
 PRDM11_macEug .. ............................M...........P......EA..QN....M.............................. .............T...Q..... ..I..........M......K....V........R.....................Q...T.
 PRDM11_monDom .. ............................M...........P......EA..Q.....M.............................. ......H......T......... .............M......K....V........R.....................Q...T.
 PRDM11_ornAna .. ........................................P.I....EA...N....M.............................. .............T......... .I.......................V........R.........................T.
 PRDM11_galGal .. ........................................P.I....EP...N....M..................S........... .............T......... ..I..........M....................K.....................N...TT
 PRDM11_taeGut .. ........................................P......EP...N....M..................S..R........ .............T......... ..I..........M................H...K....................MN.SFTS
 PRDM11_anoCar .. ...................M.L..A...I.........V.P......EAN..R.....G.I....R.Y.....KL.S........... .............T...TS.... ..A..........M...........T........R.....................N...T.
 PRDM11_xenTro .. ..............S....IL.P..L..I.M.E....SV.C.I.....S...R.....G.I....R.Y.....KL.S........... .............T...TS.... .............M......K....T....Q...K.....................N...TQ

Structural considerations in C2H2 zinc fingers

High resolution structures of C2H2 zinc finger domains have been available for decades. As the name suggests, the divalent zinc atom locks the two cysteines and two histidines into a rigid geometry providing a core conformation that a small peptide of 28 residues could not otherwise stably assume. Note in the unbound state, finger tips must retain flexibility while the domain ensemble scans its genome for specific dna sequences appropriate to its function. Each finger binds a trinucleotide -- in effect making a zinc finger the protein counterpart to tRNA anticodon. However overall binding is not a simple read-off code because adjacent fingers alter each other's specificities in subtle ways.

The linker region TGEKP plays a key role when the correct DNA sequence is encountered, snap-locking its finger down onto its target by capping the C-terminus of its alpha helix. A hydrogen bond between the first threonine and middle glutamate is key to this binding-induced conformational shift. From comparative genomics, it appears that a serine in first position can also form this hydrogen bond. The role of the glycine is to stay out of the way; the lysine counterbalances the negative charge of the glutamate; the proline terminates any helical propensity, allowing a fresh start in the adjacent finger.

While this motif is immensely conserved within C2H2 zinc finger of PDRM9 homologs, exceptions do occur. It is important to understand these because these loss of dna lock-down could loosen or even eliminate trinucleotide binding specificity. Such steps might represent initial stages of pseudogenization. However many exceptions occur within the first or last fingers. It is also common for fragmentary and imperfect motifs to end the protein, sometimes continuing on in another reading frame past the current stop codon.

Note in aligning zinc finger motifs, the breaks should always be put at the end of the linker region. It is completely illogical to break at the first cysteine as some authors do because capping by the linker region is specific to its zinc finger, not the following one.

Predicting dna binding sites of zinc finger domains

PRDM9onDNA.jpg


Origin of Species and all that

The origin of species is an old and exceedingly complex topic. PRDM7/9 cannot provide a unified molecular basis for it because orthologs do not exist outside of mammals. Yet genetic mapping shows PRDM7 at the core of hybrid sterility in mice (a enticing proxy for speciation) and PRDM9 sites are key to meiotic recombination in humans.

Although placental mammals very greatly in the specifics of PRDM7/9 gene expansion, some variation on the mouse/human might still be applicable. However that cannot be the sole explanation even here because some species such as dog lack any functional gene family member. An Oct 2011 paper established that the PRDM7 gene of the boxer used for the genome project is in fact representative of dog breeds; wolves, jackals and foxes also have the same inactivating frameshifts. Other carnivora such as mink -- while possessing a seeminly intact PRDM7 gene -- lack a sufficiently long zinc finger array to specify hotspots. Some other mechanism is needed to mark the sites of double stranded breaks that initiate meiosis in these Carnivora.

It is problematic whether the PRDM7/9 mechanism extends to marsupials and monotremes and not an option for earlier amniotes such as birds which lack any semblance of the gene (though homologs for its parts occur). Conceivably, a zinc finger array from a different gene family steps in. However drosophila utilizes very different gene products to control meiosis (with other genes such as DMRT1 more universal). There cannot be a unified molecular basis for speciation within bilaterans based on zinc finger proteins.

Thus despite being an ancient core process, the meiotic machinery is unexpectedly not conserved at the gene family level, instead exhibiting discontinuities in some gene families utilized to accomplish it. That is not unlike SRY sex determination (which underwent abrupt changes in marsupials and placentals shortly after divergence from monotremes), or the sex chromosomes themselves (which are homologous to bird but with hetergametic XY males in platypus and taken from different autosomes in therans).

PRDM7/9 do affect an immense number of other important topics in mammalian evolution through their specification of meiotic recombination sites. Because the crossover bottleneck in pseudoautosomal regions, these influences become deeply intertwined with special aspects of sex chromosome evolution. Moving beyond the narrow perspective of PRDM7/9 evolution, the following issues can be explored:

  • meiotic sex chromosome inactivation (MSCI)
  • progressive chromosome Y degeneration or conversely maintainence
  • gene dosage compensation for chromosome X
  • sex determination via SOX3 evolving into SRY on chromosome Y after platypus divergence
  • co-evolution with key meiotic regulatory genes such as DMRT1
  • expansion and contraction of the pseudoautosomal region in placentals
  • barriers to introgression during hominid history
  • impacts on lineage sorting within great apes
  • boundaries and persistence of haploblocks
  • localization of gene conversion
  • random X-inactivation in females
  • XY bodies and chromatin structure during meiosis
  • evolutionary strata in sex chromosomes due to inversions reducing recombining region
  • translocations and other chromosomal rearrangements in evolution and disease

These topics will be further developed in October.

(to be continued)

Supplemental information

The sections below store data used above. This includes curated sequences from all available mammals for PRDM7 and PRDM9 and additional their partial paralogs in the PRDM gene family. These latter have extensive comparative genomics alignments readily available elsewhere (UCSC genome browser, under GeneSorter feature and ProteinFasta feature in gene details page) so that is not repeated here.

While this topic has a long history in the peer-reviewed scientific literature, only the most recent articles are provided here because their reference sections satisfactorily summarize pre-2005 studies. Instead, the focus here is identifying free full text access to the recent articles, preferably as html which better supports copying snippets of text. The journal, google, and PubMed all provide forward citations to still other articles that cite the articles provided here.

Curated reference sequences

The sequences below have largely been compiled from genome projects -- only rarely do validating transcripts exist at GenBank. Sequences with a single frameshift or other glitch have been edited in some cases to show full length proteins on the theory that the error either reflects an atypical individual chosen for sequencing, sequencing error in low coverage projects within a difficult region, one allele in balanced polymorphism, or a mutant allele. However such sequences may instead reflect early stages of pseudogenization. Other sequences are in fact clearly pseudogenes; here recognizable exons are represented to allow determination of historic repeat number and rough dating of loss of function.

Chimp PRDM9 has a thoroughly garbled 11th repeat (3 frameshifts, nnnnn in the CGSC 2.1.3/panTro3 Oct 2010 assembly) followed by eight additional repeats. It is difficult to say if these are still in the initial reading frame. No data is currently available for Pan paniscus but despite minimal coverage, Pan troglodytes schweinfurthii has a long trace read in this region (ti|2009092447) that covers repeats 3-11 sharing the first frameshift in Pan troglodytes but soon degenerating into unmistakable pseudogene (ie the frameshifts in Pan troglodytes are not sequencing artifacts):

PRDM9 Pan troglodytes schweinfurthii
                     THTGEKP  3
YVCRECGRGFSVKSSLLSHQSTHTGEKP  4
YVCRECGRGFSVKSSLLSHQRTHTGEKP  5
YVCRECGRGFSVKSSLLSHQRTHTGEKP  6
YVCRECGRGFSVKSSLLSHQRTHTGEKP  7
YVCRECGRGFSQQSHLLSHQRTHTGEKP  8
YVCRECGRGFSQQSHLLSHQRTHTGEKP  9
YVCRECGRGFSQQSHLLSHQRTHTGEKL 10
YVCRECGRGFSRAVTPPQTPETHTGEKL 11
YVCREcGRGFSDKsSLlSVTRVHTQGRA 12
YVCRECGRGFSWQS               13

Gorilla, despite its importance, has a poor quality second assembly that is riddled with gaps and misplaced contigs. The PRDM9 gene terminates early in the zinc finger array with a small gap before a misplaced LINE element. The neighboring genes are not plausible though PRDM9 is correctly placed on chr5. PRDM7 in gorilla has four frameshifts in the last exon. Those are 'restored' below to reveal gene history (which in this case is 3.5 repeats with no trailing debris). Lower case letters indicate ends of correct reading frames.

Sumatran orangutan PRDM9 has a distal zinc finger array frameshift in contig ABGA01214983 (aGGGGAGAAG CCCTATGTCT GCAGGGAGTG) which also appears in the July 2007 assembly provided by UCSC (WUGSC 2.0.2/ponAbe2). However there is no support whatsoever for this extra adenosine in the underlying raw Sanger trace reads used to make the contig -- all reads omit it and have the expected reading frame. Consequently, the assembly appears to be in error. The full length sequence is provided here. Orang PRDM9 has the expected syntenic location between CDH10 and CDH12.

Gibbon has a stop codon in exon 6 that is supported by all 6 of the available Sanger traces.

In the case of more intensively studied species such as human and mouse, the number of C2H2 repeats varies widely. Only the reference sequence representative is shown here. This variation likely occurs in all species with the individual animal chosen for sequencing not necessarily the most common allele. Many clades have independent histories of gene amplification and gene loss, making both orthologous and functional comparisons problematic at substantial divergence.

These sequences are under constant revision as anomalies surface and are resolved by re-examining the original Sanger trace reads. However when coverage is low, it is very difficult to distinguish read error from actual oddities. For example, the horse genome assembly shows a disabling frameshift in seventh exon. That is apparently based solely on trace ti|1206069852 and arises from a truncated homopolymer run error CCCC that is frame-preserving CCCCC in ti|1330418597, ti|1322386025 and ti|1288100157. These latter reads however later have problems of their own. Another issue is individual traces covering part of a zinc finger repeat -- these cannot always be assigned reliably to PRDM7/9 as many similar zinc finger repeats exist in these genomes.

Other useful sequences such as PRDM11, PRDM4 and zinc finger semi-homologs having similar exon and domain structures, are provide in the subsequent section along with syntenic markers such as GAS8.

>PRDM9_homSap Homo sapiens (human) genome Prim gene 13 CDH12 chr5 10 exon size 18,301 bp KRAB SSXRD SET C2H2
0 MSPEKSQEESPEEDTERTERKPM 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPWMALRVEQRKHQK 0
0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPSGEASTSGQHSRLKL 1
2 ELRKKETERKMYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
VKYGECGQGFSVKSDVITHQRTHTGEKL
YVCRECGRGFSWKSHLLIHQRIHTGEKP
YVCRECGRGFSWQSVLLTHQRTHTGEKP
YVCRECGRGFSRQSVLLTHQRRHTGEKP
YVCRECGRGFSRQSVLLTHQRRHTGEKP
YVCRECGRGFSWQSVLLTHQRTHTGEKP
YVCRECGRGFSWQSVLLTHQRTHTGEKP
YVCRECGRGFSNKSHLLRHQRTHTGEKP
YVCRECGRGFRDKSHLLRHQRTHTGEKP
YVCRECGRGFRDKSNLLSHQRTHTGEKP
YVCRECGRGFSNKSHLLRHQRTHTGEKP
YVCRECGRGFRNKSHLLRHQRTHTGEKP
YVCRECGRGFSDRSSLCYHQRTHTGEKP
YVCREDE

>PRDM9_panTro Pan troglodytes (chimp) 2010 assembly exon 8 in gap, 11th repeat 3 frameshifts, only 1 trace supports stop codon *VCREDE  ti|451784509
0 MSPERSQEESPEEDTERTERKPM 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPLMALRVEQRKHQK 0
0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
2 ELKKKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYKGRITEDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPRSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTAKLFVGVGISRIAK
VKYGECGQGFSVKSDVITHQRTHTGEKP
YVCRECGRGFSWKSHLLSHQRTHTGEKP
YVCRECGRGFSVKSSLLSHRTTHTGEKP
YVCRECGRGFSVKSSLLSHQRTHTGEKP
YVCRECGRGFSQQSNLLSHQRTHTGEKP
YVCRECGRGFSVKSSLLSHQRTHTGEKP
YVCRECGRGFSVKSSLLSHQRTHTGEKP
YVCRECGRGFSKQSHLLSHQRTHTGEKP
YVCRECGRGFSVQSNLLSHQRTHTGEKL
YVCRECGRGFSQQSHLLRHQRTHTGEKP
YVCReCGRgFSVkSSLLSHQRTHTGEKP
YVCRECGRGFSVKSSLLSHQRTHTGEKP
YVCRECGRGFSKQSHLLSHQRTHTGEKP
YVCRECGRGFSQQSHLLSHQRTHTGEKP
YVCRECGRGFSQQSHLLRHQRTHTGEKP
YVCRECGRGFSVKSSLLSHQRTHTGEKP
YVCRECGRGFSVKSSLLSHQRTHTGEKP
YVCRECERGFSQQSHLLRHQRTHTGEKP
YVCRECGRGFSRQSALLIHQRTHTGEKP
*VCREDE

>PRDM9_gorGor Gorilla gorilla (gorilla) CABD02290262 CABD02290264 cdh12 chr5 ZNF at end of contig Aug 2009 assembly poor quality
0 MSPERSQEESPEEDTERTERKPM 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPCMALRVEQRKHQK 0
0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
2 ELRKKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPIFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYKGRITEDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARTLLQPENPCPGDQNQEQQYPDPRSRNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
VKYGECGQGFSVKSDVITHQRTHTGEKP
YVC
 
>PRDM9_ponAbe Pongo abelii (Sumatran orangutan) CDH10- PRDM9+ CDH12- distal frameshift aGGGG --> GGGG causing loss of 1.5 repeats in ABGA01214983
0 MSPERSQEESPEDDTERTERKPT 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPWMALRVEQRKHQK 0
0 GMPKASFNNESSLKELSETANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
2 ELRSKETEGNTYSLRERKGHAYKEISEPQDDDYL 1
2 CEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALTLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITKDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNHEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNTGKLFVGVGISRIAK
VKYGECGQGFSVKSDVITHQRTHTGEKP
YVCRECGRGFSRQSVLLIHQRTHTGEKP
YVCRECGRGFSRRSVLLIHQRTHTGEKP
YVCRECGRGFSQQSVLLIHQRTHTGEKP
YVCRECGRGFSRRSVLLIHQRTHTGEKP
YVCRECGRGFSWKSVLLRHQRTHTGEKP
YVCRECGRGFSQQSVVFIHQRTHTGEKP
YVCRECGRGFSGKSVLFRHQRTHTGEKP
YVCRECGRGFSDKSGVCYHQRTHTgEKP
YVCRECGRGFSVKSNLLSHQRTHTEEKL
YVCREDE*

>PRDM9_nomLeu Nomascus leucogenys (gibbon) ADFV01015315 Prim gene 10 cdh12 ADFV01015317 ADFV01015319 no synteny CpG stop exon 6 in 6/6 traces VCRKDE* in altered reading frame
0 MSPERSQEESPEEDTERTEQKPT 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPWMALRMEQRKHQK 0
0 GMPKASFSNESSLKELSGAANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
2 ELRRKETEGKMYSL*ERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFTDSCAAHGPPTFIKDSTVGKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCQVIRPGCEPLVWYGDEYGQELGIKWGSKWKKELTAER 1
2 EPKAEIHPCPSCCLAFSSQKFLSQHVARHHSSQNFPGPSARKFLQPENPCPGDQNQEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWQREISRAFSSSPKVQMGSCRVGKRIIEEESRTGQKVNPGNTGQLFVGVGISRIAE
VKYAECGQGFSDKSDVITHQRTDTGEKP
YLCRECGRGFSVKSSLLSHQRTHTGEKP
YVCRECGRGFSKKSNLLSHQRTHTGEKP
YVCRECGRGFSDKSSLLRHQRTHTGEKP
YVCRECGRGFSQKSSLLSHQRTHTGEKP
YVCRECGRGFSQKSSLLSHQRTHTGEKP
YVCRECGRGFSDKSSLLRHQRTHTGEKP
YVCRECGRGFSQKSSLLSHQRTHTGEKP
YVCRECGRGFSVKSNLLSHQRTHTGEKP
YVCRECGRGFSDKSSLLRHQRTHTGEKP
*vCRKDE

>PRDM9_macMul Macaca mulatta (rhesus) genome Prim gene 9 CDH12 chr6 exon 4 lost to Ns
0 MSPERSQEESPEEDTERTERKPT 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPWMAVRVEQSKHQK 0
0 GMPKASFNNESSLKEVSGMANLLNTSGSEQAQKPVSPPGEARTSGQHSRLKL 1
2 ELRRKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFIKDSAVEKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITQDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSTQNFPGPSARRLFQPENLCSGDQNQEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWPKEISRAFSSPPKGQMGSSRVGERMMEEEYRTGQKVNPENTGKLFVGVGISRIAK
VKYGECGQGFSDKSDVIIHQRTHTGEKP
YLCRECGRGFSQKSSLRRHQRTHTGEKP
YLCRECGRGFRDNSSLRYHQRTHTGEKP
YLCRECGRGFSNNSGLCYHQRTHTGEKP
YLCRECGRGFSDNSSLHRHQRTHTGEKP
YLCRECGRGFSNNSGLRYHQRTHTGEKP
YLCRECGRGFSNNSGLRHHQRTHTGEKP
YLCRECGRGFSQKANLLRHQRTHTGEKP
YLCRECGRGFSQKADLLSHQRTHTGEKP
*vCRKDE

>PRDM9_macFas Macaca fascicularis (crab-eating macaque) CAEC01530962 CAEC01530970 frameshift exon 7 fragmentary array
0 MSPERSQEESPEEDTERTERKPT 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
0 GMPKASFNNESSLKEVSGMANLLNTSGSEQAQKPVSPPGEARTSGQHSRLKL 1
2 ELRRKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFIKDSAVEKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFgPYEGRITQDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2  EPKPEIHPCPSCCLAFSSQKFLSHHVERNHSTQNFRGPSARRLLQPENLcSGDQNQEQQYSDPRSCNDKTKGQEIKERSKLLNKRTWQKEISRAFSSPPKGQMGSSRVGERMMKEEYRTGQKVNPENTGKLFVGVGISRIAQ
VKYGECGQGFSEKSDVIIHQRTHTGEKP
YLCRECGRGFSRKSNL

>PRDM9_papHam Papio hamadryas (baboon) genome Prim gene 11 cdh12 contigs scattered
0  0 
0  1
2  1
2 VKPPWMAFRVEQSKHQK 0
0 EMPKTSFSNESSLKELSGTPNLLSTSGSEQAQKPASPPGEASTSGQHSRLKL 1
2 ELRRKEAEGKMYSLRERKGHAYKEVSELQDDDYL 1
2 ycEMCQNFFIDSCAAHGPPTFVKDSAVNKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDKEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1  1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSTQNFPGPSARRLLQPENLCSGDQNQEQQYSDPCSCNDKTKGQEIKERSKLLNKRTWQKEISRAFSSPPKGQMGSSRVGERMMEEESRTGQKVNPENIGKLFVEVGISRIAK
VKYGECGQGFSDKSDVVIHQRTHTREKP
YLCRECGRGFSQKSNLLRHQRTHTGEKP
YLCRECGRGFRDNSSLRCHQRTHTGEKP
YLCRECGRGFRDNSSLRCHQRTHTGEKP
YLCRECGRGFSDNSSLRYHQRTHTGEKP
YLCRECGRGFRDNSSLRYHQRTHTGEKP
YLCRECGRGFSVKSNLLSHQRTHTGEKP
YVCRECGRGFSDNSSLRCHQRTHTGEKP
YLCRECGRGFSQMSHLRCHQRTHTGEKP
YLCRECGRGFSVKSNLLSHQRTHTGEKP
YVCRECGRGFSRKANLLSHQRTHTGEKP
*vCRKDE

>PRDM7_homSap Homo sapiens (human) pseu chr16 TUBB3+ DEFB+ AFG3L1+ DBNDD1- GAS8+ PRDM7- 4 frameshifts
0 MSPERSQEESPEGDTERTERKPM 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKMNYNALITV 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPWMAFRGEQSKHQK 0
0 GMPKASFNNESSLRELSGTPNLLNTSDSEQAQKPVSPPGEASTSGQHSRLKL 1
2 ELRRKETEGKMYSLRERKGHAYKEISEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDKSSANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWSGDEYGQELGIkWGSKWKKELMAGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQERQYSDPRCCNDKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
VKYGECGQGFSDKSDVITHQRTHTGGKP
YVCRECGRgFSRKSDLLSHQRTHTGEKP
YVCRECERGFSRKSVLLIHQRThTGETP
 vCRKDE

>PRDM7_panTro Pan troglodytes (chimp) genome Prim pseu 2 GAS8+ chr16 
0 MSPERSQEESPEEDTERTERKPM 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPLMALRVEQRKHQK 0
0 GMPKASFSNESSLKELSRTANLLNASGSEQAQKPVSPPGEASTSGQHSRLKL 1
2 ELKKKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYKGRITEDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLQPENP*PGDQNQERQYSDPRCCNDKTKGQEVKERSKLLNKWTWQREISRAFSSLPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
VKYGECGQGFSDKSDVITHQRTHTGGKP
YVCRECGQGFSRKSVLLIHQRTHRGEKP
*vCRKDE

>PRDM7_gorGor Gorilla gorilla (gorilla) genome Prim pseu 3 GAS8+ chr15730 four frameshifts in last exon
0 MSPERSQEESPEGDTERTERKPM 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATQPVFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2  0
0 GMPKASFNNESSLKELSGTPNLLNTSGSEQAQKPVSPPGEASTSGQHSRRKL 1
2 ELRRKETEGKMYSLRERKGHAYKEISKPQDDDYL 1
2 yCEMCQNFFIDSCAAHGPPTFVKDSAVDKRHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDKEAANSGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVALQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQERQYSDPRCCNDKTKGQEIKERSKLLNKrTWQReISRAFSSPPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
YGECGQGFSWKSNLLRHQRTHTGGKP
YVCRECGRGFSWKSDLLSHQRTHTGEKP
YVCRECGRGFSWKSNLLSHQRTHTgEKP
*vCRKDE

>PRDM7_ponAbe Pongo abelii (Sumatran orangutan) genome-blat same late stop codon as chimp *VCRKDE* no cryptic repeats, adjacent GAS8  
0 MSPERSQEESPKGDTERTERKPM 0 
0 VKDAFKDISIYFTKEEWTEMGDWEKTRYRNVKRNYKTLITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPWMAFRGEQSKHQK 0
0 GMPKASFNNESSLKELSGTQNLLNTSGSEQAQKPVSPPGEASTSGQHSTLKI 1
2 ELRRKETEGKTYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDKEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCAWDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMPGR 1
2 EPKPEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARHLLQAENPCPGDQNQEQQYSDPDCCNDKTKGQEIKERSKLLNKRTWQREISRAFSSSAKGQMGSSRVGERMMEEESGTGQKVNPGNTGKLFVGVGISRIAK
VKYGECGQGFSDKSDVITHQRTHTGGRS
YICRESGRGFTQKSGLLSHQRTHTGEKP
YVCRECGWGFSQKSNLLRHQRTHTGEKP
YVCRECGRGFSRKSVLLIHQRTHTGEKP
*vCRKDE

>PRDM7_nomLeu Nomascus leucogenys (gibbon) ADFV01125891 pseu gas8+ synteny implied by non-coding
0  0 
0  1
2  1
2 IKSPWMAVRVEQSKHQK 0
0 GMPKASFNNESGLKELSGSQnLLNTSG*EQARKPVSPPGEASTSGQHSRQKL 1
2 ELRRKETEGKMYSL*ERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFTDSCAAHGPPTFVKDSAVDKGHPNHSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKS*ANWMK 2
1 YVNCARDHEEQNLVAFQYHRQIFYRTCQVIRPGCEPLVWYGDEYGQELGIKWGSKWKKELTAER 1
2 EPKPEIHPCPSCCLVFTSQKFLSQHVECNHSSQNFPGPSARKLLQRENPCPGDQNQEQQYSDSRSCNDKTKGQEIKERSKLnKRIWQRKISRAFSSLPKGQMGSSRVGERMMEEESRTGQKVNPGNTGKLFVGVGISRIAK
VKYGECGQGFSDKSDVIAHQGTHTGGKS
*ICRECGWGFSQESHLLIHQRTHTGEKL
YVCRECGQGFSQKSDLLSHQRTHTGEKP
YVRRECGRGFSQKSNLLSHQRTHTEEKP
YVCRECGWGFSQKSHLLIHQRTHTGKKP
*vCRKDE

>PRDM7_macMul Macaca mulatta (rhesus) pseu GAS8+ stop codon exon 5 in 6 of 6 trace reads, frameshift in exon 10
0  0 
0  1
2  1
2 VKPPWMAFRVEQSKHQK 0
0 EMPKTSFNNESSLKELSGTPNLLSTSDSE*AQKPASPPGEASTSGQHSRLKL 1
2 ELRRKETEGKMYSLRERKRHAYKEASELQHDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFVKDNAVNKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPCEGRITEDKEAANSGYSWL 0
0 ITKGRNCYEYVDGKDKSWAKWMR 2
1  1
2 EPKPEIYPCPSCCLAFSSQKFLSqHVERNHSSQNFPGPSARKLLQSENPCPGDQNQEQQYSDPSSCNDKTKGQEIKERSKLLNKRTWQREILRAFTSPPKGQMGSSRVGERMMEEEFRTGQKANPGNTGKLFVGVEISRIAK
VKYGECGQGFSGKSDVITHQRTHTEGKP
YVCRGCGRRFSQKSSLLRHQRTHTGEKP
*vCKKNE

>PRDM7_macFas Macaca fascicularis (crab-eating macaque) CAEC01352986 CAEC01352983 4 frameshifts 1 stop codon
0  0 
0  1
2  1
2  0
0 EMPKTSFNNESSLKELSGTPNLLSTSDSE*AQKPASPPGEASTSGQHSRLKL 1
2 ELRRKETEGKMYSLRERKRHAYKEVSELQHDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFVKDNAVNKGHPNRSALSLPPGGlRIGPSGIPQAGLGVWNEASDLPLGLHFGPCEGRITEDKEAANSGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1  1
2 EPKPEIYPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQSENPCPGDQNQEQQYSDPSSCNDKTKGQEIKErSKLLNKRTWQREILRAFTSPPKGQMGSSRVGERMMEEeFRTGQKaNPGNTGKLFVGVEISRIAK
VKYGECGQGFSGKSDVITHQRTHTEGKP
YVCRGCGRRFSQKSSLLRHQRTHTGeKP
*vCKKNE

>PRDM7_papHam Papio hamadryas (baboon) genome Prim pseu 2 gas8+ contigs scattered
0 MSPERSQEESPEEDTERTEWKPM 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPWMAVRVEQSKHQK 0
0 GMPKASFNNESSLKEVSGMANLLNTSGSEQAQKPVSPPGEARTSGQHSRLKL 1
2 ELRRKETEGKMYSLRERKGHAYKEVSEPQDDDYL 1
2 YCEMCQNFFIDSCAAHGPPTFIKDSAVEKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITQDEEAANNGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2 EPKPEIYPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQSENPCPGDQNQEQQYSDPSSCNDKTKGQEIKERSKLLNKRTRQRQILRAFTSPPKGQMGSSRVGERMMKEEFRTGQKANPGNTGKLFVGVEISRIAK
VKYGECGQGFSDKSDVVIHQRTHTREKP
YVYRgCGQGFSIKSNLLRHQRIHTGEKP

>PRDM7_calJac Callithrix jacchus (marmoset) genome Prim gene 12 GAS8+ chr20 one frameshift in repeat area chr20 terminus
0 MSPERSQEESPEGDTGRTEQKPM 0 
0 VKDAFKDISMYFSKEEWAEMGDWEKTRYRNMKRNYNALITI 1
2 GLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ 1
2 VKPPGMAFRVGQSKHQK 0
0 GMPKASFGNESSLKKLSGTANVLNTSGPEQAQKPVSPPGEASTSGQHSRLKL 1
2 ELRRKDTEEKMYSLRERKGLAYKEVSEPQDDDYL 1
2 yCEICQNFFIDSCAAHGPPTFVKDSAVDKGHPNHAALSLPPGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRVTEDEEAASSGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2 ESKPEIHPCPSCCLAFSSQKFLSHHVERNHSSQNFPGTSTRKLLQPENPCPGKQKEEQQYFDPCNSNDKTKGQETKERSKLLNIRTWQREMARAFSNPPKGQMGSSRVEERMMEEESRTGQKVNPVDTGKLFVGVGISRIAK
AKYGECGQGFSDMSDVTGHQRTHTGEKP
YVCRECGRGFSQKSALLSHQRTHTGEKP
YVCRECGRGFSQKSHLLSHQRTHTGEKp
YVCTECGRGFSQKSVLLSHQRTHTGEKP
YVCTECGRGFSRKSNLLSHQRTHTGEKP
YVCRECGRGFSRKSALLSHQRTHTGEKP
YVCRKCGRGFSQKSNLLSHQGTHTGEKP
YVCTECGRGFSQKSHLLSHQRTHTGEKP
YVCRKCGRGFSQKSNLLSHQRTHTGEKP
YVCRECGRGFSFKSALLRHQRTHTGEKP
YVCRECGRGFSRKSHLLSHQGTHIGEKP
YVCRECGRGFSRKSNLLSHQRIHTGEKP
YVRREDE

>PRDM7_saiBol Saimiri boliviensis (squirrel_monkey) AGCE01149118/AGCE01147692/AGCE01012341/AGCE01145199 fragments no synteny but not in cadherin 10/12 complex
MSPERSQEESP GDTGRTEQKPM
VKDAFKDVAIYFSKEEWAEMGDWEKTRCRNVQRNYNALITI
GLRATQPAFMCHRRQASKLQVDDTEDSDEEWTPRRQ
 RPVSPPGEASTSGQHSRVKP
YVNCARDDEEQNLVAFQYHRQIFYRTCQVIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR
EPKPEIHPCPSCCLAFSSQKFLSRHVERNHSSQNFPGTSTRKLLQPENPCPGKQKEEQRYFDPCNSNDKTKGQEIKERSKLLNTRTWQREIARAFSYPPKGQMGSSRVEERMMEGESRTGQKVKPVDTGKLFVGVGISRIAK
ANYGECGQGFSGMSDVTAQQRIHTGEKP
YVCRECGRGFGHKSTLLSHQRTHTGEKP Y

>PRDM7_tarSyr Tarsius syrichta (tarsier) ti|1493610848 ABRT011082008 ti|1633244849 ABRT010499286 ABRT010929713 ti|1646504284 pseu gas8? double frameshift in exon 5 single trace ti|1623660607
0 MSPDRSPEDSPEGDTGRTECKSA 0 
0 VKDAFKDISIYFTKEEWAEMGDWEKIRYRNVKRNYNTLIAI 1
2 GLRAPRPAFMCHRKRAIKPLVDDTEDSDEEWTPRQQ 1
2 VKPPWMAFRVEQNKHQK 0
0 GMPRAPLSIVSSLKELSEMANLLnTSDSEQAWKPVSPSrEASTSEQHSRKKI 1
2 EFRKKEIEVNMYSLRERKDCAYKEVNEPQDDDYL 1
2 YCEQCQNFFIDSCATHGIPTFINDSAVDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASELPLGLHFGPYEGQITDDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRIIRPGCELLVWYGDEYGQELGIKWGSKWKKELMAGR 1
2 ETKPKILPCSSCSLALSSQKFFSQHVKCNHPPQIFPGTSARKYVQPENPCPEDLNQEQQQSDPHSWNDKSKCQEAKERSKPMHKRTQQRESSRSLSNPPTEQTESSREKERMMKEEPSTSQKVHLGDTGYEFHHIGASAAR

>PRDM7_micMur Microcebus murinus (lemur) ABDC01433247 ABDC01371462 gas8+ weak coverage last exon has two frameshifts
0 MSPNKSQEESPEVDAGRTGWKPT 0 
0 DKDAFKDISIYFSKEEWAQMGDWEKIRYRNVKRNYNVLITI 1
2 GLRAPRPAFMCHRRQAIKHQVDDTEDSDEEWTPRQQ 1
2  0
0  1
2  SEPQDDDYL 1
2 YCEKCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLKIRPSGIPQAGLGVWNEASELPLGLHFGPYEGQVTEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDDSWANWMR 2
1 YVNCARDEEEQNLVAFQYHRQIFYRTCQVIRPGCELLVWYGDEYGQELGIKWGSKWKEELTIRQ 1
2 EPKPEIHPCPSCSLAFSSQKFLSQHVKHTHSSQISPRTSGRKHLQPENPCPGDQNQEQQHSDPHSCNDKAKDQEVKERPKPFHKKTQQRGISRAFSSPPKGKMGSCREGKRIMEEEPRTGQKVGPGDTDKLCAAGGISRISR
VKYGDSGQSFSDKSNVIIHQRTHTGEKP
YVCRECGRGFSQKSDLLKHQRTHTGEKP
YVCRECGRGFSQKSHLLRHQRTHTGEKP
YVCRECGRGFSQKSDLLIHQRTHTGEKP
YVCRECGRGFSCKSHLLIHQRTHTGEKP
YVCRECGRGFSCKSSLLIHQRTHTGEKP
YVCReCGrGFSRKSDLLIHQRTHTGEKP
CVCRKGE

>PRDM7a_otoGar Otolemur garnettii (galago) AAQR03189271 (43912 bp) adjacent ARFGEF1 not GAS8 
0 MSPNRSQEESPE 0
0 VRGAFKDTYKYFSMEELAEMGDWEKIHHGNVERNYDVLIDR 1
2 GLRAPQPAFMGHRRQAIKYQVDDTEDSDEEWTPRQQ 1
2 GKHSLMAFRMQPRKRQK 0
0 GMPRAPLSHDSILQDLSGPANSLNISDSEQHQNCVSLPGEANASGQNSRRKS 1
2 ALRRKEIEARSYNLRERTDRSYEEVSEPQNDDYL 1
2 YCEMCQDYFIDRCDVHGPPTFVKDIAVDKGHPNRAALTLPPGLSIRQSGIPQAGDGVWNEACELPLGLHFGPYEGQVLEDEEAARSGYAWK 0
0 ITKGRNCYEYVDGKDQSQGNWMR 2
1 YVNCARDDEEQNLVAFQYHSQIFYRTCRVIRPGCELLVWYGTEYGKKLGIMWTSKRKKELTGQ 1
2 DPKPENHPCPSCSLAFSSQKSLSQHVEGTHSSQIFPGTSVRKHCRPEHLYPGDQNQEQQLSDPHDQNDKTKGQEMNEISKTSQEKTQQSSISGISSHTPEGQMGNSRDSERMVEPGQNMGPGETGKLCVKVEISRIVK
VANGQCGQEFSQTSNLHTHQRTHTGEKP
YVCSQCGHGFRYKSNLLTHQRIHTGEKP
YICTECGQQFRQTSNLLAHQRIHTGEKP
YVCSDCGKGFSQKSNLRTHQKTHTGEKA
YVCSECGKGFTRKENLLIHHRTHTGEKP
YICSDCGKRFSQKSNFLTHQKTHTGEKA
CVCRECGKGFSRKATLLIHQRTHKGEkP
YVYRSCGQIFIHKSNLNRREKTHTGEKS

>PRDM7b_otoGar Otolemur garnettii (galago) AAQR03144890 (36951 bp) adjacent GAS8+ pseudogene
0  0
0  1
2 GLRAPRPAFMCHRRQATKYKVDDTEDSDEEWTPRQQ 1
2 VKHPWMAFRMEQSKRQK 0
0 ILKKCMLSFNMHLKELSGPASLPNISGSEQHQKHMSSPREASTSGQHSGRKS 1
2 DLRIKEIEVRMYSLRERKGHAYKEVSEPQDDDYL 1
2 yCEKCQNFFIDNCAVHGPPTFVKDTAVEKGHPNRSVLSLPSGLGIRTSGIPQAGFGVWNEASDLQLGLHFGPYEGQVTEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDESQGNWMR 2
1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGQ 1
2 EPKPEIHPCPSCSLAFSTQKFLSQHVERTHPSQISQGTSGRKNLRPQTPCPRDENQEQQHSDPNSRNDKTKGQEVKEMSKTSHKKTQQSRISRIFSCPPKGQMGSSREGERMIEEEPRPDQKVGPGDTEKFCVAIGISGIV
KVKNRECVQSFSNKSNLRHQRTHTGEKP
YMCRDCGRGFSHKSSLFRHQRTHTGEKP
YVCRDCGRGFSLKANLLTHQRTHTGEKP
YVCRDCGQGFSQKAHLLRHQRTHTGEKP
YMCRDCGQGFSRKAYLLTHQRTHTGEKP
YVCRDCGQGFSQKAHLLTHQRTHTGEKP
YVCRDCGRGFSHKSSLFRHQRTHTGEKP
YICRDCG*SFRDRSNLLRHQRTHTGEKL
YVCRECGQGFNLKVTLLTHQRTHTGEKP
YVCRDLG*SFHNRSNLLTHqRTHIGEKP
YVCRDFGRGFSQKAHLLTHQR

>PRDM7_tupBel Tupaia belangeri (tree_shrew) AAPY01316756 ti|1061183379 ti|1061388949 ti|1076935836 AAPY01523531 ti|1074533669 AAPY01523530 no synteny QVTSDKTYFSGQMEDKSGHHTPP* runout
0 MRRYKSPEESPEGDAGRTEWKPT 0
0 VKDAFKDISVYFSKEEWAQMGEWEKIRYRNVKRNYTTLIAI 1
2 GLRAPRPAFMCHRKLAVKPHMDDAEDSDEEWTPRQQ 1
2  0
0  1
2         GKMYSLRERKCGTYKEVHEPQDDDYL 1
2 yCEKCQNFFIDSCSAHGPPIFVKDSAVDKGSLNRSVLSLPPGLRIAPSGIPEAGLGVWNAATDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDESCANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGEEYGQELGIKWGSKWKKSLWQGE 1
2 EPRPEIHPCLSCSLAFSSQKFLNQHVEHNHSCQRVPETSARKHLHPEHTHPGDEIQEQHHSDPQHCSDKADYEKVKERSKPSQERTRQRTMSRTFCSPCKGQMENAREGERMTGQRTDQKVGAEDTGKLLVRVGSSRIAG
VKYGECGQGLINKSNASRHQRTHTGEKP
YGCRECGRGFSQQSDLIRHQRTHTGEKP
YLCGECGRGFSLQSSLIRHQRTHTGEKP
YLCGECGRGFSRQSHLIIHQRTHTGEKP
YVCRECGRGFSLQSNLIIHQRTHTGEKP
YGCRECGRGFSQQSSLIRHQRTHTGEKP
YLCGECGRGFSRQSHLIIHQRTHTGEKP
YVCRECGRGFSLQSNLIIHQRTHTGEKP
YGCRECGRGFSQQSSLIRHQRTHTGEKP
YVCRECGRGFSRHSSLIIHQRTHTGEKP
YLCGECGRGFSRQSHLIIHQRTHTGEKP
YVCRECGRGFSQQPQLIIHQRTHTGEKP
YVCRECGRGFRCQSHLIIHQRTHTGEKP
YVCRECGRGFSQQPHLIIHQRTHTGEKP
*VCRKGE

>PRDM7_oryCun Oryctolagus cuniculus (rabbit) genome Glir gene 8 other Un0161 exon 2 ttt to tt restores frame; ZNF717+ DCAF4+ YAP1+ PRDM9- qTer 
0 MSAAAPAEPSPGADAGQARGKPE 0 
0 VQDAFRDISIYFSKEEWAEMGEWEKIRYRNVKRNYCALVAI 1
2 GLRAPRPAFMCHRRLAVRARADDTEDSDEEWTPRQQ 1
2 VKPPWMAFRTEHSKHQK 0
0 GMPRLPVNNESSLKELSGTANLLKTTGSEEDQKPSFPPKETRTSGQHSTRKL 1
2 GLRRKNIEVKMYSFRKRKSQAYKECSEPQDDDYL 1
2 YCEKCQNFFLDSCAVHGPPIFVKDSAVDKGHPNRSVLSLPPGLRIGPSGIPEAGLGVWNEASDLPLGLHFGPYEGQITEEEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDRSWANWMR 2
1 YVNCARNDEEQNLVAFQYHKQIFYRTCQVIKPGCELLVWYGDEYGQELGIKWGSKWKEELTAGR 1
2 EPKPEIHPCPSCSLAFSSHKFLSQHMERSHSSQIFPGAPARNHLQPANPCPGKEHQKLSDPQSWNDKNEGQDVKEKSRFSSKRTRQKAISRSFSSLPKGQVETSREGERMIEEEPRIGQELNPEDTGKSSVGAGLSRIAG
VKYRDCRQGLSDKSHLINGQRAHTGEKP
YACRECERGFTVKSNLISHQRTHTGEKP
YACRECGRGFTVKSALTTHQRTHTGEKP
YACRECGRGFTVKSHLISHQRTHTGEKP
YACRECGRGFTVKSALITHQRTHTGEKP
YACRECGQGFTVKSNLISHQRTHTGEKP
YACRECGRGFTQKSHLINHLRAHTGEKP
YACRECGRGFTVKSDLISHQRTHTGEKP
YACRVDE

>PRDM7_ochPri Ochotona princeps (pika) ti|1534455888 AAYZ01312269 AAYZ01242582 no synteny
0  0 
0 VPDAFRDICVYFSRAEWAEMSESEKLRYRDVKRNYSALRAI 1
2 GFRAPRPAFMCRRRLAGRAREEDTDDSDEECTLRPQ 1
2 VKPPWMAFRTEHSKHQK 0
0 GIPKVPTHHESSVTEAPRTAPFLRPAGSQQGRKPAFPPEEASASGQHSTRRL 1
2 EGRRRKTDLKIYSLRKRKSRTYKECSEPQDDDYL 1
2 YCEMCQNFFIESCAVHGSPTFVKDNPVGKGHPHRSVLSLPSGLRIGPSGIPEAGLGVWNETTDLPLGLHFGPYEGQVTEEEEATNSGYSWL 0
0 ITKGRNRYEYVDGKDPSQANWMR 2
1 YVNCARNDEEQNLVAFQYHRQIFYRTCRAVRQGCELLVWYGDEYGQELGIKWGSKWKEELTAGR 1
2 EPKPEIHPCPSCSLAFSSHKFLSRHTERSHSSQVFPKTSPRRLQPVNPCRGTEHREPLDPHSWNDTAEGQEVIENSSSVSTRTRQRQISAAFCSLRKGQVEASREGERKAEESPRINQEVNAQDTAKSSVRAGLPSRVT
VKCGDCRQDL

>PRDM7_ratNor Rattus norvegicus (rat) P0C6Y7 Glir gene 10 PDCD2 chr1 FM103467 single transcript from body fat
0 MNTNKPEENSTEGDAGKLEWKPK 0 
0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
2 GLRAPRPAFMCYQRQAIKPQINDNEDSDEEWTPKQQ 1
2 VSSPWVPFRVKHSKQQK 0
0 ETPRMPLSDKSSVKEVFGIENLLNTSGSEHAQKPVCSPEEGNTSGQHFGKKL 1
2 KLRRKNVEVNRYRLRERKDLAYEEVSEPQDDDYL 1
2 YCEKCQNFFIDSCPNHGPPVFVKDSVVDRGHPNHSVLSLPPGLRIGPSGIPEAGLGVWNEASDLPVGLHFGPYKGQITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGQDESQANWMR 2
1 YVNCARDDEEQNLVAFQYHRKIFYRTCRVIRPGRELLVWYGDEYGQELGIKWGSKMKKGFTAGR 1
2 ELRTEIHPCFLCSLAFSSQKFLTQHVEWNHRTEIFPGASARINPKPGDPCPDQLQEHFDSQNKNDKASNEVKRKSKPRHKWTRQRISTAFSSTLKEQMRSEESKRTVEEELRTGQTTNIEDTAKSFIASETS
RIERQCGQCFSDKSNVSEHQRTHTGEKP
YICRECGRGFSQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSDLIKHQRTHTGEKP
YICRECGRGFTQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSSLIRHQRTHTGEKP
YICRECGLGFTQKSNLIRHLRTHTGEKP
YICRECGLGFTRKSNLIQHQRTHTGEKP
YICRECGQGLTWKSSLIQHQRTHTGEKP
YICRECGRGFTWKSSLIQHQRTHTVEK

>PRDM7_musMus Mus musculus (mouse) genomic strain C57BL/6J 12 repeats 12 PDCD2 chr17 CN723438 eight transcripts, four from retina 
0 MNTNKLEENSPEEDTGKFEWKPK 0 
0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
2 GLRAPRPAFMCYQRQAMKPQINDSEDSDEEWTPKQQ 1
2 VSPPWVPFRVKHSKQQK 0
0 ESSRMPFSGESNVKEGSGIENLLNTSGSEHVQKPVSSLEEGNTSGQHSGKKL 1
2 KLRKKNVEVKMYRLRERKGLAYEEVSEPQDDDYL 1
2 YCEKCQNFFIDSCPNHGPPLFVKDSMVDRGHPNHSVLSLPPGLRISPSGIPEAGLGVWNEASDLPVGLHFGPYEGQITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGQDESQANWMR 2
1 YVNCARDDEEQNLVAFQYHRKIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKMKKGFTAGR 1
2 ELRTEIHPCLLCSLAFSSQKFLTQHMEWNHRTEIFPGTSARINPKPGDPCSDQLQEQHVDSQNKNDKASNEVKRKSKPRQRISTTFPSTLKEQMRSEESKRTVEELRTGQTTNTEDTVKSFIASEIS
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQNSHLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK

>PRDM7_musMol Mus molossinus (wild_mouse) GU216230 Glir gene 11 noDet full length deposit
0 MNTNKLEENSPEEDTGKFEWKPK 0 
0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
2 GLRAPRPAFMCYQRQAMKPQINDSEDSDEEWTPKQQ 1
2 VSPPWVPFRVKHSKQQK 0
0 ESSRMPFSGESNVKEGSGIENLLNTSGSEHVQKPVSSLEEGNTSGQHSGKKL 1
2 KLRKKNVEVKMYRLRERKGLAYKEVSEPQDDDYL 1
2 YCEKCQNFFIDSCPNHGPPLFVKDSMVDRGHPNHSVLSLPPGLRISPSGIPEAGLGVWNEASDLPVGLHFGPYEGQITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGQDESQANWMR 2
1 YVNCARDDEEQNLVAFQYHRKIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKMKKGFTAGR 1
2 ELRTEIHPCLLCSLAFSSQKFLTQHMEWNHRTEIFPGTSARINPKPGDPCSDQLQEQHVDSQNKNDKASNEVKRKSKPRQRISTTFPSTLKEQMRSEESKRTVEELRTGQTTNTEDTVKSFIASEIS
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTEKSSLIKHQRTHTGEKP
YVCRECGWGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSSLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGWGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK

>PRDM7_criGri Cricetulus griseus (hamster) AFTD01086355 no out-of-frame continuation, no synteny information in contig, no PRDM9
0 MSCTRNTNKQEGNSPAGDAERLEWKPK 0 
0 VKDEFKDISIYFSKEEWAEMGEWEKIRYRNVKRNYKMLISI 1
2 GLKAPRPAFMCYQRQAFKPQMDDSEDSDEEWTPKQQ 1
2 GSPPWVPFRVKHTKKQK 0
0 ETQRIPLNKESNVKEVSGSENLLSTSGSEHVQKTVFSPGEGNASGQHTGQKP 1
2 ELRRKNVEVKMYSLRERKDLAYEEVNEPQDDDYL 1
2 YCEKCQNFFINSCPSHGPPIFVKDSMVDRGHPNCSVLSLPPGLRIGPSGIPEAGLGVWNEASDLPVGLHFGPYKGQITDDEEAANSGYSWL 0
0 ITKGRNCYEYVDGQEESQANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVINPGCELLVWYGDEYGQELGIQWGRKNKKGFATGR 1
2 ELRTEIHPCLLCSLAFSSPKFLSQHVQWNHRTQIFPGASSTINSKPGDPHPDQLQEQQHFNSHNKNDKARSLEVKGKSKPMHKWTRQISTAFPSTLKGHMRSEENKKTMEVLRTGQKTNTEDTIKSFIGSEIS
RIERKCGQYFSDKSNVNEHQRTHTGEKP
YVCRECGRGFTQKSHLIRHQRTHTGEKP
YVCRECGRGFTQKSNLIRHQRTHTGERP CVCLFKKDKKASVNKTTPQQSQKDKCSL* 0

>PRDM7_dipOrd Dipodomys ordii (kangaroo_rat) genome Glir gene -- noDet dubious fragment, no orthologous terminal exon
0  0 
0  1
2 GLKAPRPVFMCHRRQAIKPQVDDTDDSDEEWTPGRQ 1
2  0
0  1
2 elRTKEVKMRMYSLRERKSYAYEEISEPQDDDYL 1
2 yCEQCQNFFINSCTVHGPPIFVRDNVVDKGHYDRSVLSLPPGLRIRQSSIPEAGLGVWNEESDLPLGLHFGPYEGQITEDEDAANSGYSWM 0
0 ITKGRNCYVYVDGKDKSQANWMR 2
1 YVNCARYDEEQNLVAFQYHRQIFYRTCRVIKAGCELLVWYGDEYGQELGIKWGSKWKRELTAgr 1
2 

>PRDM7_speTri Spermophilus tridecemlineatus (squirrel) AAQQ01308561 Glir gene -- noDet plus exon by exon traces
0  0 
0  1
2 GFRAPRPAFMCHQRQTIKLQMDDTEDSDEEWTPRQQ 1
2  0
0 LKPEVLLSNESSLKELSGTANLLNTSGSEQVQKPVSPLREASASRQHSRRKL 1
2 ELRTKEVEVKMYSLRERKGHAYKEVSEPQDDDYL 1
2 yCDKCQNFFMDSCPVHGPPTFIKDSVVNKDHSNHSTLSLPLGLRIGPSSIPEAGLGVWNEATDLPLGLHFGPYRGQITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDESQANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKKELSAGR 1
2 EPKPEIHPCPSCSLAFSSQKFLSQHVDRSHPSQIFPGTSMRKKLIPGDSSPRDQLQEQQHPDPHGWNDKARGQEVQGSLKPTHKGTRQRGISSPPKGQMGRSEESERMMEDDLKADQEINPEDTDKILVGVEMSRI

>PRDM7_bosTau Bos taurus (cow) pseudogene on chr18 main Gas8 URAH synteny block not qTer not old, splice sites preserved
0 MSPNRSPEESIEGDTGRTEWKPT 0
0 AKDAFKDISIYFCKEEWAQMG*WekA*YRNVKRNYEALITL 1

>PRDM7L1_bosTau Bos taurus (cattle) chrX:85801132 active gene 21.3 repeats formerly PRDM9b_bosTau, adjacent URAH pseudogene
0 MSPNRSPENSTEGDAGRTEWKPM 0 
0 AKDAFKDISIYFTKEEWAEMGEWEKIQYRNVKRNYEALIAI 1
2 GFRATQPGFMHHGRQVLKSQVDDTEDSDEEWTPRQQ 1
2 GKPSGMAFRGEPSKHPK 0
0 RLSRGPLNKVSSLKKLPGAAKLLKKSGSKQAQKPVPPPREARTPGKHPRHKV 1
2 ELRRKETEVKRYSVRERKGHVYQEVSEPQDDDYL 1
2 YCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQIIYNEEDSNSGYCWL 0
0 VTKGRNSYEYVDGKDTSLANWMR 2
1 YVNCARDDEEQNLVALQYHGQIFYRTCRVVRPGCELLVWYGDEYGEELGIKQDKRGKSKLSAQR 1
2 EPKPKIYPCASCCLSFSSQKFLSQHVQRNHPSQILLRPSIGDHLQPEDPCPGSQNQQQRYSDPHSLSDKPEGREPKERPHPLLKGPKLCIRPKRISTASSYPPKGQMGGSEVHERMTEEPSTSQKLNPEDTGKLFMEAGVSGIVR
VNYGDHEQGSKDRSSLITHEKIHTGEKP
YVCKECGKSFNGRSDLTKHKRTHTGEKP
YACGECGRSFSFKKNLITHKRTHTREKP
YVCRECGRSFNEKSRLTIHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCGECGRSFNEKSRLTIHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCGECGQSFNEKSRLTIHKRTHTGEKP
YACGDCGQSFSLKSVLITHQRTHTGEKP
YVCGECGQSFNEKSRLTIHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCGDCGQSFSFKSVLITHQRTHTGEKP
YACGECGRSFSGKSNLTKHKRTHTGEKP
YVCGECGRSFSEKSNLTKHKRTHTGEKP
YVCGDCGQSFSFKSVLITHQRTHTGEKP
YVCGECGRSFSEKSNLTKHKRTHTGEKP
YACGECGRSFSFKKNLITHQRTHTGEKP
YVCRECGRSFSEKSRLTIHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCRECGRSFSVMSNLIRHQRTHTGEKP
YVCRECGRSFRVKSNLVRHQRTHTGEKP
YVCMECE* 0

>PRDM7L2_bosTau Bos taurus (cattle) appears intact KRAB SSXRD SET C2H2
0 MSPNRSPENSTEGDAGRTEWKPK 0 
0 AKDAFKDISIYFTKEEWAEMGEWEKIRYRNVKRNYEALIAI 1
2 GFRATQPGFMHHRRQVLKPQVDDTEDSDEEWTPRQQ 1
2 GKPSGMAFRGERSKHQK 0
0 RLSRGPLNKVSSLKKLPGAAKLLKKSGSKQAQKPVPPPREARTPGKHPRHKV 1
2 ELRRKETKVKRYSVRERKGHVYQEVSEPQDDDYL 1
2 YCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQIIYNEEDSHSGYCWL 0
0 VTKGRNSYEYVDGKDTSLANWMR 2
1 YVNCARDDEEQNLVALQYHGQIFYRTCRVVRPGCELLVWYGDEYGEELGIKQDKRGKSKLSAQR 1
2 EPKPKIYPCASCCLSFSSQKFLSQHVQRNHPSQILLRPSIGDHLQPEDPCPGSQNEQQRYSDPHSLSDKPEGREPKERPHPLLKGPKLCIRLKRISTASSYPPKGQMGGSEVHERMTEEPSTSQKLNPEDTGKLFMEAGVSGIVR
VKYGEHEQDSKDKSSLITHEKIHTGEKP
YVCTECGKSFNWKSDLTKHKRTHSEEKP
YACGECGRSFSFKKNLIIHQRTHTGEKP
YVCGECGRSFSEKSNLTKHKRTHTGEKP
YACGECGQSFSFKKNLITHQRTHTGEKP
YVCGECGRSFSEKSRLTTHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCRECGRSFSVISNLIRHQRTHTGEKP
YVCRECEQSFREKSNLVRHQRTHTGEKP
YVCMECE* 0

>PRDM7L3_bosTau Bos taurus (cattle) appears intact KRAB SSXRD SET C2H2 probable assembly stutter also has URAHps
0 MSPNRSPENSTEGDAGRTEWKPK 0 
0 AKDAFKDISIYFTKEEWAEMGEWEKIRYRNVKRNYEALIAI 1
2 GFRATQPGFMHHRRQVLKPQVDDTEDSDEEWTPRQQ 1
2 GKPSGMAFRGERSKHQK 0
0 RLSRGPLNKVSSLKKLPGAAKLLKKSGSKQAQKPVPPPREARTPGKHPRHKV 1
2 ELRRKETKVKRYSVRERKGHVYQEVSEPQDDDYL 1
2 YCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQIIYNEEDSHSGYCWL 0
0 VTKGRNSYEYVDGKDTSLANWMR 2
1 YVNCARDDEEQNLVALQYHGQIFYRTCRVVRPGCELLVWYGDEYGEELGIKQDKRGKSKLSAQR 1
2 EPKPKIYPCASCCLSFSSQKFLSQHVQRNHPSQILLRPSIGDHLQPEDPCPGSQNEQQRYSDPHSLSDKPEGREPKERPHPLLKGPKLCIRLKRISTASSYPPKGQMGGSEVHERMTEEPSTSQKLNPEDTGKLFMEAGVSGIVR
VKYGEHEQDSKDKSSLITHEKIHTGEKP
YVCTECGKSFNWKSDLTKHKRTHSEEKP
YACGECGRSFSFKKNLIIHQRTHTGEKP
YVCGECGRSFSEKSNLTKHKRTHTGEKP
YACGECGQSFSFKKNLITHQRTHTGEKP
YVCGECGRSFSEKSRLTTHKRTHTGEKP
YVCGDCGQSFSLKSVLITHQRTHTGEKP
YVCRECGRSFSVISNLIRHQRTHTGEKP
YVCRECEQSFREKSNLVRHQRTHTGEKP
YVCMECE* 0

>PRDM7L4_bosTau Bos taurus (cattle) chr21 distal frameshift, stop codon, deletion: pseudogene adjacent to URAHL3 pseudogene
0 MNPYRSPEESTEGDAGRTEWRWR 0 
0 1
2 1
2 GKPSWMTFRVKHSKHQK 0
0 gMSRALVSNKSSLKELPGASKLLKTSGPKQAQIQCPLPEKQVPLNSTLDKKW 1
2 GPIQKETEVKMYSLRERASHVYQEVSEPQDDDYL 1
2 YCEKCENF IKSCAVHGLPTFVKDCAVEKGHVNRLALSVPAGLSIRPSGIPEAVLGVWNEVSDLPLALHFGSYKGQIIDDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDTSWAKWMR 2
1 YVNCARDDKEQNLVAFLSHRQIFYQTCPVVRPGCELLVWYGDKYSQELSIKCGSRWKSELMASR 1
2 EPKPKIYPCASCSLAFSSQKFLSQHAEHNHPSQILLRTSARDRLQTKDSCPGNQNHQQQYSDPHSWRDKPEDREVKERPQPLLQSVRLRRVSRASSYSPKGQMGDTWVSERMMQEPSTGQKVNTEDTGKLCMGAGVLTIIR
VKSveCGQDSKDRSSLITHQRIHTGEKP
YACRECGRNFSEKSPLIRPQRTHIGEKP
FVCRECE*GFSH    IKHQRTHTGEKP
YVCRECEQSFSEKSTLIRHQTTHTGEKP
YVCGEVE*

>PRDM7L5_bosTau Bos taurus (cattle) intact somewhat diverged chr1:161387010- no URAH
0 MRPNTSPEESTERDAGRTEWKPT 0 
0 AKDAFKDISVYFSKEEWEEMGEWEKIRYRNVKRNYEALIAI 1
2 GFRATRPAFMHHRRQVIKLQADDTEDSDEEWTPRQQ 1
2 GKLSSMAFRVEHNKHQN 0
0 TMSRAPLSKEFSLKELPGAAKLLKTSGSKQAQKLVPPPGKARTPGQHPRQKV 1
2 ELRRKETEVKRYSLRERKGHVYQEVSEPQDDDYL 1
2 YCEECQDFFIDSCAAHGPPIFVKDCAVEKGHANRSALTLPPGLSIRESSIPEAGLGVWNEVSDLPLGLHFGPYEGQITDDEEAANSGYSWL 0
0 ITKRRNCYEYVDGKDTSLANWMR 2
1 RYVNCARDDEEQNLVALQYHGQIFYRTCQVVRPGCELLVWYGDEYGQDLGIKRESSRKSELAGPR 1
1 ESKPKIHPCASCSLAFSSQKFLSQHVQHNHPSQTLLRPSARDYLQPEDPCPGSQNQQQRYSDPHSPSDKPEGREVKDRPQPLLKSIRLKRISRASSYSPRGQMGASGVHERITEEPSTSQKPNPEDTGKLFMGAGVSGIIK
VKYGECGQGSKDRSSLITNQRTHTGEKP
YVCGECGQSFNQKSTLITHQRTHTGEKP
YVCGECGRSFNQKSTLITHQRTHTGEKP
YVCGECGRSFSQKSTLIKHQRTHTGEKP
YVCGECGQSFNQKSTLITHQRTHTGEKP
YVCGECGQSFNQKSTLITHQRTHTGEKP
YVCGECGRSFSRKSTLITHQRTHRGEAL CLQGV*

>PRDM7_oviAri Ovis aries (sheep) original PRDM7 pseudogene adjacent to GAS8 URAH on chr14, first two exons only (as in cow) 
0 MSPNRFP*ESTGGDPGRTEWKPM 0
0 AKDAFKDISIYFSKEEWAEMR*W     1

>PRDM7L1_oviAri Ovis aries (sheep) active gene ChrX:5148004 frameshift exon 2 may be read error; translocated with URAH2 pseudogene to ChrX both minus strand
0 MSPNRSPEKSTEGDAGRTEWKPM 0 
0 AKDAFKDISIYFTKEEWAEMGEWekVQYRNVKRNYKALIAI 1
2 GFRATQPAFMHHHRQVIKPQVDDTEDSEEEWTPRQQ 1
2 GKPSGMAFRGEPSKHQK 0
0 RLSRGPLNKVSSLKKLPGAAKLLKKTGSKQAQKPVPPPREARTPGQHPRHKV 1
2 ELRRKETEVKRYSLRERKGHVYQEVSELQDDDYL 1
2 yCEECQNFFIDSCAAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQVIYNEEASHSGYSWL 0
0 VTKGRNSYEYVDGKDTSLANWMR 2
1 YVNCARDDEEQNLVALQYHGQIFYRTCQVVRPGCELLVWYGDEYGEELGIKQDSRGKSKLSAQR 1
2 EPKPKIHPCASCSLSFSSQKFLSQHVQRSHPSQILLRPSPRDHLQPEDPCPGKQNQQQRYSDPHSPSDKPEGQEPKERPHPLLKGPKLCIRLKRISTASSYTPKGQMGGSEVHEKMTEEPSTSQKLNPENTGKLFMEAGVSGIVR
VKYGEHEQGSKDKSSLITHERIHTGEKP
YVCKECGKSFNGRSNLTRHKRTHTGEKP
YVCRECGQSFSLKSILITHQRTHTGEKP
YVCGECGQSFSEKSNLTRHKRTHTGEKP
YVCRECGQSFSLKSILITHQRTHTGEKP
YVCRECGRSFSVKSNLTRHKMTHTGEKP
YVCGECGQSFSQKPHLIKHQRTHTGEKP
YVCRECGRSFSAMSNLIRHQRTHTGEKP
YVCRECGRSFSAMSNLIRHQRTHTGEKP
YVCRECGRQVSSHTRGHTQGRSPMFAGSVGEASV*

>PRDM7L2_oviAri  Ovis aries (sheep) OARX:67135299 not tandem, two frameshifts and internal stop: pseudogene
0 0
0 1
2 1 
2 0
0 GMSRGPLSKVSSLKKLPGTTKLLKTSGSKQAQKPVPSSREARTSG*HTRQKV 1 
2 eLRRKETEVKRYSL*ERKGHVYQVVSEPQNDNYL 1 67134368
2 ycEECQNFFMNSCAAQVPPTFVKDSAVGKGHANCSALTLPPGLSIRLSGIPEARLGVWNEVSDLPLGLHFGpyEGQITDDEEAAHSGDSWL 0 
0 ITKGRNSFEYVDGKDMSLANWMR 2 67133322
1 CVKCTQDNKEQNLVALQYHRQIFYRICQVVRPGcqLLVWYGDEYAVELGIKWDNRGKSEFTARR 
2 ELKPKIHPCASCSPAFSSQKFLSQYVQPNHPSQILLRPSARDHLQPEDPCPGNQNEQQ*YSDPHSPSDKPEGCKAKERPPWLLKSMSVRISMASSYSPKGQMRGSETHYRMTEEPSTSQKLNPEDIGKLFMGTGVSGIIK
IKYEECGQVSKDRSSLITHEGTHTREQS
YVCRECGQSFSVKSSLIRLQRTHTGEKP
YT ESVGKASVRTPISSHTRGHTQERSP
MVAGRVGKASVRTQFSSDNRGHTQGRSP
MFSGSVGKASVRSPSSSHTRGHAPE

>PRDM7L3_oviAri Ovis aries (sheep) chrX:67,417,035+ 2 internal stops: pseudogene
0 MS*NRSPQERTEGDAGRTEWKLM 0
0 ANGAFKNISIYFSKEEWAEMGEWEKI*YGNVKRNCEALIAI 1
2 GFRATRPAFMHHRRQVIKPQGNDTEDSDEEWTPWQQ 1
2 0
0 GKSRGPLSKASSLKKLPGAAKLLKKSGSKWAQEPVKPPRETRTPGQHSRQKV 1
2 ELGRKETDMKRYSLRERKGHVYQEVSEPQDDDYL 1
2 yCQECQNFFINSCDAHGPPTFVKDSAVEKGHANRSALTLPPGLSIRLSGIPEAGLGVWNEASHLPLGLHFGPYEGQITDDKEAVNSGYSWL 0
0 ITKGRKSYEYVDGKDTSLANWMR 2
1 YVNCARHYEEQNLVAFQYHGQIFYRTCQVVRPGCELLVWYGDEYGEKLGIRCESRGKSMLAAGR 1
2 * 0

>PRDM7L4_oviAri  Ovis aries (sheep) OAR18:28239884-one frameshift, one stop codon pseudogene paired with URAH3 pseudogene
0 MNPYISPEESTEGDAERTEWKPM 0 
0 AKDAFKDISIYFSKEECAEMGEWGKICYRNAKRNCEALITI 1
2 GLRATRLAFMHHCRQVIKPQVDDIEDSDEEWTPRQQ 1
2 0
0 EGMSKALVSNKSSLKEMPGASKLLKTRGPKQAQIPVPAPREPSTSEQHPRQKV 1
2 1
2              CCHGLPTLVKDCAVEKGHANHSALSLSPGSSIRPSGIPEAGLGVWNKVSDLLLGLHFGSYVGQITDDEEAAKSGYSWL 0
0 ITKGRNCYEYVDGKQRSWANWIr 2
1 YVNGAQD KEQNLVAFLTHRQIFY*TCRVVRPGCELLVWYRDTYSQELSIKCGSRWKSELTASR 1
2 EPKPKIHPCVSCSLsfSSQKFLRQHVERNHPSQILLRTSARDRLQTKDSCPGNQNHEQQYCDPHSWSDKPEDGEVRERPQPLLKSIRLRRVSRASSYSPKGQMGDSWVSEKMMEEPSTGQKLNTEGTGKLCMGAGVLRIIR
VKHGECGQGSKDRSSLITHQRIHNGEKP
YVCRECGQSFSEKSILIRHQRTHTGEKP
FVCRECERGFSQKSYLIRHQKTHTGEKS
YVCREVE*

>PRDM7L5_oviAri  Ovis aries (sheep) OAR5:40765355+ 1 frameshift and 4 internal stops: pseudogene
0 MSSNRSLKERTEGDARRTEWKPMV 0 
0 AKDAFKDISI*FSKEEWAEMGE*EKI*YRNVKRNYEALITTI 1
2 GLRAP*PPFMYHRRQVIKPQVDDIEDSDEEWTPRQQ 1
2 0
0 GMSRVPLSN ESMKELLGAAKLLT SGSKQAQKPVPPPREASTSEQHPRKKV 1
2 ELRRKETEMKIYSLQKRKGHMYQEVSDPQDDNYL 1
2 0
2 ycEKCQNF INSCAAHGPPTFVKDCVVEKGHASCSALtlSPGLSIRPSGIPEAGLRVWNEASDLPLGLHFGPYKGQITDDEEVANSRYFWL 0
0 2
0 ITKGRNCYEYVDGRD
1 2
1 YVNCAQDDEEQNLVAFQYHRQIFS*TCWVVRPGCELLVWYRDEYGQELSIK*GSRHKSELTVRR 1 
2 PMCSCSLAFSSQKFLSQHVKCNHPSQILLKTSARDRLQPEDPCPGNPNQQQQYSDLHSWSDKPESRESKEKPQPLLKS----IRLRRISRASSYSSRGQMGGFRVHKRMREEPSTGKEVSPEDAGKLFMGEGVSRIM
VKYGDCG*GSKDRSSLMTHQRTHTGENP

>PRDM9d_munMun Muntiacus muntjak (muntjac) AC216498 Laur gene 4 noDet frameshift exon 9 no syntenic loci; identities: 92%b 89%a 90%c
0 MRPNRSQEESTEGNAGRTERKPT 0 
0 GKDAFKDISVYFSKEEWEEMGEWEKIRYRNMKRNYEALIAI 1
2 GFRATQPTFMHHRRQVIKSQVDDTEDSDEEWTPRQQ 1
2 GKPSSMAFRVEHSKNQK 0
0 RMSRAPLSNESGLKELPGAAKSLKTSDSKQARNPVPHHRKARTPGQLPRQKV 1
2 ELRRKETGVKRYSLRERKGHVYQEVSEPQDDDYL 1
2 YCEECQNFFINSCAAHGPpTFVKDCAVEKGHANRSALTLPHGLSIRLSGIPDAGLGVWNKVSDLALGLHFGPYKGQITDNEEAANSGYAWL 0
0 ITKGRNCYEYVDGKDTSWANWMR 2
1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVVRPGCELLVWYGDEYGQDFGIKRNSRGKSELAAGR 1
2 EPKPKIHPCASCSLTFSSQKFLSQHIQCSHPPQTLLRPSERDLLQPEDPCPGNQNQQQRYSDPHSPSDKPEGHEAKDRPQPLLKSIRLKRISRASSCSPRGQMGGSGVHERMTEEPSTSQKLNPGDTGTLLTGAGVSGIMK
VKYGECGQGSKDRSSLSTHERTHTGEKP
YVCRECGQSFSGKPVLIRHQRTHTGEKP
YVCMECGRSFSAKSVLMTHHRTHTGEKP
YICRECGQSFSQKIHLIRHQRIHTGE.P
SVFRECE

>PRDM9c_munMun Muntiacus muntjak (muntjac) AC154919 Laur gene 15 noDet no syntenic loci AC204173 99% identical
0 MRPNRSPEESTEGDAGRTEQKPT 0 
0 AKDAFKDISVYFSKEEWEEMGDWEKIRYRNMKRNYEVLIAI 1
2 GFRATRPDFMHHRRQVIKPQVDDTEDSDEEWAPRQQ 1
2 GKPSSVAFRVEHSKHQK 0
0 RMSRAPLSNESGLKELPGAAKPLKTSGSKQAQNPVPHHRKARTPGQLPRQKV 1
2 ELRRKETGVKRYSLRERKGHVYQEVSKPQDDDYL 1
2 YCEKCQNFFIDSCAAHGPPTFVKDCAVEKGHANRSLLTLPPGLSIRLSGIPDAGLGVWNEASDLPLGLHFGPYEGQITDDEEAANSGYAWL 0
0 ITKGRDCYQYVDGKDTSWANWMR 2
1 YVNCARDDEEQNLVAFQYHGQIFYQTCQVVRPGCELLVWCGDEYGQDLGIKRNSRGKSELVAGR 1
2 EPKPKIHPCASCSLAFSSQKFLSQHIQRSHPSQTLLRPSERDLLQPEDPCPGNQNQRFSDPHRPSDRPQPLLKSIRLKRISRASSYSPRGQMGGSGVHELMTEEPSTSHKLNPEDTGTLLMGAGVSGIMR
VTYGECGQGSKDRSSLTTHERTYTGEKP
YVCGECGRSFCQKAHLITHQRTHTGEKP
YVCRECGQSFSRNSLLIRHQRIHTGEKP
YVCGECGRSFRDKSNLISHRRTHTGEKP
YVCGECGQSFSDKSNLIRHQRTHAGEKP
YVCGECGRSFNRKSHLITHQRTHTGEKP
YACRECGQSFSQKSILITHQRTHTGEKP
YACRECG.SFSQKSILITHQRTHTGEKP
YVCGECGRSFSQKSLLITHQRTHTGEKP
YVCMECGRSFSQKTHLITHQRTHTGEKP
YVCGECGRSFSQKSLLITHQRTHTGEKP
YVCGECGRSFSQKSLLITHQRTHTGEKP
YICMECGRSFSQKTHLITHQRTHTGEKP
YVCGKCGQSFSDKSNLISHKRTHTGEKP
YVCRECGRSFNRKSLLITHQRTHT.E.P
YVCRECE

>PRDM9b_munMun Muntiacus muntjak (muntjac) AC218859 Laur gene 13 noDet no syntenic loci
0 MRPNTSPEESTEGDAGRTERKPT 0 
0 AKDAFKDISVYFSKEEWEEMGDWEKSRYRNMKRNYEVLIAI 1
2 GFRATRPDFMHHRRQVIKPQVDDTEDSDEEWAPRQQ 1
2 GKPSSMAFRVEHSKHQK 0
0 RMSRAPLSNESGLKELPGAAKPLKTSGSKQAQNPVPHHRKARTPGQLPRQKV 1
2 ELRRKETGVKRYSLRERKGHVYQEVSKPQDDDYL 1
2 YCEECQNFFIDSCAAHGPPTFVKDCAVEKGHANRSALTLPPGLSIRLSGIPDAGLGVWNETSDLPLGLHFGPYEGQITDDEEAANSGYAWL 0
0 ITKGRNCYQYVDGKDTSWANWMR 2
1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVIRPGCELLVWYGDEYGQDLGIKRNSRGKSELATGR 1
2 EPKPKIHPCASCSLAFSSQKFLSQHIQRSHPSQTLLRPSERDLLQPEDPCPGSQNQRYSDPHSPSDKPEGQEAKDRPQQLLKSIRLKRISRASSYSPGGQMGGSGVHERMTEEPSTSQKLNPEDTGTLLTGAGVSGIMR
VTYGECWKGSKDRSSLTTHERTHTGEKP
YVCGECGQSFHHGSVLIRHQRTHTGEKP
YVCGECGRSFSQKSVLIRHQRTHTGEKP
YVCGECGRSFSQKSVLIRHQRTHTGEKP
YVCGECGRSFSQKAHLITHQRTHTGEKP
YVCGECGRSFSQKTHLISHKRTHTGEKP
YVCGECGRSFCQKSALIRHQRAHTGEKP
YVCGECGRSFIQKSDFIRHQRTHTGEKP
YVCRECGQSYSDKTVLITHERTHTGEKP
YVCGECGRSYSDKTVLITHERTHTGEKP
YVCGECGRSFLWKSALIRHQRTHTGEKP
YACGDCGRSFNQKSNFIRHQRTHTGEKP
YVCGECWRSFSQKSSSSDTRGHTQGRRP
VCRECG  SFSQKSHLISHQRTHTEEKP
YVCRECE

>PRDM9a_munMun Muntiacus muntjak (muntjac) AC225653 Laur gene 7 noDet unordered contigs htgs; no synteny tag stop instead of aag K
0 MRPNRSPEESTEGDAGRTEQKPT 0 
0 AKDAFKDISVYFSKEEWEEMGEWEKIRYRNVKRNYEALIAI 1
2 GFRATRPDFMHHCRQVIKPQVDDTEDSDEEWTPRQQ 1
2 GKPSSMAFRVKHSKHQK 0
0 GMSRAPLIKESSLKELLGAAKLMKTSGSKQAQNPVPHPRKARTPGQHPRQKV 1
2 ELTRKETGVKRYSLRERKGHVYQEVSEPQDDDYL 1
2 YCEECQNFFIDSCAAHGLPTFVKDCAVEKGHANRSALTLPPGLSIRLSGIPDAGLGVWNEESDLPLGLHFGPYEGQITDDEEAANSGYAWL 0
0 ITKGRNCYQYVDGKDTSWANWMR 2
1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVIRPGCELLVWYGDEYGQDLGIKRNSRGKSELAAGR 1
2 EPKPKIHPCASCSLAFTSQKFLSQHIQRSHPAQTLLRPSERNLLQPEHPCPGSQNQRYSDPHSLSDKPEGQEAKDRPQPLLKSIRLKRISRASSYSPGGQMGGSGVHERMKDEPSTSQKLNPEDTGTLLTGAGVSGIMR
VTYGECGKGSKDRSSLTTHERTHTGEKP
YACRECGRSFRQKSDFITHQRTHTGEKP
YVCGQCGRSFGRKFALIRHQRIHTGEKP
YVCRECGQSFSQKTHLSSHQRTHTGEKP
YVCGECGRSFSQKSVLIRHQRTHTGEKP
YVCQECGRSFSDKSNLISHKRTHMGEKP
YVCRECGRSFIRKSVLIRHQRTHTGE.P
YVCRECE

>PRDM9a_odoVir Odocoileus virginianus (deer) AEGZ01043838/AEGZ01024932/AEGZ01044038/AEGY01012861/AEGZ01038568/AEGZ01003977/AEGY01011331/AEGZ01039403/AEGY01006151 possibly chimeric, frameshifts possibly errors in low coverage assembly
0 MTVSRSLEESTGGDAGRTEWKPT 0 
0    AFKDISKYFSKEEWARLGYSEKISYVYMKRNYETMTRL 1
2 GFRATRPAFMHHRRQVIKPQVDDTEDSDEEWTPRQQ 1
2 GKPSRMALREEHIKHQK 0
0 RMSRAPLSKESSLKELPGAAKSLKTSGSKQAQKPVPHPRKARTPGQHPRQKV 1
2 ELRRKETGVKRYSLRERKGHVYQEVSEPQDDDYL 1
2 yCEECQNFFIDSCAAHGPPTFVKDSVVKRGHANRSALTLPPGLSIRLSGIPDAGLGVWNEASDLPRGLHFGPYEGQITDDEEAANSGYAWL 0
0 ITKGRNCYEYVDGKDTSWANWMR 2
1 YVNCARDDEEQNLVAFQYHGQIFYRTCQVVRPGCELLVWYGDEYGQFLGIKRDSRgKSKLAAGR 1
2 EPKPKIHPCASCSLAFSSQKFLSQHIQCSHPSQTPPrPSERDLLQPEDPCPGNQNQRYSDPHSPSDKPEGQEAKDRPQPLLKSIRLKRISRASSYSPGGQMGGSGVHE

>PRDM7_bosTau Bos taurus (cattle) genome Laur pseu -- GAS8+ missing C2H2
0 MSPNRSPEESIEGDTGRTEWKPT 0 
0 AKDAFKDISIYFCKEEWAQMG WEKIRYRNVKRNYEALITL 1
2  1
2  0
0  1
2  1
2  0
0  2
1  1
2 

>PRDM7_turTru Tursiops truncatus (dolphin) ABRN01441536 Laur gene 9 gas8+ no useful synteny
0 MSTDRWPEDSTEGDAGRTAWKPT 0 
0 VKDAFKDISIYFSKEEWTEMGEWEKIRYRNVKKNYEALVTL 1
2 GLRAPRPAFMCHRRQAIKAQVGDPEDSDEEWTPRQQ 1
2 VKPSWVAFRVEHSKHQK 0
0 AVPPVPLSNESSLKKLPGAAQLQKASGPAQAQSPAPPPGAASTSAWHTRQKL 1
2 ERRAKQIEVKMYSLRERKGHVYQEVSEPQDDDYL 1
2 yCEKCQNFFIDSCAAHGAPTFVKDSAVEKGHPNRSALTLPPGLSIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDTSWANWMR 2
1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVVRPGCELLVWYGDEYSQELGIPWGSGWKSQLVaGR 1
2 DPKPKIQPCGSCSLAFSSQKILSQHVECSHPSQVLPRTSARDRVQPEDPCPGYQNRQQQYSDPHSWSNKPECQEVKERSKPLLKRIRLGRISRAFSSSPKGQMGSSRAHERMMEAGPSTGQKVNPEATGKLLIGAGVSRVVK
VKYRSSGQGSKDRSSLTKHQRTHTGEKP
YVCGECGRDFSLKSDLIRHQRTHTGEKP
YVCGECGRDFSLKSGLISHQRTHTGEKP
YVCGECGRDFSQKSGLIRHQRTHTGEKP
YVCGECGRDFSLKSGLISHQRTHTGEKP
YVCGECGRDFSQKSGLIRHQRTHTGEKP
YVCGECGRDFSLKSGLITHQRTHTGEKP
YVCGECGRDFSQKSNLITHQRTHTGEKP
YVCGECGRDFSRKSSYI

>PRDM7_susScr Sus scrofa (pig) FP476134 Laur gene 9 GAS8+ unordered HTGS not wgs misassembly or inversion; not in genome browser
0 MRPDRRPEESPDPAAGSTERKAA 0 
0 ATDAFKDISIYFSKEEWTEMGEWEKIRYRNVKRNYEALTTI 1
2 GLRAPRPAFMCHRRQAIKPQVDDTEDSDEEWTPRQQ 1
2 VKPCRVAFRVEHNKHQK 0
0 SDSRVPLSNKSSLKELLTTAEVPETSGSEQAQEPVSPPGEASTSRRRSGQEL 1
2 ARRRKDTEARMYSLRERKGHAYQEVGEPQDDDYL 1
2 yCEKCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALTLPPGLRIRPSGIPEAGLGVWNEAHDLPLGLHFGPYEGQVTEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVVRPGCELLVWYGDEYGQELGIKWGSKWKKELTAGI 1
2 EPKPKIHPCPSCSLAFSSQRFLSQHVERSHPSQSLPRASARRGLQPEGPCPDNQQQQQPYPDPHSWDGTSESQDVKEGSKPFLERRRLRKTSRASSYAPEGQMRSSRVRERMTEEEPSAGQKVNPEDTGTLFTVAGES
GILRVENRGYGPDSGLTRHPRTHTGEKP
HVCSECGRGFSVKSHLIRHQRTHTGEKP
YVCRECGRGFSVKSHLIRHQRTHTGEKP
YVCRECGRGFSVKSSLITHQRTHTGEKP
YVCRECGRGFSVKSHLIRHQRTHTGEKP
YVCRECGRGFSEKSSLVTHQRTHTGEKP
FVCRECGRGFSVKSSLVTHQRTHTGEKP
YVCRECGRGFSVKSNFITHQRTHTGEKP
YVCRECGRGFSEKSSLVTHQRTHTGEKP
YVCREGE

>PRDM7_lamPac Lama pacos (llama) scaffolds traces
0  0 
0 TFKDISIYFSKEEWTEMGEWEKIRYRNVKRNYEALITI 1
2 GLRAPRPAFMCHRRKAIKPQVDDTEDSDEEWTPRQQ 1
2  0
0 GMPRGPLSNQSSLKELSGTAKPLKTSGSGQAQKPFPPLGEASTSGRHSRQKL 1
2 ELRRKESQVKMYSLRERKGHAYQEVSEPQDDDYL 1
2  0
0 ITKGRKCYEYVDGKDKYWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGEEYGQELGIKWGSKWKKSLWQGE 1
2 EPKIYLCPSCSLAFSSQKFLSQHVKHNHPSQILPRTAAGRHLEPEDPCPGNQNEQQQHSDQHSWNDKPEGQEAKERSKPFLKRIRLRRISGAFSYSHKGQMGNSRVHDRMIEEEPSTGQKVNPKDTGKLFTWAGVSRTVE
VNYGEYGQGCKDTSHLTTHQRTHTGEKP
YVCRECGRGFTRKSNLTIHQREHTTGEK

>PRDM7_canFam Canis familiaris (dog) genome Laur pseu 5 GAS8+ frameshift fixed to 6 ZNF; synteny MNS1 K1F1B intervening CDH3 oddity
0  0 
0 AFKDISKYFSKEEWAKLGYSDKITYVYMKRNYDTMTGL 1
2 GLRATLPAFMCPKKRAIKSK   RHDSDENENHRNQ 1
2 VKPSWVAFRMEQSKHQK 0
0 GIPRVPLSNKSSLKELSETAKLLNTSSPEQGQKSVSLPGKASTSGHHTRQKL 1
2 ELRRKDVEVKMYSLQERKGLAYQEVSEPQDDDYL 1
2 yCEK*QTFFIDSCTVHGPPTFVKDSEVDKGQPNHSALTLPPGLRIRTSSIPQAGLGVWN*ASDLPLGLHFGPYKGQITEDEEAANSGYSCL 0
0 ITKGRNCYEYVDGKDKSWANWMR 2
1 YMNCARDDEEQsLVAFQYHRQIFYRtPGHQASCELLVWYGDEYSQELGIKWGSKWKSELTAGK 1
2 EPNPEIHPCPSCSLaFSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
VKYRGCGRGFNDRSHLSRHQRTHTGENP
YVCRECGRGFIHRTNLIIHQRTHTGEKP
YVCRECGrGFIQRSNLSIHQRTHTGEKP
YVCRECGRGFTQRSTLNEHQRTHTEEKP
YVCRECGRSFTRRSTLITHQRTHTGEKP
YVCRECGRSFT

>PRDM7_canLup Canis lupus (gray_wolf) JF750654 first frameshift: 1 bp del ggcctt to gcctt; second frameshift 1 bp del ggaca to ggacGa
ePNPEIHPCPSCSLaFSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
VKYRGCGRGFNDRSHLSRHQRTHTGENP
YVCRECGRGFIHRTNLIIHQRTHTGEKP
YVCRECGrGFIQRSNLSIHQRTHTGEKP
YVCRECGRGFTQRSTLNEHQRTHTEEKP
YVCRECGRSFTRRSTLITHQRTHTGEKP
YVCRECGRSFTKRS

>PRDM7_canAur Canis aureus (golden_jackal) JF750659
EPNPEIHPCPSCSLaFSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
VKYRGCGRGFNDRSHLSRHQRTHTGENP
YVCRECGRGFIHRTNLIIHQRTHTGEKP
YVCRECGRGFTQRSTLNEHQRTHTEEKP
YVCRECGRSFTKRST

>PRDM7_lycPic Lycaon pictus (painted_dog) F750657 
EPNPEIHPCPSCSLaFSSQKFLSQHLEHNHPSQILPRISVREHFRPKDPCPGCQNQQQQQHSDPQRWSDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIMr
VKYRGCGRGFNDRSHLSRHQRTHTGENP
YVCRECGRGFTHRTNLIIHQRTHTGEKP
YVCRECGrGFIQRSNLSIHQRTHTGEKP
YVCRECGRGFTQRSTLNEHQRTHTEEKP
YVCRECGRSFTRRSTLITHQRTHTGEKP
YVCRECGRSFTKRST
 
>PRDM7_canMes Canis mesomelas (black-backed_jackal) JF750658
EPNPEIHPCPSCSLaFSSQKFLSQHLEHNHPSQILPQISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKSIRQRRISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
VKYRGCGRGFNDRSHLSRHQRTHTGENP
YVCRECGRDFTHRTNLIIHQRTHTGEKP
YVCRECGrGFIQRSNLSIHQRTHTGEKP
YVCRECGRGFTQRSTLNEHQRTHTEEKP
YVCRECGRSFtRRSTLITHQRTHTGEKP
YVCRECGRSFTKRST

>PRDM7_speVen Speothos venaticus (bush_dog) JF750656
EPNPEIHPCPSCSLaFSSQKFLSQHLEHNHPSQILP*ISVREHFRPKDPCPGCQNQQQQQHSDPQRWNDRAKGQEGKERFKPLPKRIRQRRISRAFSTPCKGQTTCEGIVKEEPSASSQKLNPEDTGKLFKGVGMTRIIR
VKYRGCGRGFNDRSHLSRHQRTHTGENP
YVCRECgRGFTHRTNLIIHQTTHTGEKP
YVCRECGrGFIQRSNLSIHQRTHTGEKP
YVCRECGRSFT*RSTFSThQRTH

>PRDM7_vulVul Vulpes vulpes (red_fox) JF750655 more distal frameshif
EPNPEIYPCPSCSLSFSSQKFLSQHLEHNHPSQILPRISIREHFQPKDPCPGCQNQQQQQHSDPQCWNDRAKGQEGKERFKPLPkSIRQRKISRAFSTPCKGQTTCEGIVKEEPSAGSQKLNPEDTGKLFKGVGMTRIIR
VKYRGCGRGFNDRSHLSRHQRTHMGENP
YVCRECGRGFTHRTNLIIHQRTHTGEKP
YVSWECGRSFTRRSNLITHQRTHTGEKP
YVCRECGRGFTKRSTLSTHQRTHL

>PRDM7_neoVis Neovison vison (mink) JF288183 anomalous array, contig terminates
0  0 
0  1
2  1
2 VRPSWVAFRMEQSKHQK 0
0 GIPRAPLSNESSLKELSETAKLLNTSGSEQGQKPVSHPGEASTSGHHSLRKL 1
2 ELRRKDVEVKMYSLRERKSLAYQEVSEPQDDDYL 1
2 YCEKCQNFFIDSCAVHGPPTFVKDSAVDKGQPNRSDLTLPPGLRIRPSGIPQAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL
0 ITKGRNCYEYVDGKDNSWANWMR 2
1  1
2 EPKPEIHPCPSCTLAFSSQKFLSQHLKCNHPSQILPRISAGEHFQPEDPCPGEQNHQQQQHSDPQSWNDKAKGQEVKESFKPLLESIRQRRNSRAFPTPCKGQTGYEGMVEEESSTGQKLNPEETEKLFMGVGMSRMIR
VKYRGSGQGFDDRSHLSRHQRTHKEEKP
SVGKELRREFIHKSVLVTHQRTHTEALP

>PRDM7_musPut Mustela putorius (ferret) AEYP01035076 AEYP01035077 AEYP01035078:GAS8- HUIH+ CAD1L+ distal PRDM7+
0 MRPRTASESEQGLPGGPSTGSVSGPPEETPERDSGRTGRKPP 0 
0 AQDAFKDISVYFSKEEWTEMGDWEKIRYRNVKRNYEALITI 1
2 GLRAPRPAFMCHRRQATIPRVDDTEDSDEEWTPRQQ 1
2 VRPSWVAFKMEQSKHQK 0
0 GVPRAPLSNESSLKELSETAKLLNTSGSEHDQKPVSHPGEASTSGHHSLRKL 1
2 ELRRKDVEVKMYSLRERKSLAYQEVSEPQDDDYL 1
2 YCEKCQNFFIDSCAVHGPPTFVKDSAVDKGQPNRSALTLPPGLRIRPSGIPQAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0 
0 ITKGRNCYEYVDGKDNSWANWMR 2
1 YVNCARDDEEQNLVAFQYRRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKSELTAEK 1
2 EPKPEIHPCPSCTLAFSSQKFLSQHLERNHPSQILPRISAGEHFQPEDPCPGEQNHQQQQHSDPQNWNDKAKGQDVKESFKPLLESIRQRKNSRAFPIPCEGQTGYEGIVEEEPSTGQKLNPEETGKLFMGVGMSRIIR
VKYRGSGQGFDDRSHLSRHQRTHKEEKP
SVGKEPRREFIHKSVLVTHQRTHTGEKP
YVCRECGRGFTQRSHLIRHQRthtgEKP
YVCRECGRGFTQRSNLITHHRTHTGEKP
YVCRECGRGFTRRSNLIRHHRTHTGEKP
YVCRECGRGFTWRSHLITHQRTHTGEKP
YVCRECGRGFTWRSHLIRHQRTHTGEKP
YVCRECGRGFTRRSNLITHQRTHTEALP INCISMTRGKM*

>PRDM7_ailMel Ailuropoda melanoleuca (panda) GL193502 Laur gene 6 GAS8+ first three exons from different contig ACTA01106867
0 MGPLPASESEQSLPGGPSTMSLNTSPEETPERDSGRTGWKPT 0 
0 AKDAFKDISIYFSKEEWTEMGDWEKIRYRNVKRNYEALITI 1
2 GLRAPRPAFMCHRRQAIKPQVDDTEDSDEEWTPRRQ 1
2 VRPSWVAFRMEQSKHQR 0
0 GIPRAPLRNESSLKELSETAKLLNTSGSELGQKPVSLPGEASTSGHDSLQKL 1
2 GFRRKDVEVKMYSLRERKSLAYQEVSEPQDDDYL 1
2 yCEKCQNFFIDSCAVHGPPTFVKDSAVDKGQPNRSALTLPPGLRIRPSGIPQAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDNSWANWMR 2
1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKSELAAGK 1
2 EPKPEIHPCPSCSLAFSSQKFLSQHLEHNHPSQILSRKSASEHFQQEDPCPGHQNQQQQQHSDPHRWNDKAKGQEVKERFKPLLKSIRQRRISRAFSSPCKGQTRSSTVCEGMVEEEPSAGQKLNPEETGKLFMGVGMSGIIR
VKYRGCGRDFSDRSHQSGHQRRH QKKP
SVCKKVKREFSHKSVLITHQRTHTGEKP
YVCRECGRGFTQRSNLIRHQRTHTGEKP
YVCRECGRGFTQRSNLIRHQRTHTGEKP
YVCRECGRGFTQRSSLIRHQRTHTGEKP
YVCRECGRGFTLRPNLIGHQRTHTEALP INYISTTKEQM

>PRDM7_felCat Felis catus (cat) genome Laur gene 11 GAS8+ two contigs GAS8 implied by downstream CAD1
0 MEPSPASESARGQPGGPGTTSPLRFPEQSAERGSRKARWKPT 0 
0 AKDAFKDISIYFSKEEWTEMGDWEKIRYRNVKRNYEALMTI 1
2 gLRAPRPAFMCHRRQAIKPQVDVTEDSDEEWTPRQQ 1
2 VKPSWVASRVDQNKQHK 0
0 GTHRVPLSKESSLKDFSETAKLLNTSGSEQGQKPVSLPGEASTSGHHSRRKL 1
2 ELRRKEIGVKMYSLRERKGFAYQEVSEPQDDDYL 1
2 yCEKCQNFFIDSCAVHGPPTFVKDNAVGKGHPNRSALTLPPGLRIRPSSIPEAGLGVWNEASDLPLGTHFGPYEGQITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDNSWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKSELSTGK 1
2 EPQPDIHRCPSCSLAFSSQKFLSQHVECKHSSQSLPQISARKHFQPENPCPGDQNQQQQQHSDPHSWNDKAKCQEVKERSRPLLKSIKQRRISRAFSTPCKGQMGSSRVCEGMVEEGPSMGQNLNSEDTGKLFMGVGMSRIVR
IKNRGCEQGFNDRSHFSRHQRTHKEEKP
SVCNEFRRDFSHKSALITHQRTHTGEKP
YVCRECGRGFTQRSNLFRHQRTHTGEKP
YVCRECGRGFTQRSDLFTHQRTHTGEKP
YVCRECGRGFTRRSNLFTHQRTHTGEKP
YVCRECGRGFTRRSHLFTHQRTHTGEKP
YVCRECGRGFTQRSNLFTHQRTHTGEKP
YVCRECGRGFTQRSDLFRHQRTHTGEKP
YVCRECGRGFTQRSHLFTHQRTHTGEKP
YVCRECGRGFTQRSNLFRHQRTHTGEKP
YVCRECGRGFTWRSNLFTHQRTHTGEKP
YVCRKDGQGFTNKLHLSYQRT
NVATTHSIPQL

>PRDM7_equCab Equus caballus (horse) genome Laur gene 4 GAS8+ missing front exons, pre-terminal stop GAS8+- flanked right by EMR2-
0  0 
0  1
2  1
2 VKPSWVAFRVEQSKQQK 0
0 RMRTAPLSNESRLKELSGTAKLLKTSSSEQVQKPVSPLGEASSSEQHSRRKL 1
2 ELRRKEVGVKMYSLRERKGHAYQEVSEPQDDDYL 1
2 yCENCQNFFIDSCAAHGPPIFVKDSAVDKGHPNRSALTLPLGLRIRPSGIPEAGLGVWNEASDLPLGLHFGPYEGQITEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDISWANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVVRPGCELLVWYGDEYGQELGIKWGSKWKRELTAGR 1
2 EPKLEIHPCPSCSLAFSSQKFLSQHVERNHPSQILPGTSARNHLQPEDPSPGDQNQQQQHSDPHSWKDKAHSQEVKERSKPLLKKIRQRRIPRAFSYPPKGQMENFRMRERIMEEKPSIGRKVNPEDTGKLFLEMRMSRNVR
VQYGGCGRGFNDRASLIKHQRTHTGEKP
YVCRECEQGFTQKSSLIAHQRTHTGEKP
YVCRECEQGFSEKSHLIRHQRTHTGEKP
YVCRECEQGFSVKSNLIRHQRTHTGEKL
*FCREGK

>PRDM7_pteVam Pteropus vampyrus (bat) ABRP01250178 Laur gene 7 GAS8+ 4 distal exons of GAS8+-; unique F sweep in zinc finger; 15 ZNF dotplot no CAD1
0 MRPDRSPEEAPEGDTRRTGCKPK 0 
0 AKDAFKDISIYFSKEEWTEMGDWEKIRYRNVKRNYDALQAI 1
2 GLRAPRPAFMCRRRQAIKPQVDDSEDSDEEWTPRQQ 1
2  0
0 AMPRVPLSNEPSLKELSVIANLLKASGSEQDQKPVFPPGKASASRQHSRQKL 1
2 GLRRKGVEVKMYSLRERTGRVYQEVSEPQDDDYL 1
2 yCEKCQNFFIDSCAAHGSPIFVKDSEVDIRHPNRSALTLPPGLRIGPSGIPEAGLGVWNEASDLPLGLLFGPYEGQVTEDEEAANSGYSWL 0
0 QGKGRNCYEYVDGKDESRANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKRELTAGR 1
2 EPKPAIHPCPSCSLAFSGQKFLSQHMKRSHPSQSLPGISARKHLQSKEPHPEDQSQQQHNDPRSWNDKAEGQEVKERSKPLLERNRQRKIFRAFSKPPKGQMGSPREYERMMEAEPSTSQKVNPENTGKSSVGVGASRIVI
VKYGGCEHGFDDGSHLIMHQRTHSGEKP
FVCRECERGFSKKSNLITHQRTHSGEKP
FVCRECERGFTRKSSLITHQRTHSGEKP
FVCRECERGFTQKSHLITHQRTHSGEKP
FVCRECERGFSEKSSLIKHQRTHSGEKP
FVCRECERGFTRKSSLITHQRTHSGEKP
FVCRECERGFTQKSSLIKHQRTHSGEKP
FVCRECERGFTQKSSLIKHQRTHSGEKP
FVCRECERGFTQKSSLIKHQRTHSGEKP
FVCRECERGFTQKSSLITHQRTHSGEKP
FVCRECERGFTQKSHLITHQRTHSGEKP
FVCRECERGFSKKSNLITHQRTHSGEKP
FVCRECERGFTRKSLLITHQRTHSGEKP
FVFRECERGFTQKSSLITHQRTHSGEKP
FVCRECERGFTRKSYLITHQRTHSGEKP
FVGRECE

>PRDM9_pteVam Pteropus vampyrus (bat) ABRP01232219 Laur pseu 15 noDet frameshift ttt to tttt fixed in last zinc finger; no blastx synteny
0  0 
0  1
2  1
2 vQPSWVAFGVEQSKHQK 0
0 AMPRVPLSNESSLKELSVIANPLKASGSEQNQQPVFPPGKASASRQHSRRKL 1
2 eLRRKGVEVKMDSLRERMGRVYQEVSEPQDDDYL 1
2 yCEKCQNFFIDSCAAHGSPIFVKDSEVDIGHPNHSALTLPPGLRIGPSGIPEAGLGVWNEASNLPLGLLFGPYEGQVTEDEEAANSKYSwM 0
0 spKGETAEYV DGKDESRANWMR 2
1 YVNCARDDEDQNLVAFQFRRQIFYRTCRVIMPGCELLVWYGDEYGQGLGIKWGSKWKREFTAGR 1
2 EPKPEIHPCPSCSLAFSSRKFLSQHMKRSHPSQSLPGISARKHLQSKEPHPEDQSQQQQQQQHTDPCSWNDKAEGQEVKERSKPMLERNGQRKISRAFSKPPKGQMGSPRECERMMEAEPSTSQKVNPENTGKSSVGVGASRIVR
VKYGGCGHGFDDGSHFIRHQRTHSGEKP
FVCRECERGFNEKSSLTMHQRTHSGEKP
FVCREC.EGFSVKSSLIRHQRTYSGEKP
FVCRECEQGFNEKSSLTMHQRTHSGEKP
FFCRECEGFSVK.SSLIRHQRTHSGQKP
FVCRECKRGFTQKSHLITHQRTHSGEKP
FCRECER.GFTQKSHLIKHQRTHSGEKP
FVCRECA

>PRDM7_myoLuc Myotis lucifugus (bat) AAPE02062260 Laur gene 6 gas8+ TGA stop codon; CpG hotspot for R CGA; SXXRD implies missing KRAB no CAD1
0  0 
0  1
2  1
2  0
0 AKSRAPLSNESSLKELSGTANLLTTSGSEQTQKTVPPPGEASTSGQHPRSKL 1
2 dLRRKEIEVKMYSLRERKCRVYQEISEPQDDDYL 1
2 YCEKCQNFFIDSCAVHGPPTFVKDSAVDKGHANRSALTLPPGLRIGPSGIPEAGLGVWNEECDLPVGLHYGPYEGQITEDEAIANSGYSWL 0
0 ITKGRNCYEYVDGKDTSQANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRVVRKGCELLVWYGEEYGQELGIKWGSKWKTEPVAGR 1
2 EPKPEIHPCPSCSVAFSSQTFLSQHGKRNHPSEILPGAPAGNHLQSEEPGPERQNQQQQQQTGPHGWNDKAEGQEVKGRSKPLLKRIRQRGTSRASFKPPNRHMGSSSERERIREEEPSTGQNVNHKNTGKLFVGVKRSKSVT
IKHGGCGQGFNDGSHIDTHQRTHSGEKP
YICRECGGFTHKSDL IRHQRTHSQENP
YVCRECGRGFRDRSTLITHQRTHSGEKP
YVCRECGRGLTEKSTLITHQRTHSGEKP
YVCRECGRGFTRKSTLITHQRTHSGEKP 
YVCRECGRGSRVKSNLIRHQRTHSGEKS GVCIEGE

>PRDM7_sorAra Sorex araneus (shrew) AALT01000095 Laur gene 8 noDet no useful synteny; upstream spectrin, IgG; GAS8 contig has no sign of pseudogene
0 MSLNRPAEMNTQGKARKLMLKPM 0 
0 SKDAFKDISMYFSKEEWAEMGDWEKIRHRNVKRNYEELISI 1
2 GLRAARPAFMSHRRQAIKTQLDDTEESDEEWTPNQQ 1
2 VKSLRVAFRAEQSKHQK 0
0 GRSRTPISNESSSKELSGTRTLLNTKCTKQAQKPLFPPGEASTSGHYSKPKL 1
2 ELRRKEPEVKMYSLRERKGRAYQEVSEPQDDDYL 1
2 YCENCQNFFINKCSAHGSPIFVKDNAVAKGHSNRSALTLPHGLRIGPSGIPEAGLGIWNEASDLPLGLHFGPYEGQITNDEEAANSGYSWL 0
0 ITKGRNCYEYVDGVDESLANWMR 2
1 YVNCARDYEEQNLVAFQYHRQIFYRTCRIIKPGCELLVWYGDEYGQELGIKWGSKWKSELTADK 1
2 EPKPEIYPCPCCSLAFSNQKFLSRHVEHSHPSLILPGTSARTHPKSVNFCPGDQNQWQQHSDACNDKPDEPWNDKLENHKSKGRSKPLPKRMGQKRISTAFPNLRSSKMGSSNKHETIMDKINTGQKENPKDTYRVFAGIGMPRIIR
DKHVTLRRSFTNRSSPLTHQRTHTGEKP
YVCRECGRGFSQKSHLLTHQRTHTGEKP
YVCRECGRGFTDRSSLLTHQRTHTGEKP
YVCRECGRGFSLKSSLLRHQRTHTGEKP
YVCRECGRGFSLKSSLLTHQRTHTGEKP
YVCRECGRGFTDRSSLLTHQRTHTGEKP
YVCRECGRGFSLKSSLLTHQRTHTGEKP
YVCRECGRGFSRKSSLLRHQRTHTGEKP
YVCES

>PRDM7_echEur Echinops europaeus (hedgehog) ti|970966337
epkpeihpcPSCSLAFSAQKFLNQHVKHSHPSQILPGTSTRKQPQVENPCLSNQNQQKQHSNFQNQHDSTESQEAIEKFKPLLKMIKQKTISNGFSKLPKEQIGSSREHEKTKEEESNSCQKMNPEDTSELLVGLGMSRIV
DKYEGSGKNYYDMSHIITHQKTHTGEKP
HVCKECGRGFSEKSSLIAHQRTHTGEKP
HVCRECGRGFSEKSSLIAHQRAHTGEKP
HVCRECGRGFSEKSGLITHQSTHTGEKP
HVCRECGrGFSAKSSLIAHKRTHTGEKA PCLQGSVGELQ

>PRDM9a_loxAfr Loxodonta africana (elephant) genome Afro gene 12 noDet chr 153 novel synteny THEG+ MIER2+ PPAP2C PRDM9- ZNF699-
0 MSPARAAKKNPRGDVGSAGRTPT 0 
0 aKDTFRDISIYFSKEEWAEMGEWEKFRYRNVKRNYEALVTI 1
2 GLRAPRPAFMCHRRQAIKAQVDNTEDSDEEWTPRQQ 1
2 VKPPSVASRAEQSRHQK 0
0 GTPKALLGNESSLKEVSGTAILLNTTGSEQAQKPVSSPGEASTSDQPSRWKL 1
2 EPRRNEVEVKMYNLRERKGLEYQEVSEPQDDDYL 1
2 yCEKCQNFFIDTCAVHGAPMFVKDSPVDRGHPNHSALTLPPGLRIGPSSIPKAGLGVWNEASELPLGLHFGPYEGQVTEDKEAANSGYSWL 0
0 ITKGKNCYEYVDGKDESWANWMR 2
1 YVNCARDEEEQNLVAFQYHRQIFYRTCRTIQPDCELLVWYGDEYGQELGIKWGSRWKKELTSGR 1
2 EPKPEIHPCPSCRLAFSSQKFLSQHMKHSHPSPPFPGTPERKYLQPEDPRPGGRRQQRSEQHMWSDKAEDPEAGDGSRLVFERTRRGCISKACSSLPKGQIGSSREGNRMMETKPSPGQKANPEDAEKLFLGVGTSRIAK
VRCGECGQGFSQKSVLIRHQKTHSGEKP
YVCGECGRGFSVKSVLIKHQRTHSGEKP
YVCGECGRGFSVKSVLITHQRTHSGEKP
YVCGECGRGFSVKSVLITHQRTHSGEKP
YVCGECGRGFSQKSDLIKHQRTHSGEKP
YSCRECGRGFSRKSVLITHQRTHSGEKP
YVCGECGRGFSQKSNLITHQRTHSGEKP
YVCGECGRGFSRKSVLITHQRTHSGEKP
YVCGECGRGFSQKSNLITHQRTHSGEKP
YVCGECGRGFSQKSDLITHQRTHSGEKP
YVCRECGRGFSRKSNLITHQRTHSGEKP
YVCRECRRGFSVKSALI            GHGRRKCSKSAEPLHFPRVSRDQK

>PRDM9b_loxAfr Loxodonta africana (elephant) genome Afro pseu 3 noDet approx seq after frameshift correction
0  0 
0  1
2  1
2  0
0 GTPKVLLSNESSLKEVSGTAILLSTMGSEQAQKPVSSPGEASTSDQPSRRKQ 1
2 EPRRKEVEVNMYSLRERKGLVYQEVGEPQDDDYL 1
2 yCEKCQNFFIHTCAVHGAPMFVKDSHVDRGHLNHSALTLPPGLRIGPSSIPEAGLRVR EVSEQLLGLHIGPYEGQVTEDkEAAHSGYSWL 0
0 ITKGRNCYKYVDGKDDPWANRMR 2
1 YVNCIQD KEQNLVAFQYHRQIFHWTCCTIRPGCELLVWYGDNYSQELGIKWGSR KKEL     1
2 EPKPEIHPCPSCPLAISSQKFLDQHTKHSHPSPPFPGTPERKHLQPEDPHPGGRRQQHSEQHLNDKAEDPETGDGSKPVFERARLVGGGAGGVSKVCSSLPKGQMGSSREGNRMMETEGQKVNPEDTEKLFLGVGISRLAK
VRCGEYGQGFSQKSVLIRHQRTYSGEEH
YVCGECGRGFSWKSQLTRHQRSHSWEKP
YVCRECGGFSVKSTLI             GTGEGNAATIHLHLPS

>PRDM7_loxAfr Loxodonta africana (elephant) genome Afro pseu 5 GAS8+ scaffold_57 several frameshifts; ZNF540 opposite strand upstream of N-terminus
0  0 
0  1
2 GLRASHPAFTCHCMQAIKAQMDDTEDSNEEQTPRQq 1
2 VRPSWVAFRMEQSKHQR 0
0 GMLRVPRSNESSLKNLSGTSIMLSRAGSEQAQKLVLPPGKASTSDEHSRQKP 1
2 EHRRKGVEVKMYSF ERKGLVYQEIS PQDDDYL 1
2 YCEKCQNFFIDTCESHGVPTFVKNSTTDSGHPNHLALTPSSGLRTRPSSIPKAWLRLWNKAFELLLGLPFSPCEGQVIEDEAVDNSGYSWL 0
0  2
1 YVNGTQDEKEQNLVFFQYHRQIFYQTCYAVWPGCQLLVWYRDECGQELGIKWDNRGKKEFe    1
2 EPKPEAHPCPSCPLAFSSEKFLSQHMKHNHPSQSSPETPERKHLQPEDPHPGHQNQQQQQHSDPHRWNDKAEGQQTGDRSKPMFENIRQEVTSRAFSSLPKGQMVCSREGNRMMETEPSPGLKVNPEVTGKLFLGVESSRIAK
VKYRGCGRDFSDRSHQSGHQRRHQ
KKP
SVCKKVKREFSHKSVLITHQRTHSGEKS
YVCKESGRGFSAKSNLIRPRRTHTGEKP
YVCGERGG.FSVSGLII.HQRAHSPEKP
YVCREGRRGFGDKSSFIKHQRATLGEKS
YVCKESGRGFS                  AKSNLIRPRRKKCRHDTTPHPQL

>PRDM9_triMan Trichechus manatus (manatee) AHIN01064530 synteny: none (12740 bp) contig terminates prior to repeat
0 MSPARATEESPGGDARRTPT 0 
0 AKDAFRDISIYFSKEEWAEMGEWEKFRYRNVKRNYEALVAI 1
2 GLRAPRPAFMCHRRQAIKAQVDDTEDSDEEWTPRQQ 1
2 VKPPWVVSRVEQSKHQK 0
0 GTPRAPLNNESSLKEVSGTEILLSTAGSEQAQKLVSSPGEASTSDQHSRQKL 1
2 EPRRKEVEVKMYSLRERKGLAYQEVAEPQDDDYL 1
2 yCEKCQNFFIDACAVHGAPTFVKDSPADRGHPNRSALTLPPGLGIGPSGIPKAGLGVWNEASELPLGVHFGPYEGQVTEDEEAANSGYSWL 0
0 ITKGRNCYEYVDGKDESWANWMR 2
1 YVNCARNEEEQNLVAFQYHRQIFYRTCSTIQPGCELLVWYGDEYGQELGIKWGSRWKKELTSGR 1
2 EPKPEIHPCPSCPLAFSSQKFLSQHVKHRHPSQPFSGTPARKHLQPEDPRPGDQRQQHSERTQNDKAEDRETGDGSKRVFERTREGETSKVDSSLPKGQIGSSREGNRMMETEPSPGQKVNPEDTEKLLLGVGISRIVK
VRHGECGQGFSQKSVLITHQRTHSGEKP
YVCRECGRGFS

>PRDM7_triMan Trichechus manatus (manatee) pseudogene AHIN01061278 internal stop and frameshift
0  0 
0 AKDAFRDISIYFSKEGWEEMGEWEKFRYRNMKRN^VQRNYKALVTI 1
2 GLKVPHPAFMCH*RQSIKSQTDDTEDSHEEWASRQQ 1
2  0
0 GILRASLSNKSSLKELSGT-IMLSRAGPEQAQKSVLPPGEASTSDKHSRQKL 1
2 EPRRKEVEVKTYNL*ERKDLVYQEVS*PQDGDYL 1
2 yCEKCQNF-TDSCAAHGDPTFVKDSAMDSGHPHHS------GLGIGPSSIPKARLEVWNKA     GLHFSPYEGQVTEEEEAANSSYSWV 0
0  2
1 YVNYTQDKE*QNLVAFQYHRQIFYRTCRAIWPGCELLVWYGDEYGQELDIKWNSR-QKEFTAGR 1

>PRDM7_echTel Echinops telfairi (tenrec) genome Afro pseu 5 noDet 2 frameshifts plus stop codon
0  0 
0  1
2 GLRAPRPAFMCHHRPAAKGQVEDSEDSDEEWTPRQR 1
2  0
0 GMPGVSLRNESNLKVLSGTAILLTAAEPEQPH PGSPPGEATTSHEHLRQKV 1
2 epELRRRAVMMNSLRERKNLMYQEVSTPCDDNCL 1
2 YGERCHNFFIDTHIAHGATTFVKDS    PMDRSNCSILPPGLRIGPSGIPEAGLGVWNEASELPLGLHFVPYEGQVTKDEAATNSGYSWM 0
0 ITKGRNCYEYVDGKDKSWANwMr 2
1  1
2 EPKPEVNPCPSCPLALSSQQLKHSHPFQSLPGTPAEKHLQAEDFHPRGQKLHHFEHHIRNERAEGLETGDGSKPMLERTRLGKMSKTTYNSPKGQTRSSGETNRIREADLNPGQGVNAEDTRNLFLGIGISRIAK
VRCRECGHGFSVKSSLITHQRIHTGEKP
YVCSECGQGFSQKSVLIRHQRIHTGEKP
YICRECDRGFSRKSHLIKHQRTHSGEKP
YVCRECGQGFSQKSVLITHHRTHSGEKP
YVCRECGRGFSQKSDLIKHERTHS

>PRDM7a_proCap Procavia capensis (hyrax) ABRQ01227339 Afro pseu 17 noDet frameshift and two stop codons in exon 10 
0  0 
0 AKDAFRDISIYFSKEEWAEMGEWEKSRYRNVKRNYEALVAI 1
2 GLRAPRPAFMCHRRQAIKAQVDNTEDSDEEWTPRQQ 1
2 AKPRSVASREELRKPQK 0
0 GTPKALLGNESSLKEVSGTAILLNTTGSEQAQKPVSSPGEASTSDQPSRWKL 1
2 EPRRKEAEVKRYNLREGTNPAYQEVGDTQDDDYL 1
2 yCEKYQKFCTDVCPAHGALAFLKDLSVERGHPKHSALTLPPGLRIGASGIPEAGLGVWSEASELPPGLHFGPCERQVTKDNEAANRGYLWP 0
0 ITKGRSCSLYMDRKDESRANWMR 2
1 YVRHAGDKEEQNLVAFQYHRQIFYRTCRPVQPGCELLVWPGAEDGQELGLQRGSRWKKELASQT 1
2 EARPEIHPCPSCPLAFSTPKFLSHHVKHSHPCQPFPGTLARRPLQPEDPHPGDRRQQHSEQPNWNDKAEGPEIGHVSRPVFEKTRQEGFSEARSSLPKGQMGRSREAERTTETQNSPGQKVNPEDTEILFLRGGISEIAK
VKCGECGQGFSRKSHLIRHQRTHSGMKP
YVCRECRRGFGVKSLLTRHQRTCSGMKP
YVCRECGQGFRWKSHLIRHQRTHSGEKP
FVCSECGRGFSVRSHLFTHQRTHSGEKP
YVCKECGRGFSVKSYLTTHQRTHTGEKP
YVCKECGRGFSWKSHLITHQRTHSGEKP
YVCRQCGRGFSVQSHLIIHQRTHSGDKP
YICRECGRDFTEKSSLIRHRRTHSGEKP
YVCRDCG*GFTRKSLLITHQRTHSGEKP
YVYRECGRGFSCKSYLISHQKTHLGEKP
YVCSDCGRGFSVKSQLVSHKRTHSGEKP
FVCREC*RGFSVKSSLISHQRTHSGEKP
FVCRECGRGFSVKSSLIKHQRTHSGEKP
YVCKECGRGFSQKSSLITHQRTHSGEKP
YVCRECGRGFGLKSYLITHQRTHTGEKP
YICRECG*GFSVKSSLITDQRTHTGEKP
YVCRECGRAFSKKSSLISHHRTHPAEAV 
YVHRECG

>PRDM7b_proCap Procavia capensis (hyrax) ABRQ01392668 Afro pseu 13 noDet CpG stop in ZNF1, 4aa insert exon 4, frameshift exon 5 c to cc, 4aa del exon 9 etc
0  0 
0 AKEYFRDISMFFS*ERWVEMSESEKFCYRNMKRNCETTGAG 1
2 GIRVFHPAFMIHPRKTIKAQMDDSEDSDEDWTARQQ 1
2 AKPPSVASREELRKPQK 0
0 GPSRAPLRIKSSLKRVSEPAIVWSTADSEQAQERVQKPVLSRREASASDQPLRRKV 1
2 EPRRHEAEDKRYSLRGGTGPACQEVGEPQDDDYL 1
2 yCEECRNFFIDTCVAHGTPVFIKDISVERGHPNRLALTLPTGLRIGPSSIPDAGLGVWNEASELPPGLHFGPCEGQVTEDEEAANSGYSWL 0
0 VTKGRSCFEYVDGKNEALANWMR 2
1 YVRRARDTEERNLVAFQYHRQIFYRTCCTVRPGCELLVWRGAEDSQALGSRRTMELTSQK 1
2 EARPEIHPCPSCPLAFSTQKFLSYHVNHSHSSEPFPGTHARRHLPREDPRPGYERDQRSEQHNWNDSTGGPERDVSRP VIERTWEGEISEACSSLPRGHMGRSREGERMAETQSSPGLKVTLAK
VRWDEYGQGFGPKSHHITQQTKHSGKKP
CVCKECG*GFRVKSLLKSHQMTHSGEKP
YVCRECGRGFSVKSTLITHQRTHSGEKP
YVCRECGRGFSVKSFLISHQRTHSGEKP
YVCRECGRGFSWKSGLITHQRTHTGEKR
YVCRECGHGFNRPSRLIRHQRTHSGEQP
YVCRECGHGFNRRSQLIRHQRTHTGEQP
YVCRECGQGFSGKSGLNRHQRTHSGEKP
YVYKECGRGFSVKSTLIKHQRGHSGEKP
YVCKECGRGFSRNSGLITHQRTHSGEQP
YVCRECGRGFNQKSGVISHQRIHSGEKP
FVCGECGRRFSWQSNLITHQRTHSGEKP
FVCRECGRGFSAKTSLINHQRIH*GKKP YVCRDGG

>PRDM7_dasNov Dasypus novemcinctus (armadillo) AAGV020462211 9 xena pseu TRAPP
0  0
0 AQDAFRDISTYFSREEWAEMGRWEKLRYRNVKRNYEALLAI 1
2 GLRAPRPAFMCHRKQSIKPQVDDAEDSDEEWTPRQQ 1
2  0
0  1
2 EPRRKGIDVKMYSLRERKGLAYEEVSEPQDDDYL 1
2 yCEKCQNFFIDSCTVHGPPIFVKDSAVDKGHPNRSALTLPSGLRIGPSGIPEAGLGIWNEASDLPLGLHFGPYEGQVTEDEEAANSGYSWL 0
0 ITKGRNYYEYEDGKDKSWANWMR 2
1 YVNCAWDDKEQNLVAFQYHRQIFYRTCRTIRPGCELLVWYGDEYGQELGIKWGSKWKKEFMTGT 1
2 ELKPEIHPCPSCPLAFSSEKFLSQHVRRHHPSQSFPAACAREHFQPQNPRPRGEEQQQHSDQCGWKDKAEGQETENRPKPLFERIKPMGSPRAFYNPPRGQMRSSREGKRMMEIQPSQDQKMNSE RGQLFLGVGIFKTEV
IKFGENRQDFSDKSDHTSHQRTHTGEKP
YVCRECGRGFSNNSHLTRHQRTHTGVKP
YVCRECGQGFSVKPALTKHQRTHTVEKP
yVCSECG GFSVKSTLITHQRTHTGEKP
CVCRECGRGFNNKPDLTKHQRTHTGEKS
YVCRECG GFSVKSTLIIHQRTHTGEKP
YVCRECGRGFSEKSNLTVHQRTHTGEKP
YVCRECGRGFSEKSNLTVHQRTHTGEKP
YVCRECGRSFSVKSTLITHQRTHTVEKP
YVCMKSEVVVSNKSHLNSHRRMKCGHRT PPPPQL

>PRDM7_choHof Choloepus hoffmanni (sloth) ABVD01893961 2 xena gene noDet 0  0
0  1
2  1
2  0
0  1
2  1
2 ycekcQNFFFENCAAHGPPTLLKDSAVGQGRPKHSALVLPPGLRLGPSGIPEAGLGVWNEASDLPLGLHFGPYEGQVTEDEEATNSGYSWL 0
0 ITKGRNCYEYVDGKDKSCANWMR 2
1 YVNCARDDEEQNLVAFQYHRQIFYRTCRAIRPGCELLVWYGDEYGQELGIKWGSKWKKELTAEK 1
2 GLKPEIHPCPSCPLAFSTEKFLSQHVQRNHPSQIFPVTYARKHLQPQDPRPGDQQQPQPHSDQCHCSDKAEDQETEKRSKPLFESTKQMGISRAYSSPPEGQMRSSREDKRTMEIEPSQDQKMNPEETRLFVGVGILKTAR
IKCGEYGQGFSVKPNLTTHQRTHTEEKP
YVCRECGRGFGQKPNLSRHQRTHTGEKP
YVCRECGRGFG

>PRDMx_monDom Monodelphis domestica (opossum) gene genome no GAS8 fragment KRAB SSXRD SET weak C2H2 domain
0 0  
0 GEDAFKDISTYFSKKQWVKLKEWEKVRLKNVKRNYEAMIKI 1 
2 GLSVPRPAFMCRGRQNKKVKVEESGDSDEEWIPKQL 1 
2 VKTLRFPSRAKQRTHPK 0  
0 1  
2 DCRRKDVEVHIYSLRERKYQVYQEMWDPQDDDYL 1 
2 yCEECQIFFLDSCPLHGPPTFVQDSAMVKGHPYCSAITLPPGLRIGLSGIPGAGLGVWNEASTLPLGLHFGPYKGKMTEDDEAANSGYSWM 0 
0 ITKGRNCYEYVDGKEESCSNWMR 2  
1 YVNCARDEEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGSKWKRPLPELTGE 1 
2 GKPGISLCPSTLWASPLIPSSINTRCSKQPP*VFLDSGTGKL*AGRSTAGPATSNRFQLLSDKETSPKEHPSSLWGKTKQVDRREKFSLPQSQQVRGKESSSGEDLSRIQGKSTRQTTMAFQERNR
KECE*GFTHQTNLVTHRWTHSGERP  
YVCV*GFTQKLGFSPYTWTL
 
>PRDMx_macEug Macropus eugenii (wallaby) ABQO010244377 ABQO010410412 ABQO011136158 ABQO010410657 
0 0  
0 GEDTYKDISMYFSKKQWMELREWEKIRLKNVKQNYEAMIKI 1  
2 gFSAPRPTFMCHGKQNKEAKVEESGDFDEEWIRKQP 1 
2 0  
0 1  
2 ECRRKEAEVHIYNLRERKYQVYQEIWDPQDDDYL 1  
2 FCEECQTFFLETCAVHGPPKFVQDSVMVKGHPYCSAITLPPGLRIGLSGIPGAGLGIWNEASNLPLGLHFGPYEGQMTEDDEAANSGYSWM 0 
0 2  
1 YVNCARDEEEQNLVAFQYHRKIFYRTCQIIRPGCELLVWYGDEYGQELGIKWGSKWKRPPITLT 1 
2 espGIHVCPFCPLGSPLMHSQSTYAAQTSPQICLDSRTRNNYEPDQLLPPSSSCVSDKVEISQKQRPSSLCGKTKQVNLVEMLSLPQSPQVSKKSSSMDWDVSRIQGKSAKQTTQGFQKGDKKGFGS
YKCGEYKQGFTSKSVLNRHRQKHSGKKP
YVCEECGRGFTQVSNLTTHRQTHSGEKP
YVCEECGRGFARKLNLTTHRRTHSGEKP
YVCEECGRGFTQGSSLITHRRTHSGEKP
YVCEECGRGFAWKLNLTTHRRTHSGEKP
YVCKECGRGFTQGSSLITHRRTHSGEKP
YVCKECGRGFTQGSNLTTHRRTHSGEKP
YVCKECGRGFAWKSNLTTHRRTHSGEKP
YVCKECGRGFTQVSNLIAHRRTHSGEKF
YVYGQE                       FTWKSDLSTCR

>PRDMx_sarHar Sarcophilus harrisii (tasmanian_devil) AFEY01386448 distal frameshifts and stop codons, syntenic -PSMC4
0 0  
0 EEDSFKDISMYFSKKQWMELRDWEKVRFKNVKRNYEAMIKI 1  
2 GLTASRPTFMCRGKQNRRAKVEESGDSDEEWMPKQL 1 
2 VKASRFSSRLKQKTHLR 0  
0 1  
2 eCRKKDAAVHIYNLRERKYPIYQEIWDPQDDDYL 1  
2 FCEECQTFFLETCAVHGPPKFVQDGAMIKGYPYCSAITLPPGLRIGLSGIPNAGLGVWNEGSNLPMGLHFGPYEGKSTEDDEAANSGYSWM 0 
0 ITKGRNSYEYVDGKEESCSNWMR 2  
1 YVNCAREEEEQNLVAFQYQRQIFYRTCRVIRPGCELLVWYGDEYGQELGIKWGRKWKRPLTGIT 1 
2 GIHLCPSCPSDFSTHAFLSQQVPKQPSQGFLDSTTGSHGLGNLHPDQLLPPGYSCVSDKAETSRKEHPSTLWEKIKKVDLEEPASLPQRQHVREEESNLGEWDLSRIQGESVKLTSLALQEESQEGLGQ 
YKCGEGKQRYSSKPGLIRHRQRTHSGEKC
YVCEECKRGFARRSYLNIHRRRHSGQKP
HVCEECKRGFADKSTLIRHRWTHSKEKP
YICEECKQGFTQKSYLIKHRWKHLGEKP
YVCKECKQRFTQRSYLNTHRWRHRQRSL
vFCaECR*GFT*RS*LIIHRWTHSGERP
YVCEECKGGFTQRSYLNtHTDGNVGKEEP
YVCEECR 

>PRDMxa_ornAna Ornithorhynchus anatinus (platypus) gene genome chrX5 fragment X5 +- 20577549 no iMet possible in first exon phase 2
0 0  
0 1    
2 1  
2 0  
0 1  
2 RIGKKPQVRDFNLRKQKRKIYNENYRPEDDDYL 1 
2 yCEICQTFFLEKCVLHGPPVFVQDLPVEKWRPNRSTITLPPGMQIKVSGIPNAGLGVWNQATSLPRGLHFGPYMGIRTKNEKESHSGYSWM 0 
2 IVRGKNYEYLDGKDKAFSNWMR 2  
1 YVNCARSEREQNLVAIQYQGEIYYRTCRVIPPGQELLVWYGLEYGRHLGILPNNNNPEP 1 
2 ERAKARVRKSERIEKAMARVRKSEQIERAKARVRTSERIERAMATV RKSERIERAKVTVKKSEQIERAMGRVRKSERIERAKDMGRKKALGGLPRPCRGGLSDETQQRKGGGHEQLGQKPGPSEA RAGPAEGSATPRR
HCCDVCRKAFKRLSHLRQHKRIHTGEKP  
LVCKVCRRTFSDPSNLNRHSRIHTGLRP  
YVCKLCRKAFADPSNLKRHVFSHTGHKP  
FVCEKCGKGFNRCDNLKDHSAKHSEDNSTPKP 
 
>PRDMxb_ornAna Ornithorhynchus anatinus (platypus) gene genome chrX5 tandem fragment slight frameshift taa to ta YVN exon X5 +- 20605294 20611704 no iMet possible in first exon phase 2 gg as expected
0 0  
0 1  
2 1  
2 0  
0 1  
2 RSGKKPQVRDFNLRKQKRKMYTEESEPEDDDYL 1 
2 yCEDCQTFFLEKCSVHGPPVFVQDCEAKRCQQNRSEVTLPPGLLIKMSGIPNAGLGVWNQATSLPRGLYFGPFVGIRKNNVKDSLSGYSWA 0 
0 ILRGRNYEYLDGKNTSFSNWMR 2  
1 YVNCPRTKYEQNLVAIQYHREIYYRTTPCDSTRSRVAGVVWRRVRSYLGIFWKSETPKS 1 
2 ERPHSSGGSFAPSARSGGVKQRIWSKRRSAALQRTRERRNSTHDFPPKHEDTAARQDERQCPDRGRAKQRGVRKSEQIERAKAMGRKKALGGLSPPRRERLSDEAGQRKKSGHEQFWQKPGPSEAWAGPAEGSTIPRR
HCCDVCGKAFNRLSRLKQHKRVHTGEKP  
LVCKICKRAFSDPSNLNRHAKRHTGEKP  
FVCRVCGRSFNRSDNMNEHRWKHTSNNIIP NTGHMSATVVENASLCINRNYQIYKERATYL
>PRDMx_danRer Danio rerio (zebrafish) Q6P2A1 transcript BC064665 no KRAB SSXRD or exon 5 but knuckle SET early ZNf C2H2 array
0 MSLSP 1
2 DLPPSEEQNLEIQGSATNCYSVVIIEEQDDTFNDQPF 1
2 YCEMCQQHFIDQCETHGPPSFTCDSPAALGTPQRALLTLPQGLVIGRSSISHAGLGVFNQGQTVPLGMHFGPFDGEEISEEKALDSANSWV 0
0 ICRGNNQYSYIDAEKDTHSNWMK 2
1 FVVCSRSETEQNLVAFQQNGRILFRCCRPISPGQEFRVWYAEEYAQGLGAIWDKIWDNKCISQ 1
2 GSTEEQATQNCPCPFCHYSFPTLVYLHAHVKRTHPNEYAQFTQTHPLESEAHTPITEVEQCLVASDEALSTQTQPVTESPQEQISTQNGQPIHQTENSDEPDASDIYTAAGEISDEI
HACVDCGRSFLRSCHLKRHQRTIHSKEKP
YCCSQCKKCFSQATGLKRHQHTHQEQEKNIESPDRPSDI
YPCTKCTLSFVAKINLHQHLKRHHHGEYLRLVESGSLTAETEEDHT
EVCFDKQDPNYEPPSRGRKSTKNSLKGRGCPKKVAVGRPRGRPPKNKNLEVEVQKIS
PICTNCEQSFSDLETLKTHQCPRRDDEGDNVEHPQEASQ
YICGECIRAFSNLDLLKAHECIQQGEGS
YCCPHCDLYFNRMCNLRRHERTIHSKEKP
YCCTVCLKSFTQSSGLKRHQQSHLRRKSHRQSSALFTAAI
FPCAYCPFSFTDERYLYKHIRRHHPEMSLKYLSFQEGGVLSVEKP
HSCSQCCKSFSTIKGFKNHSCFKQGEKV
YLCPDCGKAFSWFNSLKQHQRIHTGEKP
YTCSQCGKSFVHSGQLNVHLRTHTGEKP
FLCSQCGESFRQSGDLRRHEQKHSGVRP
CQCPDCGKSFSRPQSLKAHQQLHVGTKL
FPCTQCGKSFTRRYHLTRHHQKMHS

>PRDMx_salSal Salmo salar NM_001173912
0 MESEWKSGGEEESGSEGERTPSSSHRDP 1
2 VCVSEQMKRAWLRQMNLRSRARVGYTEEEELRDEEYF 1
2 FCEECKSFFIEECELHGPPLFIPDTPAPLGAPDRARLTLPPGLEVRTSAIPGAGLGVFNHGHSVTQGTHYGPYEGELTDKELDMESGYSWV 0
0 IYKSKQRDEYIDGKRDTHSNWMR 2
1 YVNCARSEDEQNLVAFQYRGGILYRCCKPIAVGEELLVWYGEKYARDLGIVFDFLWDKKCSAR 1
2 GVNESSQSQIFSCSGCLFSFTAQTYLYKHIKRCHREECVRLPRSGGIRAETLAPPSGSQRCSTTPDRTPITLLTQKHRDTGKPAP
HHCSQCGKSFRRSGDLKVHQRTHTGERP
YHCSQCGKRFSVSGHLKTHQRTHTGERP
YHCSQCGKSFCRSGDLKVHQRTHTGERP
YHCSQCGKRFSVSRHLKRHQHIHTGERP
YHCSQCGKSFSASWSVKRHQITVHSVGRVSVSQEA

>PRDMx_oncMyk Oncorhynchus mykiss testis FP324541 CR372724
0 mTPSSSHRDPVC 1
2 VSEQRKRAWLKQVNLCSRARVRVGYTEEEELREEDYF 1
2 FCEECKSFFIEECELHGPPLFIQDTPAPLGAPDRARLTLPPGLEVRTSAIPGAGLGVFNYGHSVTQGTHYGPYEGELTDTELAMESGYSWV 0
0 IYKSKQSDEYIDAKRETHSNWMR 2
1 YVNCARNEEEQNLVAFQYRGGILYRCCKPLAVGEELLVWYGEEYARDLGIIFDFLWDRKSSAR 1
2 GVNESSQSQIFSCSGCPFSFTAQIYLYKHTKRCHREEYVRLPRSGGIRSETLAPPSGSQRCSTTPDRTPITLLTQKHQDTGKPRP
HHCSQCGKSFHRSGDLKVHQRTHTGERP
YHCSQCGKRFSVSGNLKTHQRIHTGERP
YPCSQCGKSFHRSDLKVHQRTHTGEKP
YHCSQCGKRFSVSGNLKTHQRIHTGERL
YPCSQCGKSFHRSELKVQQRTRPGKKTISLFPVWE

>PRDMx_ictPun Ictalurus punctatus FD367165 FD063496 C-terminus missing second gene present
0 MKTEAKDGGTEGI 2
1 VKKETLELSISNHGNSFHIIPEVVSIKEEEADVKDFL 1
2 YCEVCKSVFFSKCEVHGPALFIADSPVPMGVADRARQTLPPGLEIQKSGIPDAGLGVFNKGETVPVGAHFGPYQGELVDKEEAMNSVYSWV 0
0 IYMSRQCEKYIDAKREVHANWMR 2
1 YVNCAHSDGEQNLVAFQYRGGILYRCCRPINPGQELLVWYEEKYASDVGPIFAQLWNIKCSLSGKVHT

Other genes of relevance

It is instructive to consider certain closely related placental KRAB, ZNF and PRDM genes that may have some connection to the origin of PRDM7 and PRDM9. Nomenclature is very unsatisfactory in these gene families, as can be seen from lack of correspondence between gene name and intronation which is exceedingly well conserved in metazoa. For example, HKR1 a conventional ZNF family member, is egregiously misnamed. The methylase component is exceedingly old with clear antecedents in bacteria. Evidently gene duplications in an early intronless stem eukaryote were subsequently intronated randomly in different paralogs and shuffled into various larger proteins. Within PRDM*, the gene tree is (((PRDM7/9,PRDM11),(PRDM4,PRDM10)),PRDM6) with others only related by a PR (SET) domain. PRDM11 and its novel giant terminal exon are discussed in a separate article

A set of fragmentary sequences from murid rodents is also of some comparative interest. These include common strain variants of lab mouse as well as close relatives. Only the terminal zinc finger array is available for most of these. While these are likely PRDM7 (rather than PRDM9 which rodents never had), it is not possible to decisively establish this with GAS8 synteny in any of the rodents (or lagomorphs) currently the subject of a genome project.

>PRDM11_homSap Homo sapiens (human) corrected 511+722 aa  PhosS 3RAY coverage knuckle SET ZnF_TTF hATC_dimerization no early zinc finger or terminal array syn PFM8 related ZNF 862
0 MTENMKECLAQTNAAVGDMVTVVKTEVCSPLRDQEYGQPC 2
1 SRRPDSSAMEVEPKKLKGKRDLIVPKSFQQVDFW 1
2 FCESCQEYFVDECPNHGPPVFVSDTPVPVGIPDRAALTIPQGMEVVKDTSGESDVRCVNEVIPKGHIFGPYEGQISTQDKSAGFFSWL 0
0 IVDKNNRYKSIDGSDETKANWMR 2
1 YVVISREEREQNLLAFQHSERIYFRACRDIRPGEWLRVWYSEDYMKRLHSMSQETIHRNLAR 1
2 GEKRLQREKSEQVLDNPEDLRGPIHLSVLRQGKSPYKRGFDEGDVHPQAKKKKIDLIFKDVLEASLESAKVEAHQLALSTSLVIRKVPKYQDDAYSQCATTMTHGVQNIGQTQGEGDWKVPQGVSKEPGQLEDEEEEPSSFKADSPAEASLASDPHELPTTSFCPNCIRLKKKVRELQAELDMLKSGKLPEPPVLPPQVLELPEFSDPA 1
2 ASESMVSGPAIMEDDDQEVDSADESVSNDMMTATDEPSKMSSATGRRIRRFKQEWLKKFWFLRYSPTLNEMWCHVCRQYTVQSSRTSAFIIGSKQFKIHTIKLHSQSNLHKKCLQLYKLRMHPEKTEEM
CRNMTLLFNTAYHLALEGRPYLDFRPLAELLRKCELKVVDQYMNEGDCQILIHHIARALREDLVERIRQSPCLSVILDGQSDDLLADTVAVYVQYTSSDGPPATEFLSLQELGFSSTESYLQALDRAF
SALGIRLQDEKPTVGLGVDGANITASLRASMFMTIRKTLPWLLCLPFMVHRPHLEILDAISGKELPCLEELENNLKQLLSFYRYSPRLMCELRSTAATLCEETEFLGDIRAVRWIIGEQN
VLNALIKDYLEVVAHLKEVSSQTQRADASAIALALLQFLMDYQSIKLIYFLLDVIAVLSRLAYIFQGEYLLVSQVDDKIEEAIQEISRLADSPGEYLQEFEENFRESFNGIAMKNLRVAE
AKFQSIREKICQKTQVILAQRFDSRSRIFVKACQVFDLAAWPRSSEELMSYGKEDMVQIFDHLEAIPTFSRDVCREGLDPRGSLLMEWRELKADYYTKNGFKDLISHICKYKQRFPLLNK
IIQVLKVLPTSTACCEKGRNALQRVRKNHRSRLTLEQLSDLLTIAVNGPPITNFDAKRALDSWFEEKSGNSYALSAEVLSRMSALEQKPALQTMDHGTEFYPDI* 0

>PRDM4_homSap Homo sapiens (human) 801 aa knuckle, SET, early zinc and array
0 MHHR 2
1 MNEMNLSPVGMEQLTSSSVSNALPVSGSHLGLAASPTHSAIPAP 1
2 GLPVAIPNLGPSLSSLPSALSLMLPMGIGDRGVMCGLPERNYTLPPPPYPHLESSYFRTILP 1
2 GILSYLADRPPPQYIHPNSINVDGNTALSITNNPSALDPYQSNGNVGLEPGIVSIDSRSVNTHGAQSLHPSDGHEVALDTAITMENVSRVTSPISTDGMAEELTMDGVAGEHSQIPNGSRSHEPLSVDSVSN
NLAADAVGHGGVIPMHGNGLELPVVMETDHIASRVNGMSDSALSDSIHTVAMSTNSVSVALSTSHNLASLESVSLHEVGLSLEPVAVSSITQEVAMGTGHVDVSSDSLSFVSPSLQMEDSNSNKENMATLFTI 1
2 WCTLCDRAYPSDCPEHGPVTFVPDTPIESRARLSLPKQLVLRQSIVGAEV 1
2 GVWTGETIPVRTCFGPLIGQQSHSMEVAEWTDKAVNHIWK 0
0 IYHNGVLEFCIITTDENECNWMMFVRKAR 2
1 NREEQNLVAYPHDGKIFFCTSQDIPPENELLFYYSRDYAQQI 1
2 GVPEHPDVHLCNCGKECNSYTEFKAHLTSHIHNHLPTQGHSGSHGPSHSKERKWKCSMCPQAFISPSKLHVHFMGHMGMKP
HKCDFCSKAFSDPSNLRTHLKIHT 12 GQKN
YRCTLCDKSFTQKAHLESHMVIHTGEKN
LKCDYCDKLFMRRQDLKQHVLIHTQ 21 ERQ
IKCPKCDKLFLRTNHLKKHLNSHEGKRD
YVCEKCTKAYLTKYHLTRHLKTCKGPTS SSSAPEEEEEDDSEEEDLADSVGTEDCRINSAVYSADESLSAHK* 0

>PRDM10_homSap  Homo sapiens (human) 1160 aa knuckle, SET, early zinc and array 
0 MDSKDESSHVWPTSAEHEQNAAQ 0
0 VHFVPDTGTVAQIVYTDDQVRPPQQVVYTADGASYTSVDGPEHTLVYIHPVEAAQ 0
0 TLFTDPGQVAYVQQDATAQQ 0
0 ASLPVHNQVLPSIESVDGSDPLATLQTPLGRLEAKEEEDEDEDEDTEEDEEEDGEDTDLDDWEPDPPRPFDPHDL 1
2 WCEECNNAHASVCPKHGPLHPIPNRPVLTRARASLPLVLYIDRFLGGVFSKRRIPKRTQFGPVEGPLVRGSELKDCYIHLK 0
0 VSLDKGDRKERDLHEDLWFELSDETLCNWMMFVRPAQNHLEQNLVAYQYGHHVYYTTIKNVEPKQELK 0
0 VWYAASYAEFVNQKIHDISEEERK 1
2 VLREQEKNWPCYECNRRFISSEQLQQHLNSHDEKLDVFSR 2
1 TRGRGRGRGKRRFGPGRRPGRPPKFIRLEITSENGEKSDDGTQ 0
0 DLLHFPTKEQFDEAEPATLNGLDQPEQTTIPIPQLPQETQSSLEHEPETHTLHLQPQHEESVVPTQSTLTADDMRRAKRIR 0
0 LELQ 0
0 NAALQHLFIRKSFRP
FKCLQCGKAFREKDKLDQHLRFHGREGNCP
LTCDLCNKGFISSTSLESHMKLHSDQKT
YSCIFCPESFDRLDLLKDHVAIHINDGY
FTCPTCKKRFPDFIQ 00 VKKHVRSFHSEKI
YQCTECDKAFCRPDKLRLHMLRHSDRKD
FLCSTCGKQFK 00 RKDKLREHMQRMHNPEREAKKADRISRSKTFKPRITSTDYDSFT
FKCRLCMMGFRRRGML 00 VNHLSKRHPDMKIEEVPELTLPIIKPNRD
YFCQYCDK 00 VYKSASKRKAHILKNHPGAELPPSIRKLRPAGPGEPDPMLSTHTQLTGTIATPP
VCCPHCSKQYSSK 00 TKMVQHIRKKHPEFAQLSNTIHTPLTTAVISATPAVLTTDSATGETVVTTDLLTQAMTELSQTLTTDYRTPQGDYQRIQYIPVSQSASGLQQPQHIQLQVVQVAS 0
0 ATSPHQSQQSTVDVGQLHDPQPYPQHAIQVQHIQVSEPTASAPSSAQ 0
0 VSGQPLSPSAQQAQQGLSPSHIQGSSSTQGQALQQQQQQQQNSSVQHTYLPSAWNSFRGY 1
2 SSEIQMMTLPPGQFVITDSGVATPVTTGQVKAVTS 0
0 GHYVLSESQSELEEKQTSALSGGVQVEPPAHSDSLDPQTNSQQQTTQYIITTTTNGNGSSEVHITKP* 0

>PRDM15_homSap  Homo sapiens (human) 1507 aa knuckle, SET, early zinc finger and intronated array
0 MPRRRPPASGAAQFPERIATRSPDPIPLCTFQRQ 0
0 PRAAPVQPPCRLFFVTFAGCGHRWRSESKPGWISRSRSGIALRAARPP 1
2 GSSPPRPAAPRPPPPGGVVAEAPGDVVIPRPRVQPMRVARGGPWTPNPAFREAESW 2
1 SQIGNQRVSEQLLETSLGNEVSDTEPLSPASAGLRRNPALPP 1
2 GPFAQNFSWGNQENLPPALGKIANGG 1
2 GTGAGKAECGYETESHLLEPHEIPLNVN 0
0 THKFSDCEFPYEFCTVCFSPFKLLGMSGVEGVWNQHSRSASMHTFLNHSATGIREAGCRKDMP 0
0 VSEMAEDGSEEIMFI 12 WCEDCSQYHDSECPELGPVVMVKDSFVLSRAR 2
1 SWPASGHVHTQAGQGMRGYEDRDRADPQQLPEAVPAGLVRRLSGQQLPCRSTLTWGRLCHLVAQGR 2
1 SSLPPNLEIRRLEDGAEGVFAITQLVKRTQFGPFESRRVAKWEKESAFPLK 0
0 VFQKDGHPVCFDTSNEDDCNWMMLVRPAAEAEHQNLTAYQHGSDVYFTTSRDIPPGTELRVWYAAFYAKKMDKPMLKQAGSGVH 1
2 AAGTPENSAPVESEPSQWACKVCSATFLELQLLN 12 EHLLGHLEQAKSLPPGSQSEAAAPEKEQDTPRGEPPAVPESENVATKEQKKKPRRGRKPKVSKAEQPLVIVEDKEPT 12 EQVAEIITEVPPDEPVSATPDERIMELVLGKLATTTTDTSSVPK 21 FTHHQNNTITLKRSLILSSRHGIRRKLIKQLGEHKR
VYQCNICSKIFQNSSNLSRHVRSH 12 GDKL
FKCEECAKLFSRKESLKQHVSYKHSRNE 00 VDGEYR
YRCGTCEKTFRIESALEFHNCRT 12 DDKT
FQCEMCFRFFSTNSNLSKHKKKHGDKK
FACEVCSKMFYRKDVMLDHQRRHLE 12 GVRRVKblueLEAGGENLVRYKKEP
SGCPVCGK 00 VFSCRSNMNKHLLTHGDKK
YTCEICGRKFFRVDVLRDHIHVHFK 00 DIALMDDHQREEFIGKIGISSEENDDNSDESADSEPHK
YSCKRCQ 00 LTFGRGKEYLKHIMEVHKEKG
YGCSICNRRFALKATYHAHMVIHRENLPDPNVQK 21 YI
HPCEICGRIFNSIGNLERHKLIHT 12 GVKS
HACEQCGKSFARKDMLKEHMRVHDNVRE
YLCAECGK 12 GMKTKHALRHHMKLHKGIKE
YECKECHRRFAQKVNMLKHCKRHT 12 GIKD
FMCELCGKTFSERNTMETHKLIHT 12 VGKQ
WTCSVCDKKYVTEYMLQKHVQLTHDKVEA
QSCQLCGTKVSTRASMSRHMRRKHPE 0
0 VLAVRIDDLDHLPETTTIDASSIGIVQ 0
0 PELTLEQEDLAEGKHGKAAKRSHKRKQKPEEEAGAPVPEDATFSEYSEKETEFTGSVGDETNSAVQSIQQ 0
0 VVVTLGDPNVTTPSSSVGLTNITVTPITTAAATQFTNLQPVAVGHLTTPERQLQLDNSILTVTFDTVSGSAMLHNRQNDVQIHPQPEASNPQSVAHFINLTTLVNSITPLGSQLSDQHPLTWRAVPQTDVLPPSQPQAPPQQAAQPQVQAEQQQQQMYSY* 0

>PRDM6_homSap  Homo sapiens (human) 595 aa knuckle, SET, no early zinc finger, short array
0 MLKPGDPGGSAFLKVDPAYLQHWQQLFPHGGAGPLKGSGAAGLLSAPQPLQPPPPPPPPERAEPPPDSLRPRPASLSSASSTPASSSTSASSASSCAA
AAAAAALAGLSALPVSQLPVFAPLAAAAVAAEPLPPKELCLGATSGPGPVKCGGGGGGGGEGRGAPRFRCSAEELDYYLYGQQRMEIIPLNQHTSDPNN 1
2 RCDMCADNRNGECPMHGPLHSLRRLVGTSSAAAAAPPPELPEWLRDLPREVCLCTSTVPGLAYGICAAQRIQQGTWIGPFQGVLLPPEKVQAGAVRNTQHLWE 0
0 IYDQDGTLQHFIDGGEPSKSSWMRYIRCARHCGEQNLTVVQYR 2
1 SNIFYRACIDIPRGTELLVWYNDSYTSFFGIPLQCIAQDEN 1
2 LNVPSTVMEAMCRQDALQPFNKSSKLAPTTQQRSVVFPQTPCSRNFSLLDKSGPIESGFNQINVKNQRVLASPTSTSQLHSEFSDWHL
WKCGQCFKTFTQRILLQMHVCTQNPDR 21 P
YQCGHCSQSFSQPSELRNHVVTHSSDRP
FKCGYCGRAFAGATTLNNHIRTHTGEKP
FK 21 CERCERSFTQATQLSRHQRMPNECKP ITESPESIEVD* 0
>ZNF133_homSap Homo sapiens (human) 653 aa KRAB, early zinc finger and array
0 MAFRDVAVDFTQDEWRLLSPAQRTLYREVMLENYSNLVSL 1
2 GISFSKPELITQLEQGKETWREEKKCSPATCP 1
2 DPEPELYLDPFCPPGFSSQKFPMQHVLCNHPPWIFTCLCAEGNIQPGDPGPGDQEKQQQASEGRPWSDQAEGPEGEGAMPLFGRTKKRTLGAFSRPPQRQPVSSRNGLRGVELEASPAQTGNPEETDKLLKRIEVLGFGT
VNCGECGLSFSKMTNLLSHQRIHSGEKP
YVCGVCEKGFSLKKSLARHQKAHSGEKP
IVCRECGRGFNRKSTLIIHERTHSGEKP
YMCSECGRGFSQKSNLIIHQRTHSGEKP
YVCRECGKGFSQKSAVVRHQRTHLEEKT
IVCSDCGLGFSDRSNLISHQRTHSGEKP
YACKECGRCFRQRTTLVNHQRTHSKEKP
YVCGVCGHSFSQNSTLISHRRTHTGEKP
YVCGVCGRGFSLKSHLNRHQNIHSGEKP
IVCKDCGRGFSQQSNLIRHQRTHSGEKP
MVCGECGRGFSQKSNLVAHQRTHSGERP
YVCRECGRGFSHQAGLIRHKRKHSREKP
YMCRQCGLGFGNKSALITHKRAHSEEKP
CVCRECGQGFLQKSHLTLHQMTHTGEKP
YVCKTCGRGFSLKSHLSRHRKTTSVHHR LPVQPDPEPCAGQPSDSLYSL* 0

>HKR1_homSap Homo sapiens (human) 659aa KRAB, early zinc finger and array
0 MRVNHTVSTMLPTCMVHRQTMSCSGAGGITAFVAFRDVAVYFTQEEWRLLSPAQRTLHREVMLETYNHLVSL 1
2 EIPSSKPKLIAQLERGEAPWREERKCPLDLCP 1
2 ESKPEIQLSPSCPLIFSSQQALSQHVWLSHLSQLFSSLWAGNPLHLGKHYPEDQKQQQDPFCFSGKAEWIQEGEDSRLLFGRVSKNGTSKALSSPPEEQQPAQSKEDNTVVDIGSSPERRADLEETDKVLHGLEVSGFGE
IKYEEFGPGFIKESNLLSLQKTQTGETP
YMYTEWGDSFGSMSVLIKNPRTHSGGKP
YVCRECGRGFTWKSNLITHQRTHSGEKP
YVCKDCGRGFTWKSNLFTHQRTHSGLKP
YVCKECGQSFSLKSNLITHQRAHTGEKP
YVCRECGRGFRQHSHLVRHKRTHSGEKP
YICRECEQGFSQKSHLIRHLRTHTGEKP
YVCTECGRHFSWKSNLKTHQRTHSGVKP
YVCLECGQCFSLKSNLNKHQRSHTGEKP
FVCTECGRGFTRKSTLSTHQRTHSGEKP
FVCAECGRGFNDKSTLISHQRTHSGEKP
FMCRECGRRFRQKPNLFRHKRAHSGA
FVCRECGQGFCAKLTLIKHQRAHAGGKP
HVCRECGQGFSRQSHLIRHQRTHSGEKP
YICRKCGRGFSRKSNLIRHQRTHSG* 0

>ZNF343_homSap Homo sapiens (human) 599aa KRAB, early zinc finger and array
0 MMLPYPSALGDQYWEEILLPKNGENVETMKKLTQNHKAK 1
2 GLPSNDTDCPQKKEGKAQIV 0
0 VPVTFRDVTVIFTEAEWKRLSPEQRNLYKEVMLENYRNLLSL 1
2 AEPKPEIYTCSSCLLAFSCQQFLSQHVLQIFLGLCAENHFHPGNSSPGHWKQQGQQYSHVSCWFENAEGQERGGGSKPWSARTEERETSRAFPSPLQRQSASPRKGNMVVETEPSSAQRPNPVQLDKGLKELETLRFGA
INCREYEPDHNLESNFITNPRTLLGKKP
YICSDCGRSFKDRSTLIRHHRIHSMEKP
YVCSECGRGFSQKSNLSRHQRTHSEEKP
YLCRECGQSFRSKSILNRHQWTHSEEKP
YVCSECGRGFSEKSSFIRHQRTHSGEKP
YVCLECGRSFCDKSTLRKHQRIHSGEKP
YVCRECGRGFSQNSDLIKHQRTHLDEKP
YVCRECGRGFCDKSTLIIHERTHSGEKP
YVCGECGRGFSRKSLLLVHQRTHSGEKH
YVCRECRRGFSQKSNLIRHQRTHSNEKP
YICRECGRGFCDKSTLIVHERTHSGEKP
YVCSECGRGFSRKSLLLVHQRTHSGEKH
YVCRECGRGFSHKSNLIRHQRTH* 0
 
>ZNF589_homSap Homo sapiens (human) 364 aa KRAB, early zinc finger and truncated array
0 MWAPREQLLGWTAE 1
2 ALPAKDSAWPWEEKPRYL 0
0 GPVTFEDVAVLFTEAEWKRLSLEQRNLYKEVMLENLRNLVSL 1
2 AESKPEVHTCPSCPLAFGSQQFLSQDELHNHPIPGFHAGNQLHPGNPCPEDQPQSQHPSDKNHRGAEAEDQRVEGGVRPLFWSTNERGALVGFSSLFQRPPISSWGGNRILEIQLSPAQNASSEEVDRISKRAETPGFGAVTFGECALAFNQKSNLFRQKAVTAEKSSDKRQS
QVCRECGRGFSRKSQLIIHQRTHTGEKP
YVCGECGRGFIVESVLRNHLSTHSGEKP
YVCSHCGRGFSCKPYLIRHQRTHTREKS
FMCTVCGRGFREKSELIKHQRIHTGDKP
YVCRD* 0

>ZNF169_homSap Homo sapiens (human) 603aa KRAB, no early zinc finger but array
0 MSPGLLTTRKEALMAFRDVAVAFTQKEWKLLSSAQRTLYREVMLENYSHLVSL 1
2 GIAFSKPKLIEQLEQGDEPWREENEHLLDLCP 1
2 EPRTEFQPSFPHLVAFSSSQLLRQYALSGHPTQIFPSSSAGGDFQLEAPRCSSEKGESGETEGPDSSLRKRPSRISRTFFSPHQGDPVEWVEGNREGGTDLRLAQRMSLGGSDTMLKGADTSESGAVIRGNYRLGLSKKSSLFSHQKH
HVCPECGRGFCQRSDLIKHQRTHTGEKP
YLCPECGRRFSQKASLSIHQRKHSGEKP
YVCRECGRHFRYTSSLTNHKRIHSGERP
FVCQECGRGFRQKIALLLHQRTHLEEKP
FVCPECGRGFCQKASLLQHQSSHTGERP
FLCLECGRSFRQQSLLLSHQVTHSGEKP
YVCAECGHSFRQKVTLIRHQRTHTGEKP
YLCPQCGRGFSQKVTLIGHQRTHTGEKP
YLCPDCGRGFGQKVTLIRHQRTHTGEKP
YLCPKCGRAFGFKSLLTRHQRTHSEEEL
YVDRVCGQGLGQKSHLISDQRTHSGEKP
CICDECGRGFGFKSALIRHQRTHSGEKP
YVCRECGRGFSQKSHLHRHRRTKSGHQL LPQEVF* 0
 
>ZNF596_homSap Homo sapiens (human) 504 aa KRAB, no early zinc finger but array
0 MPSP 0
0 DSMTFEDIIVDFTQEEWALLDTSQRKLFQDVMLENISHLVSI 1
2 GKQLCKSVVLSQLEQVEKLSTQRISLLQ 1
2 GREVGIKHQEIPFIQHIYQKGTSTISTM 0
0 RSHTQEDPFLCNDLGEDFTQHIALTQNVITYMRTKHFVSKKFGKIFSDWLSFNQHKEIHTKCKSYGSHLFDYAFIQNSALRPHSVTHTREIT
LECRVCGKTFSKNSNLRRHEMIHTGEKP
HGCHLCGKAFTHCSDLRKHERTHTGEKP
YGCHLCGKAFSKSSNLRRHEMIHTREKA
QICHLCGKAFTHCSDLRKHERTHLGDKP
YGCLLCGKAFSKCSYLRQHERTHNGEKP
YECHLCGKAFSHCSHLRQHERSHNGEKP
HGCHLCGKAFTESSVLKRHERIHTGEKP
YECHVCGKAFTESSDLRRHERTHTGEKP
YECHLCGKAFNHSSVLRRHERTHTGEKP
YECNICGKAFNRSYNFRLHRRVHTGEKP
YVCPLCGKAFSKFFNLRQHERTHTKKAMNM* 0
>GAS8_homSap Homo sapiens (human) synteny marker centromeric to PRDM7 in placentals
0 M 0
0 APKKKGKKGKAKGTPIVDGLAPEDMSKEQ 0
0 VEEHVSRIREELDREREERNYFQLERDKIHTFWEITRRQLEEKKAELRNKDREMEEAEERHQVEIK 0
0 VYKQKVKHLLYEHQNNLTEMKAEGTVVMKLAQKEHRIQESVLRKDMRALKVELKEQELASEVVVKNLRL 0
0 KHTEEITRMRNDFERQVR 1
2 EIEAKYDKKMKMLRDELDLRRKTELHEVEERKNGQIHTLMQRHEEAFTDIKNYYNDITLNNLALINSLK 0
0 EQMEDMRKKEDHLEREMAEVSGQNKRLADPLQKAREEMSEMQKQLANYERDKQILL 0
0 CTKARLKVREKELKDLQWEHEVLEQRFTK 0
0 VQQERDELYRKFTAAIQEVQQKTGFKNLVLERKLQALSAAVEKKEVQFNEVLAASNLDPAALTLVSRKLE 0
0 DVLESKNSTIKDLQYELAQVCK 0
0 AHNDLLRTYEAKLLAFGIPLDNVGFKPLETAVIGQTLGQGPAGLVGTPT

>CDH12_homSap Homo sapiens (human) synteny marker chr 5 794 aa
MLTRNCLSLLLWVLFDGGLLTPLQPQPQQTLATEPRENVIHLPGQRSHFQRVKRGWVWNQFFVLEEYVGSEPQYVGKLHSDLDKGEGTVKYTLSGDGAGTVFTIDETTGDIHAIRSLDRE
EKPFYTLRAQAVDIETRKPLEPESEFIIKVQDINDNEPKFLDGPYVATVPEMSPVGAYVLQVKATDADDPTYGNSARVVYSILQGQPYFSIDPKTGVIRTALPNMDREVKEQYQVLIQAK
DMGGQLGGLAGTTIVNITLTDVNDNPPRFPKSIFHLKVPESSPIGSAIGRIRAVDPDFGQNAEIEYNIVPGDGGNLFDIVTDEDTQEGVIKLKKPLDFETKKAYTFKVEASNLHLDHRFH
SAGPFKDTATVKISVLDVDEPPVFSKPLYTMEVYEDTPVGTIIGAVTAQDLDVGSSAVRYFIDWKSDGDSYFTIDGNEGTIATNELLDRESTAQYNFSIIASKVSNPLLTSKVNILINVL
DVNEFPPEISVPYETAVCENAKPGQIIQIVSAADRDLSPAGQQFSFRLSPEAAIKPNFTVRDFRNNTAGIETRRNGYSRRQQELYFLPVVIEDSSYPVQSSTNTMTIRVCRCDSDGTILS
CNVEAIFLPVGLSTGALIAILLCIVILLAIVVLYVALRRQKKKDTLMTSKEDIRDNVIHYDDEGGGEEDTQAFDIGALRNPKVIEENKIRRDIKPDSLCLPRQRPPMEDNTDIRDFIHQR
LQENDVDPTAPPYDSLATYAYEGSGSVAESLSSIDSLTTEADQDYDYLTDWGPRFKVLADMFGEEESYNPDKVT*

>CDH10 
MTIHQFLLLFLFWVCLPHFCSPEIMFRRTPVPQQRILSSRVPRSDGKILHRQKRGWMWNQFFLLEEYTGSDYQYVGKLHSDQDKGDGSLKYILSGDGAGTLFIIDEKTGDIHATRRIDRE
EKAFYTLRAQAINRRTLRPVEPESEFVIKIHDINDNEPTFPEEIYTASVPEMSVVGTSVVQVTATDADDPSYGNSARVIYSILQGQPYFSVEPETGIIRTALPNMNRENREQYQVVIQAK
DMGGQMGGLSGTTTVNITLTDVNDNPPRFPQNTIHLRVLESSPVGTAIGSVKATDADTGKNAEVEYRIIDGDGTDMFDIVTEKDTQEGIITVKKPLDYESRRLYTLKVEAENTHVDPRFY
YLGPFKDTTIVKISIEDVDEPPVFSRSSYLFEVHEDIEVGTIIGTVMARDPDSISSPIRFSLDRHTDLDRIFNIHSGNGSLYTSKPLDRELSQWHNLTVIAAEINNPKETTRVAVFVRIL
DVNDNAPQFAVFYDTFVCENARPGQLIQTISAVDKDDPLGGQKFFFSLAAVNPNFTVQDNEDNTARILTRKNGFNRHEISTYLLPVVISDNDYPIQSSTGTLTIRVCACDSQGNMQSCSA
EALLLPAGLSTGALIAILLCIIILLVIVVLFAALKRQRKKEPLILSKEDIRDNIVSYNDEGGGEEDTQAFDIGTLRNPAAIEEKKLRRDIIPETLFIPRRTPTAPDNTDVRDFINERLKE
HDLDPTAPPYDSLATYAYEGNDSIAESLSSLESGTTEGDQNYDYLREWGPRFNKLAEMYGGGESDKDS

>PRDM7_musMus1 Mus musculus genomic strain
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQNSHLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREKp

>PRDM7_musMus2 Mus musculus strain WSB/EiJ GU183911 and EU719625 missing a repeat 
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQNSHLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK

>PRDM7_musMus3 Mus musculus strain MOLF/EiJ GU183913 
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTEKSSLIQHQRTHTGEKP
YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP

>PRDM7_musMus4 Mus musculus strain PWD/PhJ GU183912 = PWD/Ph FJ212287
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTEKSSLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP

>PRDM7_musMus5 Mus musculus strain CAST/EiJ GU183909
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTEKSSLIKHQRTHTGEKP
YVCRECGWGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSSLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKPa
YVCRECGWGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK*

>PRDM7_musMus6 Mus musculus strain C57BL10.F HQ704390
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQNSHLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTVKSVLIKHQRTHTGEKP
YVCRECGRGFTQNSHLIQHQRTHTGEKP
YVCRECGRGFTAKSVLIQHQRTHTGEKP
YVCRECGRGFTQNSHLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSVLIKHQRTHTGEKP
YVCRECGRGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK

>PRDM7_musMol Mus musculus molossinus GU216230
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTEKSSLIKHQRTHTGEKP
YVCRECGWGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSSLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGWGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREK*

>PRDM9_musCas Mus musculus castaneus
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSVLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTARSNLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTEKSSLIKHQRTHTGEKP
YVCRECGWGFTAKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSSLIKHQRTHTGEKP
YVCRECGRGFTAKSNLIQHQRTHTGEKP
YVCRECGWGFTQKSNLIKHQRTHTGEKP
YVCRECGWGFTQKSDLIQHQRTHTREKp

>PRDM9_musPah Mus pahari
SIERQCGQYFSDKSNVNEHQRTHTGEKP
YVCRECGRGFTQKSNLITHQRTHTGEKP
YVCRECGRGFTGKSPLIRHQRTHTGEKP
YVCRECGRGFTQKSNLITHQRTHTGEKP
YVCRECGRGFTGKSPLIRHQRTHTGEKP
YVCRECGRGFTQKSHLIKHQRTHTGEKP
YVCRECGRGFTEKSNLIKHQRTHTGEKP
YVCRECGRGFTQKSPLIRHQRTHTGEKP
YVCTECGRGFTQKSNLITHQRTNTGEKP

>PRDM9_musMac Mus macedonicus
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTVKSDLIKHQRTHTGEKP
YVCRECGRGFTQKSNLIQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTVKSHLTQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSHLIKHQRTHTGEKP
YVCRECGRGFTQKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSNLIKHQRTHTGEKP
YVCRECGRGFTQNSHLTQHQRTHTGEKS
YVCRECGWGFKQKSDLIQHQRTHTREKp

>PRDM9_musSpi Mus spicilegus
SIERQCGQYFSDKSNVNEHQKTHTGEKP
YVCRECGRGFTQKSNLIQHQRTHTGEK
YVCRECGRGFTQKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSDLIKHQRTHTGEKP
YVCRECGRGFTVKSHLTQHQRTHTGEKP
YVCRECGRGFTQKSDLIKHQRTHTGEKP
YVCRECGRGFTAKSHLTQHQRTHTGEKP
YVCRECGRGFTQKSNLIQHQRTHTGEKP
YVCRECGRGFTAKSNLIKHQRTHTGEKP
YVCRECGRGFTQNSHLTQHQRTHTGEKS
YVCRECGWGFKQKSDLIQHQRTHTREKp

>PRDM9_merUng Meriones unguiculatus
GTGRECGQCFSDKSNVSEHQRTHTGEKP
YVCRECGRGFMQRSNLISHQRTHTGEKP
YVCRECGRGFMQRSNLISHQRTHTGEKP
YVCRECGRGFTVKSVLISHQRTHTGEKP
YVCRECGRGFTVKPHLISHQRTHTGEKP
HVCRECGRGFTQRSNLIRHQRTHTGEKP
YVCRECGRGFTVKPHLISHQRTHTGEKP
YVCRECGRGFTVKPHLISHQRTHTGEKP
YVCRECGRGFTVKSVLISHQRTHTGEKP
YVCRECGRGFTVKSVLIRHQRTHTGEKP
YVCRECRRGFTQRSTLIRHQRTHTGEKP
HVCRECGRGFTRGSHLLRHQRTHTGEVL

>PRDM9_micAgr Microtus agrestis
RVGGERGQCFSDKSNVNEHQRTHTGEKP
YVCRECGRGFTRKSNLNVHQRTHTGEKP
YVCRECGRGFTRKALLISHQRTHTGEKP
YVCRECGRGFTQKALLISHQRTHTGEKP
YVCRECGRGFTQKSYLILHQRTHTGEKP
YVCRECGRGFTGKSNLNVHQRTHTGEKP
YVCRECGRGFTQKSYLILHQRTHTGEKP
YVCRECGRGFTGKSLLIRHQRTHTGEKP
YVCRECGRGFTQKSYPILHQRTHTGEKp

>PRDM9_arvTer Arvicola terrestris
RVEGECGQCFNDKSNVNERQRTHTGEKP
YVCRECGRGFTRKSVLILHQRTHTGEKP
YVCRECGRGFTQKSVLINHQRTHTGEKP
YVCRECGRGFTQKSHLIFHQRTHTGEKP
YVCRECGRGFTQKSHLILHQRTHTGEKP
YVCRECGRGFTWKSVLILHQRTHTGERP
YVCRECGRGFTRKSHLILHQRTHTGEKP
YVCRECGRGFTQKSHLILHQRTHTGEKP
YVCRECGRGFTRKSVLILHQRTHTGEKP
YVCRECGRGFTRKSVLINHQRTHTGEKp

>PRDM9_perPol Peromyscus polionotus
RIETECGQRFSDKSNVNESQRTHSEEKP
YVCRECGQGFIQKSVLICHQRTHTGEKP
YVCRECGQGFTWKSHLIRHQRTHTGEKP
YVCRECGKGFIRKSHLICHQRTHTGEKP
YVCRECGQGFIQKSHLICHQRTHTGEKP
YVCRECGQGFTQKSVLICHQRTHTGEKP
YVCRECGQGFIRKSYLICHQRTHTGEKP
YVCRECGKGFTWKSVLIRHQRTHTVEKp

>PRDM9_perLeu Peromyscus leucopus
RIETECGQRFSDKSNANESQRTHSEEKP
YVCRECGQGFTRKSYLICHQRTHTGEKP
YVCRECGQGFIQKSVLIRHQRTHTGEKP
YVCRECGQGFTRKSYLICHQRTHTGEKP
YVCRECGQGFIQKSVLIRHQRTHTGEKP
YVCRECGQGFTWKSVLICHQRTHTGEKP
YVCRECGQGFTRKSYLICHQRTHTGEKP
YVCRECGQGFTWKSHLIRHQRTHTGEKP
YVCRECGQGFTRKSYLICHQRTHTGEKP
YVCRECGQGFIQKSHLICHQRTHTGEKP
YVCRECGQGFTRKSYLICHQRTHTGEKP
YVCRECGQGFTWKSVLIRHQRTHTAEKp

>PRDM9_perMan Peromyscus maniculatus
RTETECGQHFSDKSNANESQRTHSEEKP
YVCRECGQGFTWKSVLIRHQRTHTGEKP
YVCRECGQGFTWKSVLICHQRTHTGEKP
YVCRECGQGFTWKSVLICHQRTHTGEKP
YVCRECGQGFIQKSHLIRHQRTHTGEKP
YVCRECGQGFIRKSHLICHQRTHTGEKP
YVCRECGQGFAQKSVLIYHQRTHTGEKP
YVCRECGQGFTRKSHLICHQRTHTGEKP
YVCRECGQGFAQKSVLICHQRTHTGEKP
YVCRECGQGFTWKSVLICHQRTHTGEKP
YVCRECGQGFIQKSHLIRHQRTHTGEKP
YVCRECGQGFIQKSHLIRHQRTHTGEKp

>PRDM9_apoSyl Apodemus sylvaticus
RVERQRGQCFSDKSNVSERQGTHTGEKP
CVCRECGRGFTQKSHLNRHQRTHTGEKP
HVCRECGRGFTQKSHLNRHQRTHTGEKP
HVCRECGRGFTLKSNLNRHQRTHTGEKP
CVCRECGRAFTQKSDLIQHQRTHTGEKP
YVCRECGRGFTQKSNLNQHQRTHTGEKP
YVCRECGRGFTRKSLLIQHQRTHTGEKP
YVCRECGRGFTQKSDLNRHQRTHTGEKP
YVCRECGRGLTQKSNLIQHQRTHTGEKP
YVCRECGRGFTLKSDLIQHQRTHTGEKP
YVCRECGRGFTRKSDLNRHQRTHTGEKP
YVCRECGRGFTQKSNLIQHQRTHTGEKP
YVCRECGRGFTLKSDLIQHQRTHTGEKP
YVCRECGRGFTRKSDLNRHQRTHTGEKp

>PRDM7_ratNor Rattus norvegicus
RIERQCGQCFSDKSNVSEHQRTHTGEKP
YICRECGRGFSQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSDLIKHQRTHTGEKP
YICRECGRGFTQKSDLIKHQRTHTEEKP
YICRECGRGFTQKSSLIRHQRTHTGEKP
YICRECGLGFTQKSNLIRHLRTHTGEKP
YICRECGLGFTRKSNLIQHQRTHTGEKP
YICRECGQGLTWKSSLIQHQRTHTGEKP
YICRECGRGFTWKSSLIQHQRTHTVEKp

Online references

Open 53 recent PubMed abstracts on PRDM9 and related issues. Or use the reverse chronological list below to get free full text for individual articles when that is available:


abs 2012  Sarbajna     A major recombination hotspot in the XqYq pseudoautosomal region gives new insight into processing of human gene conversion events. Hum Mol Genet. 2012 Feb 8                                                         
htm 2011  Ségurel      The Case of the Fickle Fingers: How the PRDM9 Zinc Finger Protein Specifies Meiotic Recombination Hotspots in Humans.  PLoS Biol 9(12): e1001211. doi:10.1371/journal.pbio.1001211
htm 2011  Katzman      Ongoing GC-Biased Evolution Is Widespread in the Human Genome and Enriched Near Recombination Hot Spots.  Genome Biol Evol (2011) 3 614-626
htm 2011  Muñoz        Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes.  PLoS One. Nov 2011; 6(11): e25498. 
htm 2011  Axelsson     Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome.  Genome Res. 17 Oct 2011 
htm 2011  Grey         Mouse PRDM9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination.  PLoS Biol. 2011 Oct;9(10):e1001176. 2011 Oct 18.
pdf 2011  Berg         Variants of the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots highly active in African populations.  PNAS 2011 Jul 26;108(30):12378-83.
pdf 2011  Richon       Chemogenetic analysis of human protein methyltransferases.  Chem Biol Drug Des. 2011 Aug;78(2):199-210.
abs 2011  Campagna     Structural Chemistry of the Histone Methyltransferases Cofactor Binding Site. J Chem Inf Model. 2011 Mar 28;51(3):612-23.
pdf 2011  Hinch        The landscape of recombination in African Americans.  Nature. 2011 Jul 20. doi: 10.1038/nature10336.
pmc 2011  Smagulova    Genome-wide analysis reveals novel molecular features of mouse recombination hotspots.  Nature. 2011 Apr 21;472(7343):375-8.
htm 2011  Kaupi        Distinct properties of the XY pseudoautosomal region crucial for male mouse meiosis.  Science 18 Feb 2011;DOI: 10.1126/science.1195774
abs 2011  Briknarova   The PR/SET domain in PRDM4 is preceded by a zinc knuckle.  Proteins 2011 Jul;79(7):2341-5. doi: 10.1002/prot.23057.
pmc 2011  Fledel       Variation in human recombination rates and its genetic determinants.  PLoS One 2011;6(6):e20321.
abs 2011  Neaves       Unisexual reproduction among vertebrates.  Trends Genet. 2011 Mar;27(3):81-8.
abs 2011  Ponting      What are the genomic drivers of the rapid evolution of PRDM9?  Trends Genetics (2011) 1–7
htm 2011  Yanover      Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers.  Nucleic Acids Res. 2011 Feb 22
pdf 2011  Ubeda        Red Queen theory of recombination hotspots.  J Evol Biol. 2011 Mar;24(3):541-53.
abs 2010  Hochwagen    Meiosis: a PRDM9 guide to the hotspots of recombination.  Curr Biol. 2010 Mar 23;20(6):R271-4.
pmc 2010  Tsai         Conservation of recombination hotspots in yeast.  PNAS 2010 April 27; 107(17): 7847–7852.
abs 2010  Klug         The discovery of zinc fingers and practical applications in gene regulation and genome manipulation.  Q Rev Biophys. 2010 Feb;43(1):1-21.
abs 2010  Berg         PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans.  Nat Genet. 2010 Oct;42(10):859-63.
abs 2010  McVean       PRDM9 marks the spot.  Nat Genet. 2010 Oct;42(10):821-2.
pdf 2010  Kong         Fine-scale recombination rate differences between sexes, populations and individuals.  Nature. 2010 Oct 28;467(7319):1099-103.
pmc 2010  Parvanov     Prdm9 controls activation of mammalian recombination hotspots.  Science. 2010 Feb 12;327(5967):835.
pmc 2010  Lorenz       The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3  BMC Genomics. 2010 Mar 26;11:206. 
pmc 2010  Neale        PRDM9 points the zinc finger at meiotic recombination hotspots.  Genome Biol. 2010;11(2):104.
pmc 2010  Sandovici    PRDM9 sticks its zinc fingers into recombination hotspots and between species.  F1000 Biol Rep. 2010 May 24;2.
pmc 2010  Billings     Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping.  PLoS One. 2010 Dec 8;5(12):e15340.
htm 2010  Cheung       Genetic control of hotspots.  Science. 2010 Feb 12;327(5967):791-2.
pdf 2010  Urnov        Highly efficient endogenous human gene correction using designed zinc-finger nucleases.  Nature. 2005 Jun 2;435(7042):646-51.
htm 2010  Zheng        Detecting sequence polymorphisms associated with meiotic recombination hotspots in the human genome.  Genome Biol. 2010;11(10):R103.
htm 2010  Baudat       PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice.  Science. 2010 Feb 12;327(5967):836-40.
htm 2010  Myers        Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination.  Science. 2010 Feb 12;327(5967):876-9.
pmc 2009  Jeffreys     The rise and fall of a human recombination hot spot.  Nat Genet 2009 41:625–629.
pmc 2009  Berglund     Hotspots of biased nucleotide substitutions in human genes.  PLoS Biol. 2009 Jan 27;7(1):e26.
pmc 2009  Thomas       Evolution of C2H2-zinc finger genes revisited.  BMC Evol Biol. 2009 Mar 4;9:51.
pmc 2009  Oliver       Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa.  PLoS Genet. 2009 Dec;5(12):e1000753.
pmc 2009  Thomas       Extraordinary molecular evolution in the PRDM9 fertility gene.  PLoS One. 2009 Dec 30;4(12):e8505.
htm 2009  Willis       Origin of species in overdrive.  Science. 2009 Jan 16;323(5912):350-1.
htm 2009  Irie         Single-nucleotide polymorphisms of the PRDM9 (MEISETZ) gene in patients with nonobstructive azoospermia.  J Androl. 2009 Jul-Aug;30(4):426-31.
htm 2009  Mihola       A mouse speciation gene encodes a meiotic histone H3 methyltransferase.  Science. 2009 Jan 16;323(5912):373-5.
abs 2008  Brayer       The protein-binding potential of C2H2 zinc finger domains.  Cell Biochem Biophys. 2008;51(1):9-19.
htm 2008  Webb         Sperm cross-over activity in regions of the human genome showing extreme breakdown of marker association.  PNAS 2008 105:10471–10476
pmc 2008  Duret        The impact of recombination on nucleotide substitutions in  the human genome.  PLoS Genet. 2008 May 9;4(5):e1000071.
pmc 2008  Miyamoto     Two single nucleotide polymorphisms in PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with azoospermia by meiotic arrest.  J Assist Reprod Genet. 2008 Nov-Dec;25(11-12):553-7.
htm 2008  Cho          Prediction of DNA binding sites for zinc finger proteins.  BBRC 2008 May 9;369(3):845-8.
abs 2008  Myers        A common sequence motif associated with recombination hot spots and genome instability in humans.  Nat Genet. 2008 Sep;40(9):1124-9.
pmc 2007  Coop         Live hot, die young: transmission distortion in recombination hotspots.  PLoS Genet. 2007 Mar 9;3(3):e35.
pmc 2007  Fumasoni     Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates.  BMC Evol Biol. 2007 Oct 4;7:187.
htm 2007  Gay          Estimating meiotic gene conversion rates from population genetic data.  Genetics. 2007 Oct;177(2):881-94.
pdf 2006  Phillips     A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis.  Dev Cell. 2006 Dec;11(6):817-29.
htm 2006  Birtle       Meisetz and the birth of the KRAB motif.  Bioinformatics. 2006 Dec 1;22(23):2841-5. 
pdf 2006  Hayashi      Meisetz, a novel histone tri-methyltransferase, regulates meiosis-specific epigenesis.  Cell Cycle. 2006 Mar;5(6):615-20.
pdf 2005  Hayashi      A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 2005 Nov 17;438(7066):374-8.
htm 2005  Winckler     Comparison of Fine-Scale Recombination Rates in Humans and Chimpanzees. Science 2005 2005 Apr 1;308(5718):107-11.
abs 2000  Laity        DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers.  J Mol Biol. 2000 Jan 28;295(4):719-27.

Article author

Author.jpg

I researched this article in its entirety in April and July-August of 2011, paying as little attention as possible to the previous studies above, which are excellent on meiosis but completely clueless on comparative genomics. This is a moderately difficult topic as human genes go, so the overall annotation is still being revised periodically into 2012 as better quality genomes become available. A change in one section places others in need of revision, not always promptly attended to.

Although copyrighted, all the information here is in the public domain and can be used by anyone without additional permissions if properly sourced; however if data, figures or original observations are taken for a peer-reviewed scientific publication, it might be appropriate (after consultation early on) to include me among secondary co-authors.

Rather than make article edits yourself, please contact me by email with clarifications, corrections or additions to the content so I can make edits while maintaining a consistent approach. For broader disagreements or different interests, a better option is to register at the UCSC genomeWiki site and create your own page within the comparative genomics category.

This is just a scientific research article on a vertebrate gene family, not a counseling resource for personal genomics nor medical advice on infertility -- thanks in advance for not sending inappropriate email. Note technical terms from genetics and molecular biology are not explained when keywords have a satisfactory treatment at wikipedia or in undergraduate genetics texts.

My last dozen published research papers in PNAS, Nature, Science etc can be found here. Watch for 4 additional comparative genomics paper to appear in 2012. I've also written over a thousand pages of comparative genomics for other human genes, authored the original user manual to the UCSC human genome browser and in 1999 an advanced tutorial on metazoan genome annotation still widely available online. I thank the UCSC Genomics Group (Hiram Clawson, Brian Raney) for software and manuscript resources, Evim Foundation for logistical support, and the Sperling Foundation for financial support under project grant 2011.GNTCS.004.